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Abstract
To satisfy their main goal, namely providing quality water to consumers, water distribu-
tion networks (WDNs) need to be suitably monitored. Only well designed and reliable
monitoring data enables WDN managers to make sound decisions on their systems. In this
belief, water utilities worldwide have invested in monitoring and data acquisition systems.
However, good monitoring needs optimal sensor placement and presents a multi-objective
problem where cost and quality are conflicting objectives (among others). In this paper,
we address the solution to this multi-objective problem by integrating quality simulations
using EPANET-MSX, with two optimization techniques. First, multi-objective optimization
is used to build a Pareto front of non-dominated solutions relating contamination detection
time and detection probability with cost. To assist decision makers with the selection of an
optimal solution that provides the best trade-off for their utility, a multi-criteria decision-
making technique is then used with a twofold objective: 1) to cluster Pareto solutions
according to network sensitivity and entropy as evaluation parameters; and 2) to rank the
solutions within each cluster to provide deeper insight into the problem when considering
the utility perspectives.The clustering process, which considers features related to water
utility needs and available information, helps decision makers select reliable and useful
solutions from the Pareto front. Thus, while several works on sensor placement stop at multi-
objective optimization, this work goes a step further and provides a reduced and simplified
Pareto front where optimal solutions are highlighted. The proposed methodology uses the
NSGA-II algorithm to solve the optimization problem, and clustering is performed through
ELECTRE TRI. The developed methodology is applied to a very well-known benchmark-
ing WDN, for which the usefulness of the approach is shown. The final results, which
correspond to four optimal solution clusters, are useful for decision makers during the plan-
ning and development of projects on networks of quality sensors. The obtained clusters
exhibit distinctive features, opening ways for a final project to prioritize the most convenient
solution, with the assurance of implementing a Pareto-optimal solution.
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1 Introduction

Water distribution networks (WDNs) are core infrastructures for transporting water of
acceptable quality from sources to final customers, and are designed to assure sustainabil-
ity and the development of modern cities (Gandy 2004). These systems are very complex
and dynamic due to their wide spatial dispersion, uncertainties in consumption and leak-
age, vulnerabilities, and so on. As a consequence, many planning and operational tasks,
such as maintenance for failure minimization (Herrera et al. 2016) and leak detection (Can-
delieri et al. 2014), as well as detection and identification of contamination sources (Nafi
et al. 2018), are objects of intensive research. Additionally, as underlined by de Winter
et al. (2019), WDNs are susceptible to malicious contamination events, potentially leading
to poisoned water, deaths, and huge economic losses.

Water utilities devote considerable efforts to keeping the most significant water quality
parameters under continuous monitoring, so that the safety and security of WDNs can be
guaranteed. It goes without saying that this aspect becomes increasingly challenging when
covering widely distributed WDNs. In this context, making effective decisions about how
to design and implement optimal networks of quality sensors placed at strategical nodes
(Oliker and Ostfeld 2015) plays a crucial role in protecting human communities against
intrusion or attacks using water contamination. {However, optimal sensor placement (OSP)
is a multi-objective optimization problem.

Many practical optimization problems related to WDNs were solved in the past by tradi-
tional optimization tools. Recently, hydraulic optimization, ranging from the optimal design
of water systems (Montalvo et al. 2014) to the process of leakage detection (Kapelan et al.
2003), has been widely solved using heuristic algorithms. Moreover, in water distribution
engineering, as in many other fields, optimization problems are typically characterized by
the presence of several conflicting objectives that need to be jointly analyzed. Regarding
the problem of sensor placement, a clear trade-off exists, for example, between costs and
coverage rate. Cost, directly linked to the number of sensors to be installed, must obviously
be minimized (Berry et al. 2005). System coverage, in turn, must be maximized.

Network monitoring is performed using various methods applied to sets of quality
parameters, such as free chlorine, pH, etc. Moreover, to maximize network coverage, and
guarantee maximal protection for the system, the dynamic nature of that system (e.g. con-
sumption oscillation during the day, and maneuvers of control devices) must be considered
since, as a consequence, these dynamics modify the topology of the water system, and the
mass transport capacity.

