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Abstract
This paper is devoted to the study of the metric subregularity constraint qualification for
general optimization problems, with the emphasis on the nonconvex setting. We elabo-
rate on notions of directional pseudo- and quasi-normality, recently introduced by Bai
et al., which combine the standard approach via pseudo- and quasi-normality with modern
tools of directional variational analysis. We focus on applications to disjunctive programs,
where (directional) pseudo-normality is characterized via an extremal condition. This, in
turn, yields efficient tools to verify pseudo-normality and the metric subregularity con-
straint qualification, which include, but are not limited to, Robinson’s result on polyhedral
multifunctions and Gfrerer’s second-order sufficient condition for metric subregularity.
Finally, we refine our study by defining the new class of ortho-disjunctive programs
which comprises prominent optimization problems such as mathematical programs with
complementarity, vanishing or switching constraints.

Keywords Metric subregularity · Error bound property · Pseudo-/quasi-normality ·
MPCC · MPVC · Disjunctive programs · Ortho-disjunctive programs
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1 Introduction

In this paper we study constraint qualifications (CQs) for a general mathematical program
(GMP) given by

min
x∈Rn

f (x) s.t. x ∈ F−1(�) =: X , (1)
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where f : R
n → R and F : R

n → R
d are continuously differentiable and � ⊂ R

d is
closed. Constraint qualification are regularity conditions on the feasible set of an optimiza-
tion problem and play a crucial role for stationarity and optimality conditions, sensitivity
analysis or exact penalization, as well as the convergence analysis of numerical algorithms.

At the center of our attention is the metric subregularity constraint qualification
(MSCQ). Known also under other monikers such as error bound property or calmness con-
straint qualification (in general, calmness is equivalent to metric subregularity of the inverse
mapping), MSCQ is, to the best of our knowledge, the weakest known CQ to ensure the full
calculus for (limiting) normal cones and subdifferentials, see [31, 38]. In particular, MSCQ
guarantees that local minimizers of (1) are Mordukhovich (M)-stationary [31]. Moreover,
MSCQ also yields exactness of the penalty function

Pα := f + αd� ◦ F (α > 0), (2)

see, e.g., [13, 14, 16, 41], which is an important tool for establishing necessary optimality
conditions, as well as for numerical methods [14].

Apart from the area of optimality conditions and exact penalization, MSCQ turns out to
be essential also in second-order variational analysis and closely related areas of stability
and sensitivity, cf. e.g., [8, 9, 28, 29] and references therein.

The main drawback of MSCQ is the difficulty with efficient verification of this prop-
erty. There exist two main approaches to ensure MSCQ. The first one makes use of the
stronger property of metric regularity, which is closely related to other concepts such as the
Aubin property, (generalized) Mangasarian-Fromovitz constraint qualification (GMFCQ),
no nonzero abnormal multiplier constraint qualification (NNAMCQ). Metric regularity can
be characterized via co-derivatives [51, Theorem 9.40] (known as the Mordukhovich crite-
rion) or via graphical derivatives [19, Theorem 4B.1]. For more information as to metric
regularity we refer to the monographs [19, 37, 42, 47, 51].

The second approach corresponds to Robinson’s famous result on polyhedral multifunc-
tions [50, Proposition 1] and is, in turn, restricted to this special case. There are many
situations, however, in which metric subregularity is provably satisfied, yet can not be
detected by either of these approaches.

Therefore, a lot of attention has been given to conditions that lie between metric regu-
larity and metric subregularity. A very common approach is to provide sufficient conditions
for subregularity/calmness in terms of various derivative-like objects [21, 31, 32, 38, 43,
49, 54]. An exception is the early and very interesting attempt by Klatte and Kummer
[41, Theorem 3.6], where calmness of an intersection mapping is studied.

For further details on metric subregularity and related notions as well as more biblio-
graphical pointers on the topic, we refer to the paper and the textbook by Dontchev and
Rockafellar [18, 19] and to the textbook by Ioffe [37].

We will further focus on the following two strategies: the first one is obtained by the
pseudo- and quasi-normality, first introduced for nonlinear programming in [10], and later
extended to MPCCs in [40, 55] as well as to general programs of the form (1), see [30]. The
second one, based on the directional approach recently developed by Gfrerer and co-authors
[7, 23–25, 27, 28], was established and utilized in [23, 24, 27] under the name first/second-
order sufficient condition for metric subregularity (FOSCMS/SOSCMS). FOSCMS can be
viewed as a directional, less restrictive counterpart of the Mordukhovich criterion. The main
advantage of these conditions is their point-based nature, which makes it possible to ver-
ify them efficiently. The point-based character of these conditions can be justified by the
existence of suitable calculus rules for the (directional) limiting normal cones, despite the
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fact that these objects are defined with information taken from the neighborhood by using a
limiting process.

In this paper, we synthesize the concepts of pseudo- and quasi-normality with the above
mentioned directional approach, which also serves as our main workhorse throughout the
paper. Hence, we study constraint qualifications called directional pseudo-/quasi-normality,
which are milder than both pseudo-/quasi-normality and FOSCMS, and imply MSCQ (cf.
Theorems 3.2 and 3.5).

We would like to point out, that despite working on this combined approach indepen-
dently of Bai, Ye, and Zhang [3], the exact same definitions of directional pseudo- and
quasi-normality were first published in said paper. Here, we present alternative or simpler
proofs of certain common results using different techniques, which can further illumi-
nate these novel tools for the reader. Moreover, we present a thorough investigation of
applicability of these new CQs, which goes beyond the material in [3].

