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Abstract

In this paper, we propose three types of absolute continuity for monotone measures and present some of their basic properties. 
By means of these three types of absolute continuity, we establish generalized Egoroff’s theorem, generalized Riesz’s theorem 
and generalized Lebesgue’s theorem in the framework involving the ordered pair of monotone measures. The Egoroff theorem, 
the Riesz theorem and the Lebesgue theorem in the traditional sense concerning a unique monotone measure are extended to the 
general case. These three generalized convergence theorems include as special cases several previous versions of Egoroff-like 
theorem, Riesz-like theorem and Lebesgue-like theorem for monotone measures, respectively.
© 2020 Elsevier B.V. All rights reserved.
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1. Introduction

In classical measure theory, there are several important convergence theorems for a sequence of measurable 
functions, such as the Egoroff theorem, the Riesz theorem, the Lebesgue theorem, etc. These theorems describe 
implications between three convergence concepts: almost everywhere convergence, almost uniform convergence, and 
convergence in measure for a sequence of real-valued measurable functions. We summarize these well-known results 
[1]: (1) Egoroff’s theorem asserts that almost everywhere convergence implies almost uniform convergence on a mea-
surable set of finite measure. (2) Riesz’s theorem states that each sequence of measurable functions which converges 
in measure has a subsequence converging almost everywhere. (3) Lebesgue’s theorem affirms that almost everywhere 
convergence implies convergence in measure on a measurable set of finite measure (sometimes the combination of (2) 
and (3) is also called F. Riesz–Lebesgue theorem, see [2]).

In general, many classical results are no longer valid when we move from σ -additive measures to general monotone 
measures. The above mentioned three theorems have been effectively extended in non-additive measure theory by 
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using a variety of structural characteristics of set functions. These results were summarized in detail in [3]. For more 
details, we recommend [4–17].

We recall three typical results generalizing Egoroff’s theorem, Riesz’s theorem and Lebesgue’s theorem from 
classical measure theory to monotone measure theory: (a) In [7] the concept of condition [E] of a monotone measure 
was introduced and it was proved that Egoroff’s theorem holds in the case of monotone measures if and only if the 
monotone measures fulfil condition [E] (see also [8]). (b) In [6] the concept of property [S] of a monotone measure 
was introduced and it was shown that, in the context of monotone measures, the conclusion of the classical Riesz’s 
theorem holds if and only if the monotone measures possess property [S]. (c) In [9] it was shown that the strong 
order continuity is not only a necessary, but also a sufficient condition for Lebesgue’s theorem to hold in the case of 
monotone measures (see also [11]). From the above three statements we see that the condition [E], property [S] and 
strong order continuity of monotone measures are very important structural characteristics in non-additive measure 
theory.

As is well known, the monotone measures lose additivity, therefore the three convergence concepts we considered 
have so-called “pseudo-” variants, respectively: “pseudo-almost everywhere convergence”, “pseudo-almost uniform 
convergence” and “convergence pseudo-in measure” (denoted by convergence p.a.e., p.a.u. and in p.μ, respectively). 
Thus, Egoroff’s theorem, Riesz’s theorem, Lebesgue’s theorem, etc., each of them takes four different forms in the case 
of monotone measures (see [3,4,18]). The above three typical results (a), (b), and (c), which only concern convergence 
a.e., a.u., and in measure, are referred to as the standard-forms of convergence theorems. The other three pseudo-
versions were established in the context of (pseudo-)convergence (see [3,4,18]).

When we consider the convergence and pseudo-convergence on the whole universe X and the monotone measure μ
is finite (i.e., μ(X) < ∞), then the convergence p.a.e.[μ] (resp. p.a.u.[μ] or in p.μ) is equivalent to the convergence 
a.e.[μ] (resp. a.u.[μ] and in μ), where μ is the conjugate of monotone measure μ. Thus, the pseudo-versions of 
convergence theorems involve two different monotone measures μ and μ (although μ is induced by μ). For instance, 
we recall a pseudo-form of Egoroff’s theorem [3,10]: under certain assumptions for a monotone measure μ, the 
convergence a.e.[μ] implies convergence a.u.[μ].

This motivates us to consider convergence theorems in a more general case involving a pair of monotone measures 
(λ, ν). For instance, we are trying to find a necessary and sufficient condition (related to the ordered pair (λ, ν) of 
monotone measures) that convergence a.e.[ν] implies convergence a.u.[λ] such that the standard-form of Egoroff’s 
theorem, as well as the pseudo-forms of Egoroff’s theorem for monotone measures, are special cases of the situation 
we are considering.

