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Abstract - This contribution proposes an integrated ap-
proachmaking use of Fuzzy CognitiveMaps (FCMs) to organise
in a flexibleway human knowledge about decision-making (DM)
problems of interest in industry. By modelling human reason-
ing, FCMs allow to represent real phenomena on the basis of
spontaneous human brainstorming on relations between pairs of
relevant DM elements. Because of its characteristics, the use of
FCMs can be effective to model DM problems such as human
risk management, particularly critical in the industrial business
sector. After identifying human risks in the existing literature,
FCMswill be used to define relations among risks, which will be
later prioritised by means of a modified Failure Modes, Effects
and Criticality Analysis (FMECA). A case study on the sector
of automotive industry is eventually implemented and solved to
provide practical insights for risk management.

1 Introduction, objectives, structure
Decision-making (DM) models implemented using some pre-
liminary collection of pairwise comparison judgments are
grounded on preference transitivity characterized by ordinal con-
sistency as a fundamental principle [1]. Transitivity has indeed
represented a cornerstone of normative decision theory [2], hav-
ing been considered as an essential aspect for elaborating quality
and reliable models. However, this principle has been criticised
by several authors in the existing literature, since it somehow
forces decision makers to align their opinions to the consistency
property [3]. This may lead to artificial decisions aimed at re-
sponding to a mathematical principle rather than reflecting the
often non-transitive nature of human reasoning.

This paper uses fuzzy cognitive maps (FCMs) as a tool in-
dependent on transitivity. The formulation of inconsistent judg-
ments of preference is indeed common when dealing with com-
plex industrial DM problems such as risk management issues.
We aim to stimulate a spontaneous brainstorming to naturally
evaluate DM elements without the need of checking consistency.

The manuscript is organised as follows. The literature re-
view is developed in section 2. Section 3 describes the proposed
approach whereas a real case study on the automotive industrial
sector is considered and solved in Section 4. Section 5 outlines
conclusions along with a few insights for future research.

2 Literature review
Decision support systems frequently rely on judgments of pair-
wise comparisons attributed by selected stakeholders/experts in
the business field of interest. Such an approach usually repre-
sents a useful way to increase the probability that the obtained
solutions are actually effective in pursuing process optimisation
rather than randomly produced. This is what often happens in
practice, where subjects in charge for making decisions, despite
occupying management positions, are not properly familiar with
practical problems at a technical level. In any case, even when
it comes to expert subjects, their capability of being consistent
when pairwise comparing elements may flaw, especially in com-
plex situations [4, 5] and when vagueness plagues phenomena
[6], something that normally occurs in the businessworld. In this
regard, as highlighted in [3], transitivity of preference judgments
is a useful mathematical assumption in decision-making given
to the link between consistency of pairwise comparisons and re-
liability of the obtained priorities, being the latter important for
establishing the relative importance of the main elements con-
sidered in the problem analysis. However, transitive reasoning
may be the result of memory phenomena rather than deduction
processes. In [7], the theory of transitive reasoning is discussed
by stating that it explains transitivity as information-processing
constructs such as encoding, mentally-scanning and retrieval cu-
ing. In this context, the authors underline as an important part
of human transitive reasoning process responds to genuinely
deductive paradigms, which do not merely tend to access an
associative mode capturing transitive generalisations as soon as
information is acquired.
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The ability to understand and manipulate logical transitive
relations by making inferences is certainly fundamental for ac-
quiring and developing many mathematical concepts [8]. More-
over, preferences may be intransitive for a huge amount of prac-
tical problems [9] and, in such cases, distorting original expert
assessments may not be a desirable solution. This is even truer
when one has to deal with DM problems in which many diverse
elements to be pairwise compared are considered [10]. This
may be likely the case of risk management problems in industry,
where several risks can be highlighted depending on the spe-
cific industrial sector under analysis. Focusing on this kind of
practical problems, this contribution proposes an approach for
risk assessment making use of FCMs, which stimulate experts
towards a spontaneous brainstorming for effective risk analysis.
Relationships among the identified risks are captured and rep-
resented without requiring the formal check of consistency for
preferences expressed between pairs of elements.