Although the core material of our study is valid for general programs (1) with an arbitrary
closed set �, we are particularly interested in situations when � is not convex. Optimization
problems with inherently nonconvex structures induced by imposing logical or combinato-
rial conditions on otherwise smooth or convex data [52] has been of increasing interest in
recent years. Among the prominent examples are mathematical programs with complemen-
tarity constraints (MPCCs) [44, 48], or mathematical programs with vanishing constraints
(MPVCs) [35], etc. For these optimization problems there are several applications in the
natural and social sciences, economics and engineering. Moreover, they are very challeng-
ing from both a theoretical and numerical perspective. More examples of such programs are
discussed in Section 4, where we apply our results to disjunctive programs in which � is
a finite union of polyhedra. In Section 5 we introduce the new notion of ortho-disjunctive
programs. Ortho-disjunctive programs are disjunctive programs with an additional product
structure of � which allows us to address some issues that cannot be resolved in the gen-
eral disjunctive setting. Both disjunctive and ortho-disjunctive programs provide a unified
framework for the above mentioned particular problem classes.

The main contributions of the paper are as follows:

• Pseudo-normality for disjunctive programs: For disjunctive programs, we observe that
pseudo-normality can be cast in a simpler way which is, in fact, a proper extension of
the definition of pseudo-normality that has already been used for NLPs and MPCCs
in the literature. This new definition, however, reveals an interpretation of pseudo-
normality via an extremal condition, see (26), which is neither visible from the general
definition for (1) nor from the specially tailored ones for NLPs and MPCCs, respec-
tively. This extremal condition then yields efficient tools to verify pseudo-normality.
Indeed, apart from recovering the Robinson’s result and the Gfrerer’s SOSCMS,
employing higher-order analysis yields a variety of new milder point-based sufficient
conditions for pseudo-normality and MSCQ, see Section 4.3.

• Quasi-normality for ortho-disjunctive programs: A similar approach as the one to
pseudo-normality can be made for (directional) quasi-normality if one moves from
the disjunctive to even more specialized ortho-disjunctive setting, designed to utilize
an underlying product structure exhibited by the standard examples of disjunctive
programs (MPCCs, MPVCs). The corresponding extremal condition characterizing
quasi-normality leads to a surprising connection between quasi-normality and multi-
objective optimization. Again, sufficient conditions of second- or higher-order are rea-
dily available.
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• PQ-normality: In Section 3 we established the new notion of (directional) PQ-
normality, which includes both pseudo- and quasi-normality as extreme cases. This
unified notion puts us in a position to better understand and to exploit certain product
structures for which neither quasi- nor pseudo-normality is suitable.

The rest of the paper is organized as follows. In Section 2 we present some prelimi-
nary results and notions from variational analysis as well as key results regarding constraint
qualifications. Section 3 contains fundamental results of our study dealing with CQs for the
general program (1). In Section 4, we study disjunctive programs and obtain full results on
pseudo-normality. Section 5 deals with disjunctive programs with additional product struc-
tures often present in the problems of interest (MPCCs, MPVCs, etc.). In particular, the
notion of ortho-disjunctive programs is introduced and complete results on quasi-normality
are obtained.

Notation Most of the notation used is standard: The closed ball in R
n with center at x and

radius r is denoted by Br (x) and we use B := B1(0) for the closed unit ball. The extended
real line is given by R := R ∪ {±∞}. For f : Rn → R its epigraph is given by epi f :=
{(x, α) ∈ R

n × R | f (x) ≤ α }. For a nonempty set S ⊂ R
n we define the (Euclidean)

distance function dS : Rn → R through dS(x) := infy∈S ‖x − y‖. The projection mapping
PS : Rn ⇒ S associated with S is defined by PS(x) := argminy∈S ‖x − y‖. We write {xk}
for a sequence of scalars and {xk} for a sequence of vectors. For a mapping F : Rn → R

m

its Jacobian at x̄ is denoted by ∇F(x̄). In particular, for f f : Rn → R, the Jacobian ∇f (x̄)

at x̄ is a row vector, and we denote its Hessian at x̄ by ∇2f (x̄). Moreover, for λ ∈ R
m

the scalarized function 〈λ, F 〉 : Rn → R is given by 〈λ, F 〉 (x) = λT F (x). Note that for
u ∈ R

n we have ∇ 〈λ, F 〉 (x̄)T u = 〈λ, ∇F(x̄)u〉 and we often use the latter notation. For a
matrix A ∈ R

m×n, its range or image is Im A := {Ax | x ∈ R
n }. For some vector v ∈ R

n

we set R+v := {tv | t ≥ 0 } and R−v := {tv | t ≤ 0 }.

2 Preliminaries

This section is divided into two parts. First, we introduce some basic notions from vari-
ational analysis. The second part is devoted to constraint qualifications for the general
mathematical program (1).

2.1 Variational analysis

Given a closed set C ⊂ R
n and z ∈ C, the tangent cone to C at z is defined by

TC(z) :=
{
d ∈ R

n
∣∣∣ ∃{dk} → d, {tk} ↓ 0 : z + tkd

k ∈ C (k ∈ N)
}

.

The regular normal cone to C at z is given as the polar cone of the tangent cone, i.e.

N̂C(z) := {z∗ ∈ R
n | 〈z∗, d〉 ≤ 0 (d ∈ TC(z))}.