In this paper we shall generalize Egoroff’s theorem, Riesz’s theorem and Lebesgue’s theorem in the traditional 
sense (i.e., in classical measure theory and only concerning one measure) to the general case involving a pair of 
monotone measures. In the following section, we give some preliminaries and recall three important structural char-
acteristics of monotone measures: condition [E], property [S] and strong order continuity. In Section 3, corresponding 
to the concepts of condition [E], property [S] and strong order continuity of monotone measures, we introduce respec-
tively absolute continuity of types E, R and L for monotone measures. As we will see, the condition [E], property 
[S] and strong order continuity are special cases of these three types of absolute continuity, respectively. Further 
discussions to these three types of absolute continuity will be shown in Section 5. Our main results are presented 
in Section 4. By means of absolute continuity of types E, R, and L, we establish respectively generalized Egorof-
f’s theorem, generalized Riesz’s theorem and generalized Lebesgue’s theorem, each of which is related to a pair of 
monotone measures. These three generalized convergence theorems include respectively as special cases the previous 
versions of the Egoroff theorem, the Riesz theorem and the Lebesgue theorem for monotone measures. Thus, unified 
approaches to Egoroff’s theorems, Riesz’s theorems and Lebesgue’s theorems for monotone measures are presented, 
respectively.

2. Preliminaries

Let X be a nonempty set and A a σ -algebra of subsets of X. A set function μ :A → [0, +∞] is called a monotone 
measure ([4]) on measurable space (X, A) if it satisfies the following conditions:

(1) μ(∅) = 0 and μ(X) > 0;
(2) μ(A) ≤ μ(B) whenever A ⊂ B and A, B ∈A.
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Let M denote the set of all monotone measures defined on (X, A). For λ, ν ∈ M, let (λ, ν) denote the ordered 
pair of λ and ν, i.e., (λ, ν) ∈ M ×M.

For a finite monotone measure μ ∈M, i.e., μ(X) < ∞, we define the conjugate μ of μ by

μ(A) = μ(X) − μ(X − A), A ∈ A.

Obviously, μ ∈ M and μ = μ.
For more information concerning monotone measures and nonlinear integrals, we recommend [5,19–27].
We recall the condition [E], property [S] and strong order continuity of monotone measures, which play important 

roles in generalizing the well-known convergence theorems from classical measure theory to monotone measure 
theory [6,7,9] (see also [3]).

Definition 2.1. ([7]) Let μ ∈ M. μ is said to fulfil condition [E] (resp. condition [E]), if for every double se-
quence (A(m)

n )(m,n)∈N×N ⊂ A satisfying the condition: for any fixed m = 1, 2, . . ., A(m)
n ↘ A(m) (n → ∞) with 

μ
(⋃+∞

m=1 A(m)
) = 0, there exist increasing sequences (ni)i∈N and (mi)i∈N of natural numbers, such that

lim
k→+∞μ

(+∞⋃
i=k

A(mi)
ni

)
= 0

(
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+∞⋃
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A(mi)
ni

)
= μ

(
X

) )
. (2.1)

Definition 2.2. ([6]) Let μ ∈ M. μ is said to have property [S] (resp. property [S]), if for any (An)n∈N ⊂ A with 
limn→+∞μ(An) = 0, there exists a subsequence (Ani

)i∈N of (An)n∈N such that

μ
( ∞⋂

k=1

∞⋃
i=k

Ani

)
= 0

(
resp. μ

(
X −

∞⋂
k=1

∞⋃
i=k

Ani

)
= μ

(
X

))
. (2.2)

Definition 2.3. ([9,28]) Let μ ∈ M. μ is said to be strongly order continuous (resp. strongly order pseudo-continuous), 
if for any (An)n∈N ⊂ A, A ∈A, An ↘ A and μ(A) = 0 implies

lim
n→+∞μ(An) = 0

(
resp. lim

n→+∞μ(X − An) = μ(X)
)
. (2.3)

Note 2.4. (1) The strong order pseudo-continuity of monotone measures is a new concept we have introduced.
(2) For pseudo-form of Condition [E], instead of the previous term “condition [PSE]” in [3], we use the term 

“condition [E]” in Definition 2.1 to correspond to the dual property concerning conjugate measures (in finite measures 
case), see Proposition 3.4 in the following sections and Theorem 4.1 (2), (3) and (4) in [10].

3. Three types of absolute continuity of monotone measures

In order to establish convergence theorems in general case relating to a pair of monotone measures, we need to 
generalize the concepts of the condition [E], property [S] and strong order continuity of monotone measures.

We introduce three types of absolute continuity for monotone measures: types E, R and L, which are closely 
related to condition [E], property [S] and strong order continuity, respectively. We will see in the next section that 
they play important roles in discussing the relations among several different convergence for a sequence of measurable 
functions.