In this paper, to deal with the quality OSP problem, contamination by pathogen intrusion
is considered, as presented in Rathi et al. (2016), where the authors compute a probabilistic
distribution function based on the hydraulic behavior of the network, and considering that
some nodes are more subject to intrusions. Other works also use the variation of a specific
quality parameter with respect to the variation of flow in a certain pipe, or related to a
specific nodal demand, to place quality sensors on strategic nodes. This concept is known
as sensitivity. Maximization of the sensitivity of a network of sensors has been applied in
water quality problems in WDNs (Cheung et al. 2005).
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Maximizing network sensitivity has, however, an intrinsic drawback. Usually, in WDN
models, a highly-sensitive node has, as neighbors, other highly-sensitive nodes. With this
evidence, a sensitivity-solely-based algorithm will concentrate sensors in a reduced region,
and this will clearly impair network coverage. To lower this agglomeration effect and dis-
tribute sensors more homogeneously throughout the water network, redundancy information
analyses that make use of entropy information are herein considered. Traditionally, entropy
provides a measure to quantify the degree of disorder in a system, but it is also used in the
field of information theory to quantify the efficacy of the information provided by a given
data set to a system (Shannon 1948). According to Lee (2013), information can be quanti-
tatively measured on the indirect basis of the entropy characterizing the data set of interest.
The larger the entropy, the lower the information redundancy and thus the higher the degree
of uncertainty. The WDN security level can be improved by using entropy information from
sensors strategically placed, thus helping identify intrusions (Weickgenannt et al. 2010) or
leaks (Christodoulou et al. 2013) in the water system.

Expanding the concepts of sensitivity, Ostfeld and Salomons (2005) consider, for the
OSP problem, the response delay for contamination detection. Risk-based approaches have
also been proposed in the literature, considering the uncertainties associated with water sys-
tems (Broad et al. 2008). The authors propose a single objective approach together with
Monte Carlo simulations for calculating the uncertainties associated with demand, pipe
roughness, and chlorine decay.

The Battle of Water Sensors Network (BWSN) (Ostfeld et al. 2008) proposes a chal-
lenge for sensor placement. Four main objective functions are considered: minimizing the
detection time; minimizing the portion of affected population before detection; minimiz-
ing the consumption of contaminated water before detection; and maximizing the detection
probability.

Following some objectives from the BWSN, Ohar et al. (2015) developed a single objec-
tive optimization, minimizing the consumption of contaminated water, and linking the
optimization process to the Epanet-MSX. This is an important work since it uses the link
between multi-species quality models and optimization, which is a complex problem from
the computational point of view.

The multi-objective approach presented in the BWSN, which uses single species mod-
elling, has been widely explored in the literature. Various multi-objective problems have
been designed to handle the global goal of a network of sensors. Huang et al. (2008) use
the detection time, the detection probability, and the consumed contaminated water to set
sensors in the network provided by Ostfeld et al. (2008). The demand coverage is used as
an external criterion to rank the solutions of a Pareto front. In Hart and Murray (2010) a
literature review presents many of the methodologies applied to optimal water quality sen-
sor placement. The authors analyze more than 90 published articles and, obviously, as the
multi-objective problem is solved by means of multi-objective optimization tools, results
consist of sets of non-dominated solutions (Wéber and Hős 2020; Giudicianni et al. 2020;
Quiñones-Grueiro et al. 2019) and not just a single solution. A Pareto front is indeed very
convenient, since decision makers do not generally seek fast and efficient optimization algo-
rithms, but effective strategies that minimize uncertainty and enable them to evaluate which
solutions present better trade-offs.

In this context, multi-criteria analyses offer a wide range of tools capable of ranking
and/or clustering the Pareto front of solutions to assist decision makers in implementing a
solution. The existing literature attributes to multi-criteria decision-making (MCDM) meth-
ods a highly positive impact for resolving diverse decision-making problems in a structured
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way (Barak and Mokfi 2019; Štirbanović et al. 2019; Seiti et al. 2019; Wang et al. 2019;
Mohammed et al. 2019). Many MCDM methods have been proposed and applied so far.
Broadly speaking, they are aimed at:

– selecting the alternative (option) representing the best trade-off with respect to the
various aspects considered;

– ranking various solutions to understand their priority or degree of importance;
– grouping alternatives, according to their similarities, into suitable clusters.