The limiting normal cone to C at z is given by

NC(z) :=
{
z∗ ∈ R

n
∣∣∣ ∃{z̃k} → z∗, {zk} → z : zk ∈ C, z̃k ∈ N̂C(zk) (k ∈ N)

}
.
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If z /∈ C we set TC(z) := N̂C(z) := NC(z) := ∅. Observe that N̂C(z) ⊂ NC(z) holds. In
case C is a convex set, regular and limiting normal cone coincide with the classical normal
cone of convex analysis, i.e.,

N̂C(z) = NC(z) = {z∗ ∈ R
n
∣∣ 〈z∗, v − z〉 ≤ 0 (v ∈ C)

}
, (3)

and we will use the notation NC(z) in this case. Finally, given a direction d ∈ R
n, the

limiting normal cone to C at z in direction d is defined by

NC(z; d) :=
{
z∗ ∈ R

n
∣∣∣ ∃{tk} ↓ 0, {dk} → d, {z̃k} → z∗ : z̃k ∈ N̂C(z + tkd

k) (k ∈ N)
}

.

Note that, by definition, we have NC(z; 0) = NC(z). Furthermore, observe that NC(z; d) ⊂
NC(z) for all d ∈ R

n and NC(z; d) = ∅ if d /∈ TC(z).
For f : Rn → R and x̄ such that f (x̄) is finite (hence (x̄, f (x̄)) ∈ epi f )) the sets

∂̂f (x̄) := {ξ ∈ R
n
∣∣ (ξ∗, −1) ∈ N̂epi f

(
x̄, f (x̄)

)}
, ∂f (x̄) := {ξ ∈ R

n
∣∣ (ξ∗, −1) ∈ Nepi f

(
x̄, f (x̄)

)}

denote the regular and limiting subdifferential of f at x̄, respectively. Observe that, in
particular, for the indicator function of a set C ∈ R

n, given by

δC : x �→
{

0 if x ∈ C,

+∞ else,

we have ∂̂δC = NC and ∂δC = NC . The distance function enjoys a rich subdifferential
calculus briefly summarized in the next result.

Proposition 2.1 ((ii)) [Subdifferentiation of distance function] Let S ⊂ R
d be closed and

F : Rn → R
d continuously differentiable. Then the following hold:

(i) [51, Example 8.53] ∂dS(y) =
{

NS(y) ∩ B if y ∈ S,
y−PS(y)

dS(y)
if y /∈ S;

(ii) [51, Theorem 10.6] ∂(dS ◦ F)(x) ⊂ ∇F(x)T ∂dS(F (x)).

2.2 Constraint Qualifications

The purpose of this section is to recall several well-established CQs for the general program
(1) and to highlight some basic relations between them. We commence with the CQ that is
most important to our study.

Definition 2.2 (MSCQ) Let x̄ be feasible for (1). We say that the metric subregularity
constraint qualification (MSCQ) holds at x̄ if there exists a neighborhood U of x̄ and κ > 0
such that

dX (x) ≤ κd�(F (x)) (x ∈ U).

Note that MSCQ is exactly metric subregularity in the set-valued sense of the feasibility
mapping for the constraint system X = F−1(�) which is given by M(x) := F(x) − �, see
e.g. [27].
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The stronger property of metric regularity holds for M around (x̄, 0) if and only if there
are neighborhoods U of x̄ and V of 0 and κ > 0 such that

dM−1(y)(x) ≤ κdM(x)(y) = κd�(F (x) − y) ((x, y) ∈ U × V ).

It is well-known that metric regularity of a multifunction is equivalent to the Aubin prop-
erty of the inverse multifunction [51, Theorem 9.43]. Applying the Mordukhovich criterion
to the feasibility mapping M yields a condition that there is no nonzero multiplier λ̄ ∈
N�(F(x̄)) such that

∇F(x̄)T λ̄ = 0, (4)

which is often known as generalized Mangasarian-Fromovitz constraint qualification
(GMFCQ) at x̄. In the rest of the paper, we mainly stick to the GMFCQ terminology, but
sometimes refer to GMFCQ also as the Mordukhovich criterion. Thanks to the calculus rules
for limiting normal cones and subdifferentials, the Mordukhovich criterion often provides
an efficient tool for verifying metric regularity. There are still plenty of situations, however,
where GMFCQ is not fulfilled but MSCQ is. It is therefore an important and worthwhile
endeavor to fill the gap between GMFCQ and MSCQ, ideally with verifiable conditions at
that. Let us proceed with the next list of constraint qualifications for (1) relevant for our
study, see, e.g., [27, 30].

Definition 2.3 (Constraint qualifications) Let x̄ ∈ X be feasible for (1).We say that

(i) pseudo-normality holds at x̄ if there is no nonzero λ̄ ∈ N�(F(x̄)) such that (4) holds

and that satisfies the following condition: There exists a sequence {(xk, yk, λk) ∈
R

n × � × R
d} → (x̄, F (x̄), λ̄) with

λk ∈ N̂�(yk) and
〈
λ̄, F (xk) − yk

〉
> 0 (k ∈ N);

(ii) quasi-normality holds at x̄ if there is no nonzero λ̄ ∈ N�(F(x̄)) such that (4) holds

and that satisfies the following condition: There exists a sequence {(xk, yk, λk) ∈
R

n × � × R
d} → (x̄, F (x̄), λ̄) with

λk ∈ N̂�(yk) and λ̄i (Fi(x
k) − yk

i ) > 0 if λ̄i �= 0 (k ∈ N);
(iii) first-order sufficient condition for metric subregularity (FOSCMS) holds at x̄ if for

every 0 �= u ∈ R
n with ∇F(x̄)u ∈ T�(F (x̄)) one has

∇F(x̄)T λ = 0, λ ∈ N�(F(x̄); ∇F(x̄)u) =⇒ λ = 0;
(iv) second-order sufficient condition for metric subregularity (SOSCMS) holds at x̄ if F

is twice differentiable at x̄, � is the union of finitely many convex polyhedra, and for
every 0 �= u ∈ R

n with ∇F(x̄)u ∈ T�(F (x̄)) one has

∇F(x̄)T λ = 0, λ ∈ N�(F(x̄); ∇F(x̄)u), uT ∇2 〈λ, F 〉 (x̄)u ≥ 0 =⇒ λ = 0.