Definition 3.1. Let (λ, ν) ∈ M × M. λ is called to be absolutely continuous of Type E with respect to ν, denoted 
by λ 
E ν, if for every double sequence (A(m)

n )(m,n)∈N×N ⊂ A satisfying the condition: for any fixed m = 1, 2, . . ., 

A
(m)
n ↘ A(m) (n → ∞) with

ν
( +∞⋃

m=1

A(m)
)

= 0, (3.4)

there exist increasing sequences (ni)i∈N and (mi)i∈N of natural numbers, such that
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lim
k→+∞λ

(+∞⋃
i=k

A(mi)
ni

)
= 0. (3.5)

Definition 3.2. Let (λ, ν) ∈M ×M. λ is called to be absolutely continuous of Type R with respect to ν, denoted by 
λ 
R ν, if for any (An)n∈N ⊂ A with

lim
n→+∞ν(An) = 0, (3.6)

there exists a subsequence (Ani
)i∈N of (An)n∈N such that

λ
( ∞⋂

k=1

∞⋃
i=k

Ani

)
= 0. (3.7)

Definition 3.3. Let (λ, ν) ∈M ×M. λ is called to be absolutely continuous of Type L with respect to ν, denoted by 
λ 
L ν, if for any (An)n∈N ⊂ A, A ∈A,

An ↘ A and ν(A) = 0 (3.8)

implies

lim
n→+∞λ(An) = 0. (3.9)

Obviously, Definitions 3.1, 3.2 and 3.3 are corresponding to Definitions 2.1, 2.2 and 2.3, respectively. When λ = ν, 
the concepts of absolute continuity of types E, R and L go back to the concepts of condition [E], property [S] and 
strong order continuity, respectively, i.e., we have the following:

Proposition 3.4. For any μ ∈M, we have
(1) μ 
E μ if and only if μ fulfils condition [E]; when μ is finite, μ 
E μ if and only if μ fulfils condition [E];
(2) μ 
R μ if and only if μ has property [S]; when μ is finite, μ 
R μ if and only if μ has property [S];
(3) μ 
L μ if and only if μ is strongly order continuous; when μ is finite, μ 
L μ if and only if μ is strongly 

order pseudo-continuous.

We recall two basic types of absolute continuity of monotone measures, as follows:

Definition 3.5. ([29]) Let (λ, ν) ∈ M ×M. We say that
(1) λ is absolutely continuous of Type I with respect to ν, denoted by λ 
I ν, iff for any A ∈A, ν(A) = 0 implies 

λ(A) = 0;
(2) λ is absolutely continuous of Type VI with respect to ν, denoted by λ 
VI ν, iff for any (An)n∈N ⊂ A, ν(An) →

0 (n → ∞) implies λ(An) → 0 (n → ∞).

For any (λ, ν) ∈ M ×M, λ 
VI ν implies λ 
I ν. The converse may not be true for monotone measures. When 
λ and ν are finite σ -additive measures on (X, A), then λ 
VI ν iff λ 
I ν ([2]).

In Section 5, we will continue to discuss more properties of these three types of absolute continuity.

4. Generalized convergence theorems

We reiterate that, as already mentioned in Section 1, Egoroff’s theorem, Riesz’s theorem and Lebesgue’s theorem 
in classical measure theory, each of them is only related to one measure. In this section we generalize these three 
convergence theorems in the traditional sense to more general cases involving a pair of monotone measures on the 
same measurable space (X, A).

Let F denote the class of all finite real-valued A-measurable functions on (X, A), and let f, fn ∈ F (n = 1, 2, . . .) 
and μ ∈M be fixed. The following concepts can be found, for example, in [4,5].
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We say that (fn)n∈N converges almost everywhere to f on X with respect to μ, and denote it by fn
a.e.−→ f [μ], if 

there is a subset N ⊂ X such that μ(N) = 0 and fn → f on X −N ; (fn)n∈N converges pseudo-almost everywhere to 
f on X with respect to μ, and denote it by fn

p.a.e.−→ f [μ], if there is a subset N ⊂ X such that μ(X − N) = μ(X) and 
fn → f on X − N ; (fn)n∈N converges almost uniformly to f on X with respect to μ, and denote it by fn

a.u.−→ f [μ], 
if for any ε > 0 there is a set Aε ∈ A such that μ(X − Aε) < ε and fn converges to f uniformly on Aε ; (fn)n∈N
converges to f pseudo-almost uniformly on X with respect to μ and, denote it by fn

p.a.u.−→ f [μ], if there exists 
(Ak)k∈N ⊂ A with limk→+∞ μ(X − Ak) = μ(X) such that fn converges to f on X − Ak uniformly for any fixed 
k = 1, 2, . . .; (fn)n∈N converge to f in measure μ (resp. pseudo-in measure μ) on X, in symbols fn