Regarding the last objective, ELECTRE TRI, a technique which belongs to the family of
methods ELimination Et Choix Traduisant la REalité (ELECTRE) (Roy 1968; Figueira et al.
2013), has proven to be a powerful tool to assign alternatives to specific categories (Liu and
Ming 2019) defined according to suitable reference profiles. Specifically, the ELECTRE
TRI technique enables directly visualizing the assignment of clustered solutions on the basis
of the mutual importance of certain established evaluation criteria. Given its main features,
ELECTRE TRI has been studied in depth and applied in the literature (Dias et al. 2018;
Reginaldo 2015; Neto et al. 2017; Sánchez-Lozano et al. 2016; Bouyssou and Marchant
2015).

In Costa et al. (2018) it is underlined as MCDM analyses enable an easy evaluation of
the degree of performance of alternatives according to various criteria of interest, based on
preference judgments elicited by one or more experts. The authors propose an ELECTRE
TRI-based approach to classify suppliers into predefined ordered clusters in the context of
supply chain resilience for emerging economies. The work (Fernández et al. 2017) affirms
that ELECTRE TRI is the most widely used method among the various existing outrank-
ing approaches, and underlines (Fernandez and Navarro 2011) the difficulty in assuming a
single limiting reference profile to acceptably determine its related category. For this rea-
son, the authors propose an extension of the classical version of ELECTRE TRI to resolve
problems of ordinal classification with multiple criteria by considering richer relations of
preference among alternatives and reference profiles. In Corrente et al. (2016) an extended
version of the ELECTRE TRI to consider criteria according to a defined hierarchical struc-
ture is presented. The authors highlight that a hierarchy of criteria may better reflect the
complexity of practical decision problems. In Brito et al. (2010), ELECTRE TRI is used in
the risk management of natural gas pipeline networks to provide support in planning and
implementing correct control actions, and maintenance to prevent and mitigate risks.

Given its utmost importance, the OSP problem in WDNs was discussed by the authors
in a previous research (Francés-Chust et al. 2020) to identify the most suitable nodes for
placing pressure sensors aimed at effectively detecting leakage. In the present research,
we are interested, instead, in dealing with quality sensors (rather than pressure sensors),
and approach the OSP problem for water quality monitoring by means of a new hybrid
perspective that integrates multi-objective optimization and multi-criteria analysis.

The optimization problem is addressed by means of the non-dominated sorting genetic
algorithm II (NSGA-II). For abnormal scenarios, where a contaminant is flowing in the
water network, detection time, probability detection, and the number of sensors are used
as objective functions. NSGA-II will build the Pareto front of non-dominated solutions.
ELECTRE TRI then clusters those solutions into ordered classes, thus highlighting their
distinctive features. Accordingly, the objective of the paper consists in: i) providing a struc-
tured tool capable of dealing with huge sets of (Pareto) solutions of a quality OSP; and ii)
identifying those alternatives that simultaneously better satisfy the given evaluation criteria.
Thus, Pareto optimal solutions will be classified into the following performance categories

228



Water Quality Sensor Placement...

according to how they perform with respect to several aspects: low; medium; medium-high;
and high. The hybrid approach proposed can be seen as an important contribution to the
quality OSP literature, since clustering solutions with ELECTRE TRI facilitates the selec-
tion of a solution for implementation in the WDN. This procedure faces the challenge posed
by the analysis of a Pareto front, and helps planners and managers of water systems make
better decisions.

A real-world case study is solved and discussed to check the validity of the proposed
approach. In addition to clustering a Pareto front of 173 solutions, we conclude our case
study by ranking the solutions in each class. This last effort is aimed at additionally showing
the diverse response to the evaluation criteria of solutions within the same class.

2 Methodology

This section provides a description of the methodologies integrated to deal with the problem
object of analysis. First, we present the optimization problem, and then the two method-
ologies, namely the NSGA-II to solve the optimization problem, and the ELECTRE TRI to
cluster the optimal solutions obtained in the multi-objective stage.

2.1 The Optimization Problem

In this work, the main objective of the network monitoring problem is the fast and accu-
rate detection of possible chemical intrusions. To this end, parathion intrusion is simulated
to obtain the quality state of the network. Parathion is a species of organophosphate that
could be used as a contaminant in water systems (Ohar et al. 2015). To model the intrusion
of parathion and reactions with the free chlorine present in the water bulk, this work uses
Epanet-MSX (Shang et al. 2008). Epanet-MSX simulates chemical and mass transporta-
tion of multiple species in the water network and is linked in use to Epanet 2.0, which is
responsible for calculating the hydraulic network state (e.g. nodal pressure, and flowrate in
pipes). Both simulators are integrated in the MATLAB programming environment, using
the wrapper developed by Eliades et al. (2016).