We point out that imposing that the (nonexisting) multiplier λ̄ is in N�(F(x̄)) in the defi-
nition of pseudo-/quasi-normality is, clearly, redundant, since it follows from λk ∈ N̂�(yk).
Nevertheless, in order to be consistent with the literature and to emphasize the connection to
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GMFCQ and other CQs, we stick to the original definition. In particular, it is obvious from
the definition that GMFCQ implies both pseudo- and hence quasi-normality. The concepts
of pseudo- and quasi-normality are well-established in the literature. Note that in [30], the
condition λk ∈ N̂�(yk) in (i) and (ii) is replaced by λk ∈ N�(yk). In order to see that no
difference arises, consider the following elementary lemma which follows readily from the
definitions of continuity and of the limiting normal cone, respectively.

Lemma 2.4 Let � ⊂ R
d be closed, y ∈ �, λ ∈ N�(y) and let a : R

d × R
d → R

q

be continuous. Then for every ε > 0 there exist ỹ ∈ � and λ̃ ∈ N̂�(ỹ) such that∥∥∥a(ỹ, λ̃) − a(y, λ)

∥∥∥ < ε.

Corollary 2.5 Under the assumptions of Definition 2.3 let {(xk, yk, λk) ∈ R
n×�×R

d} →
(x̄, F (x̄), λ̄). Then the following hold:

(i) If λk ∈ N�(yk) and
〈
λ̄, F (xk) − yk

〉
> 0 for all k ∈ N then there exists {(ỹk, λ̃k)} →

(F (x̄), λ̄) such that λ̃k ∈ N̂�(ỹk) and
〈
λ̄, F (xk) − ỹk

〉
> 0 for all k ∈ N.

(ii) If λk ∈ N�(yk) and λ̄i (Fi(x
k) − yk

i ) > 0 (i : λ̄i �= 0) for all k ∈ N then there exists

{(ỹk, λ̃k)} → (F (x̄), λ̄) such that λ̃k ∈ N̂�(ỹk) and λ̄i (Fi(x
k)− ỹk

i ) > 0 (i : λ̄i �= 0)

for all k ∈ N.

Proof We only prove part (i); part (ii) can be shown analogously. To this end, define the
continuous maps

ak : (y, λ) �→ (y, λ,
〈
λ̄, F (xk) − y

〉
) (k ∈ N),

and set εk := min
{

1
k
, 1

2

〈
λ̄, F (xk) − yk

〉}
. Applying Lemma 2.4 then generates the desired

sequences.

Corollary 2.5 guarantees that using λk ∈ N̂�(yk) instead of λk ∈ N�(yk) in the defini-
tion of pseudo- and quasi-normality does not matter. We note that this is also true for the
directional versions of these CQs to be established in Definition 3.4.

The obvious drawback of pseudo- and quasi-normality is that they are expressed via
sequences, which makes it is quite difficult to check their validity and apply them. Another
way of relaxing GMFCQ is provided by FOSCMS and SOSCMS, which can be easier to
verify due to the calculus for directional limiting objects [7].

In order to simplify the notation, given x̄ feasible for (1), we define

�0(x̄; u) := ker ∇F(x̄)T ∩ N�(F(x̄); ∇F(x̄)u) (u ∈ R
n) (5)

and set

�0(x̄) := �0(x̄; 0) = ker ∇F(x̄)T ∩ N�(F(x̄)),

i.e., the directional normal cone is replaced by the standard one. With these conventions,
GMFCQ at x̄ reads

�0(x̄) = {0},
while FOSCMS now reads

�0(x̄; u) = {0} (u : ∇F(x̄)u ∈ T�(F (x̄))).
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The fact that GMFCQ implies FOSCMS is clear from the inclusion

N�(F(x̄); ∇F(x̄)u) ⊂ N�(F(x̄)) (u ∈ R
n).

The following example shows that this implication can be strict. In addition, it also
illustrates that MSCQ is strictly weaker than quasi-normality, cf. Proposition 2.7(i).

Example 2.6 Let � := {y ∈ R
2 | y2 ≥ |y1|} ⊂ R

2, F : R → R
2, F (x) := (x,−x2)T

and set x̄ := 0. Clearly ∇F(x̄) = (1, 0)T and N�(F(x̄)) = {y ∈ R
2 | y2 ≤ −|y1|}, hence

0 �= λ := (0,−1)T ∈ �0(x̄) and the Mordukhovich criterion (GMFCQ) is violated at x̄.
Moreover, setting xk := 1/k, yk := F(x̄) = (0, 0)T and λk := λ = (0,−1)T we obtain

λ2(F2(xk) − yk
2 ) = −1(−1/(k2)) > 0, showing that also quasi-normality is violated at x̄.

On the other hand, since N�(F(x̄); ∇F(x̄)u) = ∅ for all u �= 0, FOSCMS and hence
MSCQ are satisfied at x̄.

We point out that the set � in Example 2.6 is convex, thus illustrating that even in
the convex case one may not be able to verify MSCQ using the non-directional condi-
tions (GMFCQ, pseudo- and quasi-normality), but one may invoke a directional one (here
FOSCMS).

Although the directional conditions FOSCMS and SOSCMS are similar in flavor, we
point out that SOSCMS is only applicable in the case where � has disjunctive structure. In
this setting, there is yet another condition due to Robinson [50] that ensures MSCQ.

The following proposition summarizes several important sufficient conditions for
MSCQ, other than GMFCQ, which have already been established in the literature and that
are important to our study. We point out, however, that the validity of these results will be a
simple corollary of our refined analysis in Section 3.