μ−→ f (resp. 

fn
p.μ−→ f ), if for any σ > 0, limn→+∞ μ ({x : |fn(x) − f (x)| ≥ σ }) = 0 (resp. limn→+∞ μ({x : |fn − f | < σ }) =

μ(X)).
The convergence a.e. (resp. a.u. or in μ) on X and the convergence p.a.e. (resp. p.a.u. or in p.μ) on X are dual to 

each other in the following sense, see [30].

Proposition 4.1. Let μ be a finite monotone measure on (X, A). Then

(1) fn
p.a.e.−→ f [μ] if and only if fn

a.e.−→ f [μ];
(2) fn

p.a.u.−→ f [μ] if and only if fn
a.u.−→ f [μ];

(3) fn
p.μ−→ f if and only if fn

μ−→ f .

4.1. Generalized Egoroff’s theorem for monotone measures

The condition [E] and Egoroff condition of a monotone measure were introduced, respectively, and it is shown that 
each of them is a necessary and sufficient condition that the Egoroff theorem remains valid for a monotone measure 
([7,8]). Several pseudo-versions of Egoroff’s theorem on monotone measure spaces were also established ([4,10,18]). 
A detailed overview of these results was shown in [3].

Now we present a general version of Egoroff’s theorem which concerns a pair of monotone measures. Its proof is 
almost the same as the one of Theorem 1 in [7] (Egoroff’s theorem for monotone measures). For readers convenience, 
we include its proof (see Appendix).

Theorem 4.2. (Generalized Egoroff’s theorem) Let (λ, ν) ∈M ×M. Then the following are equivalent:
(i) λ 
E ν;
(ii) for all f ∈ F and all (fn)n∈N ⊂ F , we have

fn
a.e.−→ f [ν] =⇒ fn

a.u.−→ f [λ]. (4.10)

When (λ, ν) = (μ, μ) (i.e., λ and ν are the same monotone measure μ ∈M), then the generalized Egoroff theorem 
(Theorem 4.2) goes back to Egoroff’s theorems for monotone measures in [7,8,17] (see also Theorem 4.3 in [3]):

Corollary 4.3. (Egoroff’s theorem) Let μ be a monotone measure on (X, A). Then, for all f ∈ F and all (fn)n∈N ⊂
F ,

fn
a.e.−→ f [μ] =⇒ fn

a.u.−→ f [μ] (4.11)

if and only if μ fulfils condition [E] (or Egoroff condition, or condition [M]).

When (λ, ν) = (μ, μ), (μ, μ) and (μ, μ), respectively, where μ is a finite monotone measure, then the generalized 
Egoroff theorem includes as special cases three different pseudo-versions of Egoroff’s theorem for monotone measures 
in the context of pseudo-convergence, see Theorem 4.1 (2), (3) and (4) in [10] (see also Theorem 4.8 in [3]).

Note that for any (λ, ν) ∈ M × M, λ 
E ν implies λ 
L ν. Therefore, the absolute continuity of Type L of λ
with respect to ν is a necessary condition for the validity of (4.10) in Theorem 4.2 (Generalized Egoroff’s theorem). 
As a special case we directly obtain the results presented in [7,8]: the strong order continuity is a necessary condition 
of Egoroff’s theorem for monotone measures (see Proposition 1 in [7], or Proposition 3 in [8]).
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Similarly, as special cases of Theorem 4.2 (when (λ, ν) = (μ, μ), (μ, μ) and (μ, μ), respectively) we respectively 
obtain necessary conditions of three pseudo-versions of the Egoroff theorem for monotone measures, see Corollary 
4.2 (2), (3), and (4) in [10].

Example 4.4. Let (X, A) and (λ, ν) be considered as in Example 5.5 (i) in the following Section 5. Note that both λ
and ν do not fulfil condition [E], but λ 
E ν.

Define

fn(x) =
{

0 if x ∈ {1,2, . . . , n},
1 otherwise,

n = 1, 2, . . ., and f (x) = 0 (x ∈ X). We can easily see that fn
a.e.−→ f [ν], and it implies fn

a.e.−→ f [λ]. Since λ does 
not fulfil condition [E], we can not directly use Egoroff’s theorem (Corollary 4.3) to confirm the truth of the formula 
fn

a.u.−→ f [λ]. But, by using the generalized Egoroff theorem and noting that λ 
E ν, we obtain fn
a.u.−→ f [λ].