Cognitive Maps (CMs) are directed graphs explicitly repre-
senting a set of variables and their causal relationships by means
of causal weights, also developed in fuzzy version [11]. The CM
tool has been formalised and integrated within the mathematics
discipline to flexibly describe general behaviour representation
by encoding relationships among elements [12]. CMs have been
extensively discussed in the literature as an approach capable to
provide structural frameworks for managing complex informa-
tion [13]. Having underlined the possibility of applying CMs
to a wide spectrum of scientific fields, Mourhir [14] develops
a review on FCM applications in the sector of environmental
assessment promoting integration models assessment. Chen et
al. [15] propose a hybrid soft computing approach where a FCM
is built to evaluate risks associated to projects on public–private
partnership. Azar andMostafaeeDolatabad [16] integrate FCMs
and Bayesian Networks to evaluate operational risks and imple-
ment risk management strategies in financial institutions. Being
the topic of CMs and FCMs particularly lively in the current lit-
erature, we propose a FCM-based application for industrial risk
management and, particularly, for human risk modeling and po-
tential hazard propagation identification on the basis of relations
highlighted among risks. Furthermore, we propose an a pos-
teriori integration with an updated Failure Modes, Effects and
Criticality Analysis (FMECA) [17] for eventually proceeding
with risk prioritisation. FMECA-based analyses can be indeed
particularly beneficial for quantitative risk evaluation purposes
by contributing to the general improvement of the performance
level for systems and processes [18].

3 Materials and methods
This section presents the description of the proposed approach
for human factor risks assessment, illustrated in Figure 1. As
already stated, the identified risks are modelled through an FCM
aimed at evaluating their effects and, on the basis of these re-
sults, a modified FMECA technique is implemented to proceed
with risks prioritisation.

Formalisation of risk identification and methodological de-
tails about FCM and FMECA approaches are herein provided.

Figure 1. Methodological flowchart for human risk assessment

3.1 Human risks identification
The field of human factor risk is a complex domain [19] where
diverse aspects are interconnected. Relationships may create
some interference potentially impacting on system performance
[20], adding complexity to the risk management process [19].
Aiming at supporting this process, a list synthesising significant
human risks in industry has been first drawn up from the liter-
ature [21, 19, 22] and shown in Table 1. Next we present the
proposed methodological tools.

TABLE 1. Human risks identification

Category ID Code Description
Environment �1 Noise beyond the normal level [21].

�2 Exposition to intense vibration [21].
Work space ,(1 Unsuitable workplaces organisation [21].

,(2 Dangerous disposition of work spaces [21].
,(3 Overlapping individual work spaces [21].
,(4 Incorrect ergonomics conditions [19].
,(5 Personal Protective Equipment (PPE) dam-

aged or improperly used [19].
Machinery
and/or tools

")1 Inappropriate use and/or management of
machines and plants [22].

")2 High variation of tools to be used [21].
")3 Incorrect use of work equipment [19].

Mental load "!1 Negative psychological state [22].
"!2 Existence of several distraction factors [21].
"!3 Bad life habits influencing work [19].

3.2 FCM to model human risks relations
Initially developed by [23] to study social scientific knowledge
in decision-making activities focused on international politics,
CMs were later extended to FCMs by [11]. FCMs allow to solve
two specific problems, namely, modeling complex systems and
displaying potential relationships among elements [24]. Con-
cepts and relations are linguistically represented and treated with
the support of fuzzy sets. Indirect effects (��) and total effects
()�) from element �8 to element � 9 are described by using
such linguistic evaluations 48 9 as much, some and a lot, which
are translated into fuzzy numbers.
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Figure 2 shows, as an example, the FCM used by [11] whose
connection path network is used here to explain and formalise
the next equations.