Proposition 2.7 (Sufficient conditions for MSCQ) Let x̄ be feasible for (1). Then under
either of the following conditions MSCQ holds at x̄.

(i) ([30, Theorem 5.2])quasi-normality (or pseudo-normality) holds at x̄;
(ii) ([27, Corollary 1]) FOSCMS holds at x̄;
(iii) ([27, Corollary 1]) SOSCMS holds at x̄;
(iv) ([50, Proposition 1]) F is affine and � is the union of finitely many convex polyhedra.

As we can see, two of these conditions are applicable for the general program (1) and
are strictly milder than GMFCQ. The other two are restricted to the special structure of
disjunctive constraints and hence are in general not comparable with GMFCQ. Interestingly,
all four conditions are mutually incomparable and were obtained by different approaches.
The only available comparison is for the disjunctive constraints, where FOSCMS clearly
implies SOSCMS.

We will refer to (iv) in Proposition 2.7 as Robinson’s result. We point out, however, that
[50, Proposition 1] in fact contains a stronger statement.

3 New Constraint Qualifications for GMP

In this section we are primarily concerned with constraint qualifications for the gen-
eral mathematical program (1). In particular, we investigate directional counterparts of
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pseudo- and quasi-normality introduced in [3], and introduce a new CQ called PQ-normality
that unifies pseudo- and quasi-normality. We then show that each of these CQs implies
MSCQ, and hence recover statements (i) and (ii) of Proposition 2.7. Afterwards, we propose
various sufficient conditions for these CQs under some additional structural assumptions.
Hence, when applied to the disjunctive constraints in Section 4, these conditions also recover
statements (iii) and (iv) of Proposition 2.7.

3.1 Directional Constraint Qualifications and PQ-normality

In [3, Corollary 4.1], it was shown that metric subregularity is implied by directional quasi-
normality, see Definition 3.4. Here, we propose a different proof that follows the techniques
used, e.g., in [40, Lemma 4.4] and [30, Lemma 5.1.]. Note that our main tools are the
Ekeland’s variational principle and the rich subdifferential calculus for the distance function
from Proposition 2.1, and this approach is novel even is the nondirectional setting. We start
with the following observation, where we invoke definitions of �0(x̄;u) and �0(x̄).

Lemma 3.1 Let x̄ be feasible for (1) such that MSCQ is violated at x̄. Then there exist
sequences {xk /∈ X } → x̄ and {ξk ∈ ∂ (d� ◦ F) (xk)} → 0 as well as u ∈ R

n \ {0} with
‖u‖ = 1 such that

xk − x̄∥∥xk − x̄
∥∥→u,

yk − F(x̄)∥∥xk − x̄
∥∥ →∇F(x̄)u (yk ∈ P�(F (xk))) and ∇F(x̄)u ∈ T�(F (x̄)).

(6)

Proof Violation of MSCQ at x̄ readily yields a sequence {x̃k} → x̄ with dX (x̃k) >

kd�(F (x̃k)). We put εk := d�(F (x̃k)) and find that x̃k is an εk-minimizer of d� ◦ F

for all k ∈ N. Hence by Ekeland’s variational principle [51, Proposition 1.43] with

δ = 1
k

(k ∈ N), there exists a sequence {xk} such that xk = argmin
{

d� ◦ F + 1
k
‖(·) − xk‖

}

and ‖xk − x̃k‖ ≤ kεk < dX (x̃k) for all k ∈ N.
This implies {xk /∈ X } → x̄ as well as 0 ∈ ∂(d� ◦ F)(xk) + 1

k
B for all k ∈ N by

applying a nonsmooth Fermat’s rule (cf. [51, Theorem 10.1]) and invoking a sum rule for
locally Lipschitz functions (cf. [51, Exercise 10.10]). In particular, there exists a sequence

{ξk ∈ ∂(d� ◦ F)(xk)} → 0. As xk �= x̄, w.l.o.g. we may assume that xk−x̄
‖xk−x̄‖ → u with

‖u‖ = 1. Now let yk ∈ P�(F (xk)) for all k ∈ N. Then

∥∥∥∥
yk − F(x̄)

‖xk − x̄‖ − ∇F(x̄)u

∥∥∥∥ ≤ ‖yk − F(xk)‖
‖xk − x̄‖ +

∥∥∥∥
F(xk) − F(x̄)

‖xk − x̄‖ − ∇F(x̄)u

∥∥∥∥ (k ∈ N).

(7)

As xk minimizes d� ◦F + 1
k
‖(·)−xk‖ for all k ∈ N, we find that d�(F (xk)) ≤ 1/k‖x̄−xk‖.

Hence we infer that the first term on the right in (7) satisfies

‖yk − F(xk)‖
‖xk − x̄‖ = d�(F (xk))

‖xk − x̄‖ ≤ 1

k
→ 0.

The second term on the right in (7) goes to zero by differentiability of F and we conclude

from (7) that yk−F(x̄)

‖xk−x̄‖ → ∇F(x̄)u. Finally, as yk ∈ � for all k ∈ N, we have ∇F(x̄)u ∈
T�(F (x̄)).
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Theorem 3.2 Let x̄ be feasible for (1) and assume that the following holds: For every u ∈
R

n with ‖u‖ = 1 and ∇F(x̄)u ∈ T�(F (x̄)) there does not exist a nonzero λ̄ ∈ �0(x̄; u) that
satisfies the following condition: There exists a sequence {(xk, yk, λk) ∈ R

n × � ×R
d} →

(x̄, F (x̄), λ̄) such that for all k ∈ N we have

(xk − x̄)/

∥∥∥xk − x̄

∥∥∥→ u, (yk − F(x̄))/

∥∥∥xk − x̄

∥∥∥→ ∇F(x̄)u,

λk ∈ N̂�(yk), λ̄i (Fi(x
k) − yk

i ) > 0 (λ̄i �= 0).