Note 4.5. Similarly, corresponding to the Egoroff condition ([8]) and the condition [M] ([17]), respectively, we can 
introduce two types of absolute continuity in some sense such that each of them is equivalent with the validity of 
(4.10), respectively.

Note 4.6. When λ and ν are finite σ -additive measures on (X, A), we obtain a generalized version of Egoroff’s 
theorem on classical measure space, as follows:

Theorem 4.7. (Generalized Egoroff’s theorem for σ -additive measures) Let λ and ν be finite σ -additive measures on 
(X, A). Then the following are equivalent:

(i) λ 
I ν.
(ii) λ 
VI ν.
(ii) for all f ∈ F and all (fn)n∈N ⊂ F , we have

fn
a.e.−→ f [ν] =⇒ fn

a.u.−→ f [λ]. (4.12)

4.2. Generalized Riesz’s theorem for monotone measures

In [6] the concept of property [S] of a monotone measure was introduced and it was shown that, in the case of 
monotone measures, the conclusion of the classical Riesz theorem holds if and only if property [S] is satisfied. As 
a variant of property [S], the property [S] was introduced in [3] and three pseudo-versions of the Riesz theorem for 
monotone measures in the context of (pseudo-)convergence were shown. The other Riesz-like theorems for monotone 
measures in the sense of pseudo-convergence were also presented respectively under the conditions of property [PS]
[3,6], property [TS] [30] and property [TPS] [30].

Now we establish a generalized Riesz theorem in the framework involving a pair of monotone measures.

Theorem 4.8. (Generalized Riesz’s theorem) Let (λ, ν) ∈M ×M. Then the following are equivalent:
(i) λ 
R ν;
(ii) for all f ∈ F and all (fn)n∈N ⊂ F with fn

ν−→ f , there exists a subsequence (fni
)i∈N of (fn)n∈N such that 

fni

a.e.−→ f [λ].

Proof. The proof is similar to that of Theorem 2.1 in [6] (see also Theorem 5 in [12]), therefore we omit its details. �
It is similar to the case of Egoroff’s theorem, when λ = ν, Riesz’s theorem for monotone measures (see Theorem 2.1 

in [6] or Theorem 5 in [12], see also Theorem 5.17 in [3]) is recovered by the generalized Riesz theorem (Theorem 4.8).
When we take (λ, ν) = (μ, μ), (μ, μ) and (μ, μ) in Theorem 4.8, respectively, as special results, the generalized 

Riesz theorem cover three pseudo-forms of Riesz’s theorem on finite monotone measure spaces, see Theorem 5.20 in 
[3].
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4.3. Generalized Lebesgue’s theorem for monotone measures

The strong order continuity is a necessary and sufficient condition for which Lebesgue’s theorem remains valid in 
the case of monotone measures [9]. Under the conditions of three kinds of continuity of monotone measures, such 
as continuity from below, order continuity and pseudo-order continuity, etc., three different versions of Lebesgue’s 
theorem for monotone measures in the context of (pseudo-)convergence were presented in [11] (see also [4,18]).

In the following we present the generalized Lebesgue theorem for monotone measures.

Theorem 4.9. (Generalized Lebesgue’s theorem) Let (λ, ν) ∈M ×M. Then the following are equivalent:
(i) λ 
L ν;
(ii) for all f ∈ F and all (fn)n∈N ⊂ F , we have

fn
a.e.−→ f [ν] =⇒ fn

λ−→ f. (4.13)

Proof. It is similar to the proof of Theorem 1 in [9], therefore we omit its details. �
When λ = ν, as a direct result of the generalized Lebesgue theorem (Theorem 4.9) we get the following Lebesgue’s 

theorem for monotone measures, which was shown in [9] (see Theorem 1 in [9] or Theorem 5.2 in [3]):

Corollary 4.10. (Lebesgue’s theorem) Let μ be a monotone measure on (X, A). Then, for all f ∈ F and all (fn)n∈N ⊂
F

fn
a.e.−→ f [μ] =⇒ fn

μ−→ f,

if and only if μ is strongly order continuous.

It is similar to the discussion of Egoroff-like theorems, for a finite monotone measure μ, take (λ, ν) = (μ, μ), 
(μ, μ) and (μ, μ) in Theorem 4.9 respectively, and combine Propositions 3.4 and 4.1, we obtain three differ-
ent pseudo-versions of the Lebesgue theorem for monotone measures in the context of convergence and pseudo-
convergence, as follows:

Corollary 4.11. Let μ be a finite monotone measure on (X, A). Then,

(1) For all f ∈ F and all (fn)n∈N ⊂ F , fn
p.a.e.−→ f [μ] implies fn

p.μ−→ f if and only if μ is strongly order continu-
ous.