Figure 2. Example of FCM developed by Kosko [11]

We can observe as three possible casual paths connect �1 to
�5: %1 (1 − 2 − 4 − 5), %2 (1 − 3 − 5) and %3 (1 − 3 − 4 − 5).
The three indirect effects between �1 and �5 associated to these
paths (��1, ��2 and ��3) can be assessed as follows:

��1 (�1, �5) = min{412, 424, 445} =
min{B><4, 0 ;>C, B><4} = B><4;

(1)

��2 (�1, �5) = min{413, 415} =
min{<D2ℎ, 0 ;>C} = <D2ℎ;

(2)

��3 (�1, �5) = min{413, 434, 445} =
min{<D2ℎ, B><4, B><4} = B><4.

(3)

Once evaluated indirect effects, the total effect of element
�1 over element �5 will correspond to the maximum evaluation
among them, as follows:

)� (�1, �5) = max{��1 (�1, �5), ��2 (�1, �5),
��3 (�1, �5)} = max{B><4, <D2ℎ, B><4} = <D2ℎ.

(4)

This result means that, on the whole, element �1 imparts
much causality to element�5. To be quantitatively manipulated,
linguistic evaluations will be translated to fuzzy numbers using
the linguistic conversion board of [25]. The conversion to crisp
values is performed using the defuzzifying equations of [26].

3.3 Modified FMECA for risks prioritisation
The above presented FCM-based approach is now integrated
with the FMECA technique, which we propose in a modified
version. FMECA is a systematic procedure aimed at analysing
all the potential failure modes that may impact on a system by

identifying the related causes and effects. FMECA uses a pri-
ority index for each failure mode, the so-called Risk Priority
Number ('%#).

The '%# is traditionally calculated by means of the follow-
ing multiplication:

'%# = ( ×$ × �; (5)

where parameters (, $ and � respectively indicate severity (in-
tensity of impact of a given failuremode), occurrence (frequency
of occurrence of a given failure mode) and detection (probabil-
ity of correct failure detection). These parameters are generally
ranged within discrete intervals (see [17]).

We proceed with human factor risks prioritisation by inte-
grating the (defuzzified) )� parameter achieved by FCM into
the traditional '%# calculation as follows:

'%#=4F = '%#>;3 × (1 + q); (6)

q being the defuzzified value of the fuzzy number corresponding
to the linguistic evaluation associated to )� . The contribution
of causality affecting human risks is considered this way. The
scale given in the risk assessment matrix formalised in [19] is
used to assess the severity parameter, whereas the scales pro-
posed in [17] are used to evaluate the occurrence and detection
parameters for each human risk. To test the applicability of the
proposed approach, we show a practical application in next case
study section.

4 Case study
Being aware that, in industrial contexts, human resources are
exposed to significant risks whose occurrence could easily lead
to catastrophic results, we propose a practical application in the
sector of the automotive industry. This choice is motivated by
the fact that impacts of human risks dramatically increase in
the heavy industry, so that risks have to be continuously moni-
tored and kept to a minimum. Connections among human risks
identified in the previous section have been evaluated for an auto-
motive company operating in the North ofMorocco by involving
the responsible of the safety and security system.

Table 2 presents the connection matrix corresponding to the
FCM of Figure 3. The matrix collects the linguistic evaluations
by the expert. These evaluations have been translated into trape-
zoidal fuzzy numbers (TrFN) and their defuzzified values have
been calculated through the centroid method, as in [25]. The
FCM of Figure 3 has been obtained using the Mental Modeler
software (http://www.mentalmodeler.org/). The map graphi-
cally shows 45 connections identified for its 13 elements (i.e.
risks), what corresponds to about 3.46 connections per element.
Table 3 shows numerical evaluations for FMECA parameters
along with defuzzified values q (for linguistic total effects) to
be used in the '%#=4F calculation. Values of '%#>;3 are also
reported for comparisons purposes with traditional FMECA.