Chemical reactions of multi-species are based on Ohar et al. (2015) for generat-
ing contamination scenarios. Table 1 presents the degradation system used for parathion
modelling.

The efficiency of a monitoring system can be evaluated under anomaly conditions by
means of response time and accuracy of detection. The BWNS (Ostfeld et al. 2008) proposes
various objective functions to pursue OSP. One of these is the minimal time elapsed between
the beginning of a contamination event, and the related detection averaged over the number
of detected contamination scenarios. The objective function related to detection time, F1,
can be expressed as:

F1 =
∑N

i=1
∑T

t=1 α(γ ) · γ (i, t)
∑N

i=1
∑T

t=1 α(γ )} , (1)

with the definition

α(γ ) =
{

1, γ (i, t) > 0

0, γ (i, t) is not available
, (2)

where γ (i, t) is the time elapsed from the beginning of a contamination event at node i in
a network with N nodes till the first identification of the contaminant concentration, during
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Table 1 Degradation of the parathion

Reaction Stoichiometry Rate/Equilibrium Coefficient at 25oC

5.HOCL + PA
KHOCL,OP→ PAO + 5.H+ + 5.CL− + SO2−

4 (KHOCL,PA = 2, 2(±0, 53).106M−1h−1

PA
Kh,PA→ PAH Kh,PA = KN,PA + KB,PA.[OH−]

KN,PA = 2, 66.10−4h−1

KB,PA = 4, 3.M−1h−1

PAO
Kh,PAO→ PAH Kh,PAO = KN,PAO + KB,PAO .[OH−]

KN,PAO = 2.10−4h−1

KB,PAO = 46, 1.M−1h−1

PA + OCL− KOCL,PA→ PAH KOCL,PA = 37(±10)M−1h−1

PAO + OCL− KOCL,PAO→ PAH KOCL,PAO = 48(±10)M−1h−1

HOCL → H+ + OCL− pka = 7, 5

a total simulation duration of T . α(γ ) is a Boolean variable that identifies if contamination
has been detected by at least one sensor.

The second objective function (F2) is related to the number of simulated contamination
scenarios. During the contamination simulations, each node of the network is selected for
parathion injection. The solutions that maximize F2 are directly linked to the capacity of
contamination identification. This objective function is mathematically expressed by

F2 =
N∑

i=1

T∑

t=1

α(γ )
1

T
. (3)

Finally, considering the cost generated from the process of network monitoring, the
objective function F3 minimizes the number of sensors Ns :

F3 = min(Ns). (4)

The three mentioned objective functions are used to find optimal positions for the sensors
in anomaly quality scenarios. A multi-objective algorithm is applied to find the Pareto front,
that is, the set of non-dominated solutions for the problem. Nevertheless, the monitoring
system can be also used for normal conditions. The approach proposed by De Schaetzen
et al. (2000) has been adapted to evaluate the Pareto front with external parameters. In this
work, the authors use two objective functions for optimal water quality sensors placement.
The first function maximizes the sensitivity of the monitoring network, calculated by the
relation between concentration and nodal demand variations:

s(i, j) = δCi

δqj

= Ci − C∗
i

qj − q∗
j

, (5)

where C∗
i is the free chlorine concentration at node i for the scenario with the new nodal

demand q∗
j at node j . Ci is the free chlorine concentration at node i for the basic scenario.

For Ns sensors, the accumulated sensitivity corresponding to the entire monitoring network
may be evaluated by function E1, which can be written as:

E1 =
Ns∑

k=1

ak, (6)
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where ak is the maximal value of the sensitivity matrix on line k corresponding to the
position of the sensor.

The second objective function used by De Schaetzen et al. (2000) involves the entropy
parameter. Entropy improves sensor distribution in the network by eliminating redundant
information. The entropy, E2, can be calculated as:

E2 = −
Ns∑

k=1

pk × Ln(pk), (7)

where

pk = ak
∑Ns

k=1 ak

. (8)

2.2 TheMulti-Objective Optimization Algorithm - NSGA- II

The algorithm NSGA-II, a fast and elitist multi-objective genetic algorithm developed by
Deb et al. (2002), is an adaptation of a genetic algorithm for multi-objective problems. The
algorithm generates a set of solutions as the best trade-off among the objective functions
throughout the optimization process. Such a set of solutions, the so-called Pareto front, pro-
vides relevant information for generating new solutions with suitable crossing and mutation
operators.