(2) For all f ∈ F and all (fn)n∈N ⊂ F , fn
a.e.−→ f [μ] implies fn

p.μ−→ f if and only if μ is strongly order pseudo-
continuous.

(3) For all f ∈ F and all (fn)n∈N ⊂ F , fn
p.a.e.−→ f [μ] implies fn

μ−→ f if and only if μ is strongly order pseudo-
continuous.

Remark 4.12. (1) In our discussions we only considered the (pseudo-) convergence (a.e., p.a.e., a.u., p.a.u., in μ, 
in p.μ) on the whole space X. For the general case, i.e., for (pseudo-)convergence on any measurable subset of a 
measurable space (X, A), we can consider the restriction of monotone measures to some subset, and introduce the 
corresponding concepts. As we have discussed, we can obtain the corresponding results and these results will cover 
the several different versions of convergence theorems presented in [4,11,18,30].

(2) The Egoroff theorem, the Riesz theorem and the Lebesgue theorem in classical measure theory were extended 
in some more general contexts: (i) lattice-valued monotone measures and lattice-valued measurable functions [31]; 
(ii) real-valued monotone measures and set-valued measurable functions [32]; (iii) Riesz space-valued monotone 
measures and real-valued functions [13,14]; (iv) fuzzy multimeasures and real-valued functions [15]; (v) ordered 
topological vector space-valued non additive measure [16]; (vi) set-valued fuzzy measures [33], etc. Under these 
contexts the extensions of our results are some subjects of further study.
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5. Further discussion on absolute continuity

In this section we continue to discuss properties of absolute continuity of types E, R and L. We show the relation-
ships between these three types of absolute continuity and their corresponding concepts: condition [E], property [S]
and strong order continuity.

We can easily obtain the following propositions:

Proposition 5.1. Let (λ, ν) ∈M ×M.
(1) If λ 
E ν, then λ 
I ν.
(2) If λ 
I ν and λ fulfils condition [E], then λ 
E ν.
(3) If λ 
VI ν and ν fulfils condition [E], then λ 
E ν.

Proposition 5.2. Let (λ, ν) ∈M ×M.
(1) If λ 
R ν, then λ 
I ν.
(2) If λ 
I ν and ν has property [S], then λ 
R ν.
(3) If λ 
VI ν and λ has property [S], then λ 
R ν.

Proposition 5.3. Let (λ, ν) ∈M ×M.
(1) If λ 
L ν, then λ 
I ν.
(2) If λ 
I ν and λ is strongly order continuous, then λ 
L ν.
(3) If λ 
VI ν and ν is strongly order continuous, then λ 
L ν.

From Propositions 5.1(1), 5.2(1) and 5.3(1) we know that the absolute continuity of Type I (λ with respect to ν) is 
a necessary condition for each of the generalized Egoroff theorem, the generalized Riesz theorem and the generalized 
Lebesgue theorem. From the rest conditions (2) and (3) we obtain respectively sufficient conditions for these three 
generalized convergence theorems.

Remark 5.4. For any (λ, ν) ∈ M × M, the three types of absolute continuity relating to (λ, ν), types E, R and L, 
are corresponding to the concepts of condition [E], property [S] and strong order continuity of monotone measures, 
respectively. But the condition [E] of λ, the condition [E] of ν, and λ 
E ν are logically independent from one to 
each other. The cases of property [S] and strong order continuity of monotone measures are similar.

Example 5.5. Let X = X1 ∪ X2, X1 = {1, 2, . . . .}, X2 = {1/2, 1/3, . . . .}, and A = 2X .
(i) Define

λ(E) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if E ⊂ {1} ∪ X2,

1 if 1 ∈ E and E ∩ (X1 − {1}) �= ∅,

max
{

1
i
: i ∈ E ∩ X1

}
if 1 /∈ E and E ∩ X1 �= ∅,

and

ν(E) =
{

0 if E ⊂ X2,

1 otherwise.

Then λ, ν are monotone measures on (X, A) and both λ and ν do not fulfil condition [E]. It is not difficult to verify 
that λ 
E ν.

(ii) Define

λ(E) =
⎧⎨
⎩

0 if E ⊂ X2,

max
{

1
i
: i ∈ E ∩ X1

}
otherwise,

and



J. Li et al. / Fuzzy Sets and Systems 412 (2021) 53–64 61
ν(E) =
⎧⎨
⎩

0 if E ⊂ X1,

max
{

1
i
: 1

i
∈ E ∩ X2

}
otherwise.

