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Use of the BCC and Range Directional DEA Models within

an Efficiency Evaluation
Michal Houda'®

Abstract. The contribution deals with two data envelopment analysis (DEA)
models, in particular the BCC model (radial DEA model with variable returns
to scale), and the range directional model. The mathematical description of the
models are provided and several properties reported. A numerical comparison of
the two models on real industrial data is provided with discussion about possible
drawbacks of simplifying modeling procedures.
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1 Introduction

Question of measuring productive efficiency is classically based on the use of the Pareto efficiency notion
to define the production function. Traditionally, the inefficiencies in input/output usage are neglected and
total production growth is represented by shift in technologies. The pioneering works of Shephard [10] and
Farrell [9] in measuring the productive efficiency using all inputs and outputs in order to prevent the in-
dex number problem (inadequacy of separate indices for labor and capital productivity), and in introducing
the conceptual use of various types of efficiencies, were followed by a successful attempt to compute the
productivity efficiency using a linear optimization model by Charnes, Cooper, and Rhodes [5]. Their non-
parametric approach to estimate the production function as the efficiency frontier made up as the boundary
of the convex hull of data points adopted the name of Data Envelopment Analysis (DEA) and spread around
the scientific world quickly.

The classical CCR DEA model implicitly assumes constant returns-to-scale and continuous linear production
possibility set. Many extensions to this original model were adopted, e. g. the widely used variable returns-
to-scale model [1], discrete and continuous additive models [2], [4], slack-based measure models [11], or
stochastic extensions [6]. We refer the reader to the monographs [8] and [7] for further information.

In our contribution, we want to point out that the classical DEA models are not able to work with negative
data. We want emphasize, in particular, that units with negative data cannot be simply dropped from in-
vestigation as the results will become distorted. In Section 2, we provide definitions of basic notions and
several DEA models used for comparison. Section 3.2 present some insights to numerical results based on
real dataset, discussed and concluded in Section 4.

2 DEA Models
2.1 Production Possibility Set

Consider K decision-making units denoted DMUy, k = 1,..., K. Each unit k is characterised by a collection
of m inputs xy, I = 1,...,m and outputs yj, j = 1,...,n; the input and output matrix are then denoted
X = (xi) and Y = (yj), respectively. For the sake of convenience, let also denote x; = (x1x, . .. ,Xmk)T and
Yk = W1k, - - - »Ynk)T the input and output vectors of DMUj. A unit under actual investigation (for which the
efficiency is evaluated) is denoted DMU, thorough the paper.

The set of all combinations of allowed input and output vectors are known as production possibility set (PPS)
and its correct specification plays an elementary role in DEA analysis. In general, PPS is defined through

PPS = {(x,y) | y may be produced from x} . n

A unit may be then characterized as efficient in Pareto-Koopmans dominance sense with respect to such
defined production possibility set:
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Definition 1. DMU; dominates DMU, if x; < X, y1 > y,, and at least one (one-dimensional) inequality is
strict.

Definition 2. DMU, is efficient with respect to PPS if there is no (real or virtual) unit with (x,y) € PPS
dominating DMU,.

2.2 BCC Model

Giving an example, Banker, Charnes, and Cooper’s (BCC) model [1] assuming variable returns to scale is
related to the following continuous convex PPS

PPSc:{(x,y)|x§X)\,y2Y)\,Z)\kzl,)\20} (2)
k

Itis not hard to see that PPS; represents the convex hull of all available input-output data points. Let s~ and
sT be the slack (surplus) for the inequalities X\ < 0xo and Y\ > yo with some 6 € R. The efficiency of DMU,
with respect to PPS¢ may verified solving the BCC input oriented model (in envelopment form)

min6 +e > 57+ s | subjectto
i J

X\+s = 06x 3)
Y\ — S+ =JYo

Z/\k =1,A>0,5",s" >0, # unconstrained ,
K

where ¢ is so-called non-Archimedean infinitesimal (a positive number smaller than any other positive num-
ber). DMUj is efficient with respect to PPS if the optimal solution to (3) has §* = 1l ands™* = s™* = 0,
implying that DMUj is lying on the boundary of PPS¢ and is (in fact) an extreme point of it.

Remark 1. Although the model (3) is notlinear in principle due to the infinitesimal part, it may be solved by
two-stage procedure with two linear optimization problems, see e.g. [8]. The infinitesimal part is present
to ensure that some boundary points with §* = 1 but non-zero slacks (also known as weakly efficient) are
excluded from the final optimal solution.

2.3 Directional Distance Model

A single factor 6 in (3) ensures that all the inputs are improved proportionally when projecting onto the ef-
ficient frontier. This is the property that characterizes so-called radial DEA models: the actual efficiency of
the unitis furthermore a proportion of input values of DMUj and its peer unit. This implies a main drawback
of the presented model: it may work well only if the data—the matrices X and Y—contain only positive ele-
ments. With negative data, the efficient measure is not well defined and the model cannot give appropriate
results.