When the user selects the number of initial solutions, the algorithm is randomly initial-
ized. The objective function values are calculated for each solution provided. Based on their
fitness values, the non-dominated solutions are then identified and used to create a new
generation, based on crossover, mutation, and elitism mechanisms (Deb et al. 2002). The
objective functions are evaluated again, and a new Pareto front is progressively defined. The
process is repeated until convergence.

2.3 ELECTRE TRI to Cluster Optimal Solutions

ELECTRE TRI is a non-compensatory MCDM method specifically used for supporting cat-
egorization problems (Ramezanian 2019). The objective of the method consists in clustering
alternatives into ordered classes defined by threshold values, also called reference profiles.
Specifically, alternatives are not pairwise compared with each other. Instead, the clustering
procedure, aimed at assigning the alternatives to classes, is carried out by pairwise com-
parisons of each alternative with the thresholds characterizing the classes. Non-overlapping
classes (Certa et al. 2017) are considered in ELECTRE TRI. Figure 1 exemplifies the case
of five classes defined by four reference profiles with relation to five evaluation criteria.

ELECTRE TRI requires the development of a specific outranking relation (Figueira et al.
2010); in other words, a particular relation has to be established when comparing alterna-
tives with reference profiles. Such a relation can be expressed in three main ways, namely:
indifference, when an alternative outranks a reference profile and vice versa; preference,
when an alternative outranks a reference profile and not vice versa; and incomparability,
when an alternative and reference profile cannot be compared because they diverge too
much with each other.

The following input data must first be collected:

– set of K evaluation criteria, Bk (k = 1, . . . , K), under which alternatives have to be
evaluated;

– criteria weights wk , expressing certain relative importance among criteria;
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Fig. 1 ELECTRE TRI classes representation

– set of J reference profiles Pj (j = 1, . . . , J ), each one characterized by specific

evaluations under each criterion, and defined by limits p
(k)
0 < ... < p

(k)
J+1;

– J + 1 number of classes determined by the J profiles;
– set of I alternatives Ai (i = 1, . . . , I ), with the related evaluations Bk(Ai) assumed

under each criterion;
– a threshold value λ, known as cutting level, needed to complete the first stage;
– values of indifference, strong preference and veto thresholds, namely Ik , Sk , and Vk ,

related to the outranking relations.

Ik is the minimal significant difference to express a preference between two elements,
Sk is the minimal difference to express a strong preference between two elements, and Vk is
the minimal difference expressing incomparability between two elements (Carpitella et al.
2018c).

Once the listed input data is collected, the ELECTRE TRI clustering procedure follows
two main stages: 1. development of outranking relations, and 2. exploitation of the defined
outranking relations to classify alternatives. In the first stage, the outranking relation charac-
terizing comparisons between alternatives and reference profiles is based on the calculation
of suitable concordance and discordance indexes, as shown in Roy (1990). In the second
stage, the clustering is performed by making use of the previously established outranking
relation, and alternatives are assigned to classes following two possible procedures, namely
pessimistic and optimistic procedures

A complete description of the ELECTRE TRI application may be found in Certa et al.
(2017).

3 Case Study: Solution and Discussion

The methodology developed in this work is applied to the D-town network (Marchi et al.
2013). The network is composed of 388 nodes, 429 pipes, 13 pumps, 4 pressure reducing
valves, 1 reservoir, and 7 tanks; and is divided into 5 district metered areas.
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Chlorination is modelled by constant chlorine injection in reservoir and tanks with a
concentration of 1.5mg/L. Contamination is modelled with injections of parathion after
every 24 hours of normal simulation. Injections have a duration of 12 hours at a concen-
tration of 12.4 mg/L, corresponding to the saturation concentration of parathion. To build
a database for the optimization process, each node is contaminated in turn, and the corre-
sponding contamination event is simulated. Hydraulic and water quality simulations are run
in an extended period simulation for a lapse of 48h, with time steps of 1 minute.

The application of NSGA-II results in a Pareto front with 173 non-dominated solutions.
It is clear that such huge numbers of solutions, all of them optimal, represent a problem for
decision makers. It is in this situation that this work applies the ELECTRE TRI method to
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cluster the solutions, thus providing the decision makers with a reduced set of representative
layouts that eases the decision-making problem.