Then MSCQ is fulfilled at x̄.

Proof Assume that MSCQ is not satisfied at x̄. Consider sequences {xk /∈ X } → x̄, {ξk ∈
∂ (d� ◦ F) (xk)} → 0 and u ∈ R

n with ‖u‖ = 1 provided by Lemma 3.1. Recall that

∂(d� ◦ F)(x) ⊂ ∇F(x)T ∂d�(F (x)) (x ∈ R
n),

see Proposition 2.1 (ii). Moreover, by Proposition 2.1 (i), it holds that

∂d�(F (xk)) = F(xk) − P�(F (xk))

d�(F (xk))
(k ∈ N),

since xk /∈ X (k ∈ N). Consequently, there exists {yk ∈ P�(F (xk))} such that with

λk := F(xk) − yk

d�(F (xk))
(8)

we have

ξk = ∇F(xk)T λk and ‖λk‖ = 1 (k ∈ N). (9)

Moreover, by the definition of λk in (8) and the fact that yk ∈ P�(F (xk)) (k ∈ N), [51,
Example 6.16] implies that

λk ∈ N̂�(yk) (k ∈ N).

Since {λk} is bounded, we may assume w.l.o.g. that λk → λ̄ for some λ̄ �= 0. Then from (8)
we infer that yk → F(x̄). Hence, passing to the limit in (9) we obtain

0 = ∇F(x̄)T λ̄ and λ̄ �= 0.

Now, if λ̄i > 0 then w.l.o.g. Fi(x
k)−yk

i = d�(F (xk))λk
i > 0 and hence λ̄i (Fi(x

k)−yk
i ) >

0. Analogously, we argue for λ̄i < 0. Altogether, we find that

λ̄i (Fi(x
k) − yk

i ) > 0 if λ̄i �= 0 (k ∈ N).

Finally, Lemma 3.1 yields that (yk − F(x̄))/
∥∥xk − x̄

∥∥ → ∇F(x̄)u, showing λ̄ ∈
N�(F(x̄),∇F(x̄)u), which establishes a contradiction.

Instead of directly extracting directional versions of quasi- and pseudo-normality from
Theorem 3.2, we introduce the notion of PQ-normality which serves as a bridge between
pseudo- and quasi-normality, which are then identified as the two extreme cases of



Sufficient Conditions for Metric Subregularity of Constraint Systems...

PQ-normality. We strongly emphasize that introducing PQ-normality does not merely serve
the academic purpose of unifying the two concepts. In fact, it has important consequences
for the class of programs in Section 5 where the set � possesses an underlying product
structure in addition to its disjunctive nature.

First, we introduce additional notation. For z ∈ R
d we denote by zi (i ∈ I := {1, . . . , d})

its scalar components. More generally, suppose that Rd is expressed via l(≤ d) factors as
R

d1 × . . . × R
dl and introduce the d multi-indices δ := (d1, . . . , dl) ∈ N

l with |δ| :=
d1 + . . . + dl = d . Note that there is a one-to-one correspondence between such multi-
indices and factorizations of R

d . The components of some z ∈ R
d we denote as zν for

ν ∈ Iδ , where Iδ is some (abstract) index set of l elements. Note that we do not identify Iδ

with {1, . . . , l} in order to avoid ambiguity of notation, e.g., z1 ⊂ R stands only for the first,
scalar, component of z. Moreover, we use a Greek letter to indicate the vector components
zν of z and a Latin letter to indicate the scalar components zi .

Given a multi-index δ fix ν ∈ Iδ . The component zν , vector in general, can also be
written via its scalar components, i.e., there exists an index set, denoted by I ν , such that
zν = (zi)i∈I ν . Note that ∪ν∈Iδ I

ν = I .
Finally, given two multi-indices δ, δ′ with |δ| = |δ′| = d , we say that δ′ is a refinement

of δ and write δ′ ⊂ δ, provided for every ν ∈ Iδ there exists an index set I ν
δ′ such that

zν = (zν′)ν′∈I ν
δ′ and Iδ′ = ∪ν∈Iδ I

ν
δ′ .

Note that the special multi-indices δP := d ∈ N
1 and δQ := (1, . . . , 1) ∈ N

d are in fact
maximal and minimal in the sense that for any multi-index δ ∈ N

l with |δ| = d one has
δQ ⊂ δ ⊂ δP .

The following example illustrates the use of the above notation.

Example 3.3 Let d = 7, I := {1, . . . , 7} and consider a multi-index δ := (1, 4, 2)

corresponding to the factorization R
7 = R × R

4 × R
2. Consider also an element z =

(z1, . . . , z7) ∈ R
7. Since δ has three components, we may set, e.g., Iδ = {a, b, c} yielding

za = z1, zb = (z2, z3, z4, z5) and zc = (z6, z7). Clearly, we have I a = {1}, I b = {2, 3, 4, 5}
and I c = {6, 7}.

Moreover, the multi-index δ′ := (1, 3, 1, 1, 1) is a refinement of δ, since we may set

I a
δ′ := {a}, I b

δ′ := {b1, b2} and I c
δ′ := {c1, c2}

to obtain

za = z1, zb1 = (z2, z3, z4), zb2 = z5, zc1 = z6, zc2 = z7,

and Iδ′ = I a
δ′ ∪ I b

δ′ ∪ I c
δ′ = {a, b1, b2, c1, c2}, za = za, zb = (zb1 , zb2), zc = (zc1 , zc2).