We can observe as integrating the q parameter by updating
the classical '%# calculation underlines differences in terms of
risk prioritisation, which can be significant for management.
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TABLE 2. Connection matrix formalising indirect effects for human risks

Risk �1 �2 ,(1 ,(2 ,(3 ,(4 ,(5 ")1 ")2 ")3 "!1 "!2 "!3 � �

�1 0 0 0 VL 0 0 0 0 0 0 0 VH L VL
�2 VH 0 0 L 0 0 0 0 0 0 0 VH 0 L
,(1 0 0 0 M 0 L VL 0 0 0 VL 0 0 VL
,(2 0 0 0 0 0 0 0 0 0 0 0 0 L L
,(3 M 0 0 M 0 0 0 0 L 0 0 VH 0 L
,(4 0 0 L H 0 0 L 0 0 0 M 0 0 L
,(5 VH VH 0 VH 0 0 0 0 0 0 0 0 0 VH
")1 VL VL VH 0 0 M 0 0 L H 0 0 0 VL
")2 0 0 M 0 M 0 0 VH 0 0 L VH 0 L
")3 L L 0 L 0 0 0 H 0 0 0 0 0 L
"!1 0 0 0 VH 0 0 VH 0 0 0 0 0 0 VH
"!2 0 0 0 0 0 0 0 0 0 0 L 0 0 L
"!3 0 0 VH 0 0 0 VH 0 0 VH L 0 0 L
� � VL VL L VL M L VL H L H VL VH L

Figure 3. FCM evaluating relationships among the identified human risks

Without considering interaction effects, the most critical
risks are, in decreasing order: ")1, ,(5, and ,(4, with
'%#>;3 respectively equal to 32.00, 30.00 and 24.00. Our
approach changes the perspective in terms of practical risk man-
agement, since the order of risks to be addressed with priority
is now ,(5, ")1 and ")3, with '%#=4F respectively equal
to 42.00, 41.92 and 31.44. Having associated higher level of
causality, aspects related to usage of PPE, management of ma-
chines and plants as well as usage of work equipment should be
then considered as priorities to enhance safety and security in
the automotive industry.

TABLE 3. Output of the combined FCM-FMECA approach

Risk ( $ � '%#>;3 ) � q '%#=4F

�1 1 3 1 3.00 VL 0.4 4.20
�2 2 3 1 6.00 L 0.14 6.84
,(1 3 4 1 12.00 L 0.14 13.68
,(2 5 1 2 10.00 L 0.14 11.40
,(3 4 2 2 16.00 M 0.23 19.68
,(4 4 2 3 24.00 L 0.14 27.36
,(5 5 3 2 30.00 VH 0.40 42.00
")1 4 2 4 32.00 H 0.31 41.92
")2 2 3 4 24.00 L 0.14 27.36
")3 2 3 4 24.00 H 0.31 31.44
"!1 5 1 4 20.00 VH 0.40 28.00
"!2 1 4 2 8.00 VH 0.40 11.20
"!3 2 4 3 24.00 L 0.14 27.36

5 Conclusions and future work

This paper applies a hybrid methodological approach for indus-
trial human risk assessment. We first make use of FCMs to
comprehensively organise knowledge and opinions provided by
the involved decision maker(s), who are expert(s) in the indus-
trial sector of interest. The FCM-based approach is proposed to
model relations among relevant human risks by generating spon-
taneous brainstorming activities, without being anchored to the
need of the a posteriori check of consistency of preferences
expressed by experts between pairs of risks. After evaluating
relations among risks, we propose a modified FMECA for final
risk prioritization. The output is a final ranking of risks high-
lighting those aspects to be improved with priority to globally
enhance safety and security, is a fundamental aspect in industry.
A case study is implemented to show the applicability of the
proposed approach to real industrial contexts. Possible future
developments of the present researchmay refer to the application
of FCMs to evaluate the influence of relevant criteria selected
to study failure propagation phenomena in complex systems.
Moreover, different parameters from those used in traditional
FMECA may be considered for the '%# calculation in order to
producemore precise assessments oriented to continuous human
resource safety improvement.
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