When the ELECTRE TRI application handled the large set of 173 mentioned optimal
solutions (Ai, i = 1, ..., 173), the solutions were clustered into four ordered classes accord-
ing to five evaluation criteria, namely: detection time (B1); detection probability (B2);
number of sensors (B3); sensitivity (B4); and entropy (B5). The first three criteria are used
in the optimization process, while the last two are external criteria, used to assess good
solutions both for anomaly detection and for normal scenarios. Regarding the preference
directions, criteria B1 and B3 have to be minimized, whereas criteria B2, B4 and B5 have
to be maximized. The five criteria have been assumed as having the same importance for
the clustering process, and thus assigned equal weights, wk = 0.2. Figure 2a presents the
Pareto front, and Fig. 2b shows the external criteria according to the number of sensors.

For better understanding of the hydraulic problem, Fig. 3 presents the relation, with
respect to the number of sensors, of the other four criteria. Observe that by increasing the
number of sensors, the detection time is reduced approximately from 3300s to 2700s when
the sensors are better placed. However, the Pareto front still has solutions with few sensors
and better detection times. These solutions, however have poor values for the other criteria.
Also observe that probability detection and sensitivity increase with the number of sensors.
Since sensitivity is a cumulative feature, increasing the number of sensors increases this
parameter. For the probability detection, more sensors in the network mean a higher prob-
ability of at least one sensor detecting contaminants. Finally, it can be seen how entropy
slightly increases with the number of sensors, reaching a maximal value of around 6.

Table 2a presents the three reference profiles P1, P2, P3, characterized by their criterion-
dependent limits p

(k)
0 < ... < p

(k)
4 , derived from the available range of alternative evaluation

values. These values identify the four original classes Cj (j = 1...4). These classes have
been ordered from worst to best, in the following way: low (C1); medium (C2); medium-
high (C3); and high (C4). The alternatives are then classified on the basis of the outranking
relation established with the reference profiles. As a consequence, a solution may be even-
tually assigned to a class even though, for some criteria, its evaluations do not exactly match
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Table 2 ELECTRE TRI application

(a) Input data

Criterion Ik Sk C1 C2 C3 C4

B1 409.95 819.89 3279.57 - 3121.55 3121.55 - 2963.54 2963.54 - 2805.52 2805.52 - 2647.50

B2 6E-4 12E-4 0.00 - 0.22 0.22 - 0.44 0.44 - 0.65 0.65 - 0.87

B3 12 24 100 - 75 75 - 50 50 - 25 25 - 0

B4 6.45 12.90 0.15 - 13.01 13.01 - 25.87 25.87 - 38.73 38.73 - 51.58

B5 0.73 1.46 0.00 - 1.46 1.46 - 2.93 2.93 - 4.39 4.39 - 5.86

(b) The five best and worst solutions within each class

best
trade-off

C1 C2 C3 C4

A70 A87 A111 A96

A143 A137 A131 A84

A75 A65 A30 A132

A95 A46 A164 A25

A169 A125 A32 A127

worst
trade-off

A109 A89 A54 A16

A5 A63 A145 A72

A155 A113 A73 A83

A4 A86 A44 A101

A148 A43 A135 A106

(c) Best solutions for each class

Class Best B1 B2 B3 B4 B5

Solution

C1 A70 2760.88 0.21 4 17.34 5.21

C2 A87 2733.22 0.80 56 45.04 5.74

C3 A111 3051.41 0.56 5 27.98 5.70

C4 A96 2771.67 0.63 21 35.43 5.65

that specific class. In some sense, the assignment procedure is carried out by globally eval-
uating solutions according to the entire set of criteria, and with respect to the reference
profiles delimiting the original classes.

The discrimination thresholds must be established by the decision maker (Mousseau et al.
2000) to opportunely calibrate the method to the specific problem. No veto conditions have
been established, whereas indifference and preference thresholds have been determined by
first setting larger values and progressively reducing them until considered appropriate for
each criterion. The validity of the achieved threshold values was finally checked and con-
firmed by an external expert of ELECTRE TRI applications. These values are given in
Table 2a for all the criteria.