To generalize the radial feature and overcome the inability to work with negative data, Chambers, Chung,
and Fére [3] proposed a so-called directional distance model:

max 3 subject to
X\ <xo — Bg"
YA >yo + B9 (4)

D M=1,1>0,8>0
k

where g* and ¢ are pre-specified vectors of improvement directions and j3 is called directional distance mea-
sure. DMUj is efficient with respect to PPS¢ if 5* = 0 in (4). The input oriented BCC model is then seen as a
special case of (4) withg* =xp,¢’ =0andf =1 — 5.

2.4 Range Directional Model

The free choice of possible improvement directions g* and g’ gives the decision maker a great flexibility
to represent many particular kinds of preference strengths inside input and output vectors. On the other
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hand, this may represent a shortcoming too, especially in the case of missing or limited information about
the nature of the data (the input/output improvement directions should be given in advance). This po-
tentially unwanted freedom may be solved by choosing a particular reference point I (sometimes called
“ideal point”) with respect to which the improvements are considered. A frequent choice for such point is
I = (ming x.x; maxgy.x) (the minimums of inputs and maximums of outputs are taken component-wise in
the above notation). The improvement directions are then defined by

g =xo — mkinx.k,
¢’ = maxy.i —yo,
and the corresponding directional distance model, called the range directional model, takes the form

max 3 subject to
XA<(1-8)x0+ ﬁmkinx.k

YA>1-p8yo+ 8 m]?xy.k (5)

D AM=1120,5>0
k

Again, DMUj is efficient with respect to PPS if the optimal solution of (5) is 5* = 0. (Adaptation of the
two-stage technique to deal with non-efficient boundary points is straightforward and we will not provide
additional details here.) The range directional model is still radial but the reference pointis now / and not the
origin as in the BCC model. Furthermore, the particular choice of I ensures that the improvement directions
are meaningfully defined for all kind of the data and there is no need to restrict the DEA investigation to
nonnegative inputs and outputs only.

3 Numerical Illlustration

In this section we will compare two particular DEA models in order to point out the danger of bad model
specification when working with real economic data and problems.

3.1 Example Setting

We have considered annual accounts of 380 Czech companies from the food industry (NACE C.10) from the
year 2014. For the purpose of this paper, wee have chosen to evaluate the companies using

1. the input oriented model with variable returns to scale (BCC model), and

2. the range directional model (RD model).

The analysis was based on four inputs: SPMAAEN (material and energy consumption), ON (personnel costs),
STALAA (fixed assets), and POSN (percentage of personnel costs); and two outputs VYKONY (business per-
formance), and ROA (return on assets). Among 380 companies, 89 reported no material and energy costs
and were removed from investigation. Further, 70 companies have negative ROA and cannot be analysed us-
ing BCC model. This resulted into 244 feasible observations for the BCC model and 291 feasible observation
for the RD model.

3.2 Numerical Results

Among the 244 companies, 22 of them (9%) were evaluated as BCC efficient; additional three companies
have the efficiency score higher than 95%. The alternative RD model evaluated only 10 companies (3.4%)
to be efficient. The histograms of efficiency scores for both models are given in Figure 1 (BCC model is on
the left hand side, RD model on the right hand side of the figure).

Furthermore, only four from nine NACE subgroups comprise an RD efficient company, while the distribution
of BCC efficient companies is more widespread. Figure 2 provides an additional insight into the relationship
between the subgroup size and the relative number of efficient companies in the overall model.

Another interesting comparison of the two models was made for selected input and output of both models.
Figure 3 provides the empirical distribution plot for the personnel cost percentage (variable POSN). Note, in
particular, the noticeable difference in distribution of this input for efficient (cyan colored) units — units with
small percentages were marked more often as efficient in BCC model. Similar plotis provided as Figure 4 for
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the return on assets (variable ROA). For the BCC model, all units with negative ROA must be excluded from
the computations.

A scatter plot of a (partial) relationship of the input and output mentioned above is provided in Figure 5.
Interestingly, one unit with negative ROA and average POSN was made efficient by RD model. Again, only the
upper part of the right hand side plot (units with ROA above zero) is comparable with the left hand side plot.

Efficient LA rdm Efficient
FALSE FALSE
+ TRUE . + TRUE

ROA
ROA

POSN POSN

Figure 5 Relationship between the Personnel Cost Percentage and Return on Assets

4 Discussion and Conclusion

The comparison made in Section 3.2 clearly demonstrates that choice of a good model in production analysis
is crucial. For example, the distribution of the optimal efficiency §* among the investigated units shows
that BCC model (probably inadequately) overvalued efficiencies of the remaining units (with positive ROA).
Notice that only a small part of the units exceeded the efficiency of 0.50 for the RD model. Furthermore,
analysing Figure 5 one may notice a great number of BCC efficient units with relatively small ROA which
were not marked as efficient by the RD model.

To conclude: simple deleting the observations which do not conform to the assumption of the chosen model
(as done, for example, by the BCC case) ineluctably leads to false conclusions concerning efficiency of the
remaining units and any subsequent results.
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