We now proceed with the definition of PQ-normality which embeds quasi- and pseudo-
normality as extremal cases in a whole family of constraint qualifications.

Definition 3.4 (PQ-normality) Let x̄ ∈ X be feasible for (1), consider u ∈ R
n with ‖u‖ =

1, and let δ ∈ N
l be a multi-index such that |δ| = d . We say that

(i) PQ-normality w.r.t. δ holds at x̄, if there is no nonzero λ̄ ∈ �0(x̄) that satisfies the
following condition: There exists a sequence {(xk, yk, λk) ∈ R

n × � × R
d} →

(x̄, F (x̄), λ̄) with λk ∈ N̂�(yk) and
〈
λ̄ν , Fν(x

k) − yk
ν

〉
> 0 (ν ∈ Iδ(λ̄) := {ν ∈ Iδ | λ̄ν �= 0}, k ∈ N). (10)
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(ii) PQ-normality w.r.t. δ in direction u holds at x̄, if there is no nonzero λ̄ ∈ �0(x̄; u)

that satisfies the following condition: There exists a sequence {(xk, yk, λk) ∈ R
n ×

� × R
d} → (x̄, F (x̄), λ̄) with λk ∈ N̂�(yk), (10) and

(xk − x̄)/

∥∥∥xk − x̄

∥∥∥→ u, (yk − F(x̄))/

∥∥∥xk − x̄

∥∥∥→ ∇F(x̄)u. (11)

We say that directional PQ-normality w.r.t. δ holds at x̄, if PQ-normality w.r.t. δ in direction
u holds at x̄ for all u ∈ R

n with ‖u‖ = 1. In particular, we refer to PQ-normality w.r.t. δP

(in direction u) as pseudo-normality (in direction u), while PQ-normality w.r.t. δQ we call
quasi-normality.

It is clear from the definition that PQ-normality w.r.t. δ implies PQ-normality w.r.t. δ′
provided δ′ ⊂ δ. In particular, since δQ ⊂ δ ⊂ δP for all δ ∈ N

l with |δ| = d , we
conclude that pseudo-normality implies PQ-normality w.r.t. any δ and this further implies
quasi-normality. Naturally, all of the above comments remain true for the corresponding
directional CQs.

For the sake of completeness, we reformulate Theorem 3.2 in terms of directional PQ-
normality.

Theorem 3.5 Let x̄ be feasible for (1) and let the directional PQ-normality w.r.t. any δ ∈
N

l , in particular directional pseudo- or quasi-normality, hold at x̄. Then MSCQ is fulfilled
at x̄.

We point out that directional quasi-normality is strictly weaker than both FOSCMS (clear
from the definition of the respective CQs) as well as quasi-normality, see Example 2.6.
Hence it constitutes, to the best of our knowledge, one of the weakest conditions to imply
MSCQ for the general optimization problem (1), which can still be efficiently verified in
some very important cases as shown in Sections 3.2 and 3.3 below.

The same directional versions of pseudo- and quasi-normality were independently intro-
duced in a recent paper by Bai et al. [3]. In order to show that these imply MSCQ, Bai et al.
build on results from [26, Corollary 1, Remarks 1 and 2]. Hence, we believe our alternative
proof can provide additional insight on the role of pseudo- and quasi-normality in verifying
MSCQ. More importantly, in what follows, we focus on simplifying these conditions under
specific structural assumptions on the feasible set, which is a crucial step to facilitate their
use.

3.2 Simplified CQs and Second-order Sufficient Conditions: The Standard Case

For some important instances of the general program (1), the concepts of pseudo- and quasi-
normality were introduced without the undesirable additional sequence {yk}, see [10] for
standard NLPs and [40] for MPCCs. In the remaining part of this section, we address the
question as to when this is possible for more general instances of (1), working with the
generalized notion of PQ-normality. In turn, in the remainder of this section, δ denotes a
multi-index in N

l for some l ∈ {1, . . . , d} with |δ| = d unless stated otherwise. As a result
of dropping the sequence {yk}, we obtain a characterization of PQ-normality via an extremal
condition, which, in turn, yields several sufficient conditions for PQ-normality.

For clarity of exposition, we split our analysis into the standard (non-directional) and the
directional case.
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We begin our study of the non-directional case by the following straightforward result,
which follows readily from definition of PQ-normality using the sequences yk := F(x̄)

and λk := λ̄, taking also into account Lemma 2.4 and the arguments in the proof of
Corollary 2.5.

Lemma 3.6 Let x̄ be feasible for (1). If PQ-normality w.r.t. δ holds at x̄ then there is no
nonzero λ̄ ∈ �0(x̄) that satisfies the following condition: There exists a sequence {xk} → x̄

with 〈
λ̄ν , Fν(x

k) − Fν(x̄)
〉
> 0 (ν ∈ Iδ(λ̄), k ∈ K). (12)

Note that in case of MPCCs, by the geometry of the feasible set and the resulting nor-
mal cones, one always has

〈
λ̄, F (x̄)

〉 = 0. Thus the conditions used in [40] simplify to〈
λ̄, F (xk)

〉
> 0 and λ̄iFi(x

k) > 0 if λ̄i �= 0, respectively. However, in the general setting of
problem (1), as well as in the case of general disjunctive constraints, we cannot make this
simplification. In order to obtain the reverse implication, however, we have to impose some
additional assumptions on the constraints of (1).