Supplementary files provide the tables summarizing all the achieved results, obtained by
fixing the value of the cutting level λ to 0.80 (see Certa et al. 2017), and show the final
allocation of the optimal solutions to the classes. We note here that most solutions belong
to the medium-high class.
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Fig. 4 Layout of best ranked solution for each class determined by ELECTRE TRI
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Once the clustering process has been carried out by means of the ELECTRE TRI pro-
cedure, we conclude the case study by ranking alternatives from best to worst within the
classes. Table 2b presents, for each final class, the five first and the five last solutions of
the rankings obtained by applying the technique for order of preference by similarity to
ideal solution (TOPSIS), a well-known MCDM method used by the authors to rank large
sets of alternatives in previous works (Brentan et al. 2019; Carpitella et al. 2018a, b). Data
corresponding to these solutions may also be found in supplementary materials.

For the sake of completeness, Table 2c presents the criteria values for the best solution
of each final class.

A70 is the best solution of class C1. This solution has a small detection time and the
lowest number of installed sensors. However, its other indicators, specifically probability
detection and sensitivity, place this solution in the worst class. The best ranked solution
in C2, A87, presents the lowest detection time and the best probability detection. Further-
more, this solution has the highest sensitivity and entropy values. However, the solution
also entails the highest number of sensors, usually far from the economic criteria for water
companies. The lead solution from C3, A111, has the worst detection time; however, it is a
detection time just five minutes longer than the best detection time. Nevertheless, with only
one sensor more than solution A70 from C1, probability detection and sensitivity increase
significantly. This solution looks desirable for small budgets, and provides a good trade-off
among the five criteria. Finally, solution A96, which is represented, together with its pro-
jections to the coordinate planes, by black stars, is the best solution of C4. A96 has 37.5%
fewer sensors than the first ranked solution in C2, while achieving greater sensitivity and
detection probability. For a moderate to high budget, this solution is extremely appealing.
Figure 4 shows the layout of the monitoring network for each these best ranked solutions.
One can observe the uniform distribution of the solution from C3, and the high redundancy
provided by the solution from C2.

4 Conclusions

Water distribution system managers worldwide have increased budgets for monitoring and
data acquisition. However, two main issues still remain regarding the problem of sensor
placement: the optimal number of sensors to be installed, and the positions to place those
sensors. Three research fields have been linked and jointly explored in this work in an
attempt to give answers to both problems. Water quality simulation using EPANET-MSX is
undertaken to generate a database of chlorine and parathion concentration after simulating
a parathion intrusion. The database is used during the optimization process, where the opti-
mal quality sensors are mathematically described by three objective functions. Detection
time and detection probability are related to the capability of the monitoring network to be
useful in anomalous scenarios, while the number of sensors to be placed represents the bud-
get limitations for water companies. The 173 Pareto-optimal solutions have been evaluated
under two external parameters: sensitivity and entropy. Both parameters are often applied
for sensor placement under normal conditions, and are useful for decision makers to select
a trade-off solution.

With the aim of reducing the number of solutions among which decisions have to be
made, a clustering process has been carried out by applying the MCDM ELECTRE TRI
method. While classical multi-objective methods result in Pareto fronts, offering decision
makers large sets of good (non-dominated) solutions, this work clusters the solutions to
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reduce that set of options for decision makers. ELECTRE TRI is far more than a mere
clustering tool. It constitutes a dialogue framework for decision makers to perform more
informed, and thus better, solutions.

By means of this application, four clusters have been identified for the D-town network,
which represents a considerable support for analysts when deciding about which solution to
implement on the basis of the available budget. Solutions have been ranked within each class
to enable managers to easily identify the most suitable layout for the monitoring network.
This reduction, keeping sensitivity and entropy as external evaluation parameters, makes the
optimization process smoother, while guaranteeing better and faster convergence.

Regarding possible future developments, uncertainty affecting demand could be added
to the model, and the fuzzy set theory could be coupled with the clustering method to obtain
even better informed results. Furthermore, a reverse analysis using the normal condition as
a basis for optimization may be implemented, and anomalous parameters may be used for
evaluation, thus allowing robust comparisons among different layouts.

Supplementary Information The online version contains supplementary material available at (https://doi.
org/10.1007/s11269-020-02720-3).
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Štirbanović Z, Stanujkić D, Miljanović I, Milanović D (2019) Application of mcdm methods for flotation

machine selection. Miner Eng 137:140–146
Wang H, Jiang Z, Zhang H, Wang Y, Yang Y, Li Y (2019) An integrated mcdm approach considering

demands-matching for reverse logistics. J Clean Prod 208:199–210
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