Note that both λ and ν are possibility measures (i.e., λ(A ∪B) = max(λ(A), λ(B)) holds for any A, B ∈A), and both 
λ and ν fulfil condition [E]. However, neither λ 
E ν nor ν 
E λ holds.

(iii) Define

ν(E) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if E = ∅,

max
{

1
i
: i ∈ E

}
if E ⊂ X1 and E �= ∅,

max
{

1
i
: 1

i
∈ E

}
if E ⊂ X2 and E �= ∅,

max
{

max
i∈E∩X1

{1

i

}
, max

1/i∈E∩X2

{1

i

}}
otherwise,

and

λ(E) =
{

0 if E ⊂ X1 or E ⊂ X2,

ν(E) otherwise.

Then λ, ν are monotone measures on (X, A) (ν is also a possibility measure) and for any E ∈ A, λ(E) ≤ ν(E). It is 
not difficult to verify that λ does not fulfil condition [E], ν fulfils condition [E]. But we have λ 
E ν.

Example 5.6. Let X = {0, 1, 2, . . . .} and A = 2X . Define

ν(E) =
∑
i∈E

1

2i
, ∀E ∈A,

and

λ(E) =

⎧⎪⎪⎨
⎪⎪⎩

ν(E) if 0 /∈ E,

0 if E ⊂ {0},
2 if 0 ∈ E and E − {0} �= ∅.

Then ν is an additive measure and λ is a monotone measure on (X, A). Obviously, ν is strongly order continuous, λ
is not strongly order continuous. But we have λ 
L ν.

Example 5.7. Let X = [0, 1], A be the class of all Lebesgue measurable sets on [0, 1] and m be Lebesgue’s measure. 
Define a monotone measure λ on A, as follows:

λ(E) =
{

0 if m(E) = 0,

1 if m(E) > 0.

Then m is strongly order continuous, λ is not strongly order continuous, and λ 
L m is not true.

6. Conclusion

We have generalized the Egoroff theorem, the Riesz theorem and the Lebesgue theorem in the traditional sense 
concerning one monotone measure to general case involving a pair of monotone measures. Our main results are The-
orem 4.2 (generalized Egoroff’s theorem), Theorem 4.8 (generalized Riesz’s theorem) and Theorem 4.9 (generalized 
Lebesgue’s theorem). These three generalized convergence theorems cover respectively Egoroff’s theorem (Corol-
lary 4.3, see also Theorem 1 in [7]), Riesz’s theorem (Theorem 1 in [6]) and Lebesgue’s theorem (Corollary 4.10, 
see also Theorem 1 in [9]) for monotone measures and their pseudo-versions (Theorem 4.1 in [10], Theorem 5.20 
in [3], Corollary 4.11, etc.). In this sense, we have presented unified approaches to Egoroff-like theorems, Riesz-like 
theorems and Lebesgue-like theorems for monotone measures, respectively.
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Though the proofs of our results are almost the same as the related proofs of Egoroff’s, Riesz’s and Lebesgue’s 
theorems for monotone measures (and thus we have given the proof only in the case of Theorem 4.2), we believe 
that our idea of considering ordered pair (λ, ν) of monotone measures instead of a unique measure μ is a valuable 
completion of the convergence part of the measure theory.
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Appendix A. Proof of Theorem 4.2

(i) ⇒ (ii): Suppose λ 
E ν and fn
a.e.−→ f [ν]. Let D be the set of these points x in X at which {fn(x)} dose not 

converge to f (x). For any fixed m = 1, 2, . . ., we denote

A(m)
n =

+∞⋃
i=n

{
x ∈ X : |fi(x) − f (x)| ≥ 1

m

}

n = 1, 2, . . ., then D = ⋃+∞
m=1

⋂+∞
n=1 A

(m)
n . Write A(m) = ⋂+∞

n=1 A
(m)
n , noting that ν(D) = 0, then the double sequence 

(A
(m)
n )(m,n)∈N×N ⊂ A satisfies the condition: for any fixed m = 1, 2, . . ., as n → ∞,

A(m)
n ↘ A(m) and ν

( +∞⋃
m=1

A(m)
)

= 0. (A.14)

Applying the condition λ 
E ν to the double sequence (A(m)
n )(m,n)∈N×N ⊂ A, then there exist increasing se-

quences (ni)i∈N and (mi)i∈N of natural numbers, such that

lim
k→+∞λ

(+∞⋃
i=k

A(mi)
ni

)
= 0.

For any ε > 0, we take k0 such that

λ
( +∞⋃

i=k0

A(mi)
ni

)
< ε.

Let Aε = X − ⋃+∞
i=k0

A
(mi)
ni

, then Aε ∈ A and

λ(X − Aε) = λ
( +∞⋃

i=k0

A(mi)
ni

)
< ε.

Now we just need to prove that (fn)n∈N converges to f on Aε uniformly. Since

Aε =
+∞⋂
i=k0

+∞⋂
j=ni

{
x ∈ X : |fj (x) − f (x)| < 1

mi

}
,

therefore, for any fixed i ≥ k0, Aε ⊂ ⋂+∞
j=ni

{
x ∈ X : |fj (x) − f (x)| < 1/mi

}
. For any given σ > 0, we take i0 (≥ k0)

such that 1/mio < σ . Thus, as j > nio , for any x ∈ Aε ,
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|fj (x) − f (x)| < 1

mio

< σ.

This shows that (fn)n∈N converges to f on Aε uniformly.
(ii) ⇒ (i): Suppose that for any f ∈ F and (fn)n∈N ⊂ F , fn

a.e.−→ f [ν] implies fn
a.u.−→ f [λ].

Let (A(m)
n )(m,n)∈N×N ⊂ A be any given double sequence of sets and let it satisfy the condition: for any fixed 

m = 1, 2, · · · ,

A(m)
n ↘ A(m) (n → ∞) and ν

( +∞⋃
m=1

A(m)
)

= 0. (A.15)

We put Â(m)
n = ⋃m

i=1 A
(i)
n = A

(1)
n ∪A

(2)
n · · ·∪A

(m)
n (m, n ∈ N) and Â(m) = ⋂+∞

n=1 Â
(m)
n (m = 1, 2, · · · ). Then we 

obtain a double sequence (Â(m)
n )(m,n)∈N×N ⊂ A satisfying the properties: for any fixed n ∈ N , Â(m)

n ⊂ Â
(m+1)
n , and 

for any fixed m ∈N , Â(m)
n ↘ Â(m) as n → ∞, and from 

⋃+∞
m=1 Â(m) = ⋃+∞

m=1 A(m), it follows that ν(
⋃+∞

m=1 Â(m)) = 0.
Now we construct a sequence (fn)n∈N ⊂ F : for every n ∈N we define

fn(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

m
x ∈ Â

(m+1)
n − Â

(m)
n m = 1,2, · · ·

2 x ∈ Â
(1)
n

0 x ∈ X −
+∞⋃
m=1

Â(m)
n .

Then for every m = 1, 2, · · · ,{
x : |fn(x)| ≤ 1

m

}
= X − Â(m)

n .

Noting that for any fixed m ∈N , Â(m)
n ↘ Â(m) as n → ∞, we have

{
x ∈ X : fk(x) → 0

}
=

+∞⋂
m=1

+∞⋃
n=1

+∞⋂
k=n

{
x ∈ X : |fk(x)| ≤ 1

m

}
= X −

+∞⋃
m=1

Â(m).

Therefore, from ν(
⋃+∞

m=1 Â(m)) = 0, we have fn
a.e.−→ 0 [ν] on X. It follows from the hypothesis that fn

a.u.−→ 0 [λ] on 
X. Thus, there exists a sequence (Hj )j∈N ⊂ A such that for every j , λ(X − Hj) < 1/j and as n → ∞, fn converges 

to 0 uniformly on Hj . Without loss of generality, we can assume H1 ⊂ H2 ⊂ · · · (otherwise, we can take 
⋃j

i=1 Hi

instead of Hj). Thus for every j ∈ N , there exist nj ∈ N such that for any x ∈ Hj , we have |fk(x)| ≤ 1/j whenever 
k ≥ nj . Therefore, for every j ∈N , we have

Hj ⊂
+∞⋂
k=nj

{
x : |fk(x)| ≤ 1

j

}
= X − Â

(j)
nj

,

and hence Â(j)
nj

⊂ X − Hj j = 1, 2, · · · . Therefore, for any k ≥ 1, we have

+∞⋃
j=k

Â
(j)
nj

⊂
+∞⋃
j=k

(X − Hj).

Consequently, we have

λ
( +∞⋃

j=k

Â
(j)
nj

)
≤ λ

( +∞⋃
j=k

(X − Hj)
)

= λ
(
X − Hk

)
<

1

k
.

Thus we have chosen a subsequence (Â(j)
nj

)j∈N of the double sequence (Â(m)
n )(m,n)∈N×N such that
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lim
k→+∞λ

( +∞⋃
j=k

Â
(j)
nj

)
= 0.

Noting that for m, n ∈N, Am
n ⊂ Âm

n , then we have

lim
k→+∞λ

( +∞⋃
j=k

A
(j)
nj

)
= 0.

This shows that λ 
E ν. �
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