Assumption 3.7 Let δ be a multi-index and let x̄ be feasible for (1). Assume that for every
λ̄ ∈ �0(x̄) and every sequence {(yk, λk) ∈ � × R

d} → (F (x̄), λ̄) with λk ∈ N̂�(yk), there
exists a subsequence K ⊂ N such that

〈
λ̄ν , y

k
ν − Fν(x̄)

〉
≥ 0 (ν ∈ Iδ(λ̄), k ∈ K). (13)

Theorem 3.8 (Simplified PQ-normality under Ass. 3.7) Let x̄ be feasible for (1) and δ such
that Assumption 3.7 holds. Then PQ-normality w.r.t. δ at x̄ is equivalent to the following
simplified PQ-normality w.r.t. δ at x̄, i.e.

There is no nonzero λ̄ ∈ �0(x̄) such that there exists a sequence {xk} → x̄ fulfilling (12).

Proof The fact that PQ-normality implies the simplified PQ-normality follows from
Lemma 3.6.

In turn, if PQ-normality w.r.t. δ is violated, there exist λ̄ ∈ �0(x̄)\{0} and {(xk, yk, λk) ∈
R

n × � × R
d} → (x̄, F (x̄), λ̄) with λk ∈ N̂�(yk) and

〈
λ̄ν , Fν(x

k) − yk
ν

〉
> 0 for all

ν ∈ Iδ(λ̄). Relabeling {xk} by only using the indices k ∈ K and then summing up the above
expression with (13) for all k ∈ K shows that the simplified PQ-normality is then violated
as well.

As the above theorem shows, under Assumption 3.7, the simplified PQ-normality is
equivalent to PQ-normality, hence sufficient for MSCQ. Without Assumption 3.7 this is, in
general, false, see Example 3.13. In the following sections, however, we deal with various
types of optimization problems which automatically satisfy Assumption 3.7 for a suitable
multi-index, including δP and δQ, at every feasible point.

As we will now show, Theorem 3.8 also reveals an interesting connection between PQ-
normality and vector optimization. This, in turn, paves the way to a variety of sufficient
conditions for PQ-normality, hence also for MSCQ.

Let us recall some standard terminology from multiobjective optimization [20, 39].
Given ϕ : Rn → R

q , a point x̄ is called a local weak efficient solution of the unconstrained
vector optimization problem maxx∈Rn ϕ(x) if there exists a neighborhood U of x̄ such that
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no x ∈ U satisfies ϕj (x) > ϕj (x̄) for all j = 1, . . . , q. Given δ = (d1, . . . , dl) ∈ N
l and

λ = (λν)ν∈Iδ ∈ R
d1 × . . . × R

dl = R
d , we define the function

ϕλ : Rn → R
|Iδ(λ)|, ϕλ(x) := (〈λν, Fν〉 (x))ν∈Iδ(λ). (14)

Theorem 3.9 Let x̄ be feasible for (1) and let Assumption 3.7 for some δ be fulfilled. Then
PQ-normality w.r.t. δ holds at x̄ if and only if for every λ̄ ∈ �0(x̄), the vector x̄ is a local
weak efficient solution of the unconstrained vector optimization problem maxx∈Rn ϕλ̄(x) for
ϕλ̄ given by (14).

Proof If there exists λ̄ ∈ �0(x̄) such that x̄ is not a local weak efficient solution of
maxx∈Rn ϕλ̄(x), then λ̄ �= 0 and there exists {xk} → x̄ such that

〈
λ̄ν , Fν(x

k)
〉
>
〈
λ̄ν , Fν(x̄)

〉
for all ν ∈ Iδ(λ̄) and all k ∈ N. This shows that PQ-normality w.r.t. δ is violated due to
Theorem 3.8.

In turn, if PQ-normality w.r.t. δ is violated, there exists λ̄ ∈ �0(x̄) \ {0} and a sequence
{xk} → x̄ such that

〈
λ̄ν , Fν(x

k) − Fν(x̄)
〉
> 0 for all ν ∈ Iδ(λ̄) and all k ∈ N, which shows

that x̄ is not a local weak efficient solution of maxx∈Rn ϕλ̄(x).

This simple observation has some significant consequences. In particular, it allows us
to use the standard sufficient conditions for a local weak efficient solution to obtain the
following point-based sufficient condition for PQ-normality.

Corollary 3.10 (Sufficient condition for PQ-normality) Let x̄ be feasible for (1) with F

twice differentiable at x̄ and let Assumption 3.7 for some δ be fulfilled. Then PQ-normality
w.r.t. δ, in particular MSCQ, holds at x̄ under the following condition: For every λ̄ ∈ �0(x̄)\
{0}, every u ∈ R

n \ {0} with
〈
λ̄ν ,∇Fν(x̄)u

〉 = 0 for all ν ∈ Iδ(λ̄) and every w with
〈w, u〉 = 0 one has

min
ν∈Iδ(λ̄)

(〈
λ̄ν ,∇Fν(x̄)w

〉+ uT ∇2 〈λ̄ν , Fν

〉
(x̄)u
)

< 0. (15)

Proof Consider λ̄ ∈ �0(x̄) \ {0} and ϕλ̄ given by (14) and let z ∈ R
n be arbitrary. Then

∑

ν∈Iδ(λ̄)

∇ϕλ̄
ν (x̄)z =

∑

ν∈Iδ(λ̄)

〈
λ̄ν ,∇Fν(x̄)z

〉 = 〈λ̄, ∇F(x̄)z
〉 = 0, (16)

since λ̄ ∈ �0(x̄). Hence, every u with ∇ϕλ̄
ν (x̄)u ≥ 0 for all ν ∈ Iδ(λ̄) in fact ful-

fills ∇ϕλ̄
ν (x̄)u = 〈

λ̄ν ,∇Fν(x̄)u
〉 = 0 for all ν ∈ Iδ(λ̄). The result thus follows from

[11, Theorems 4] and 3.9.

Remark 3.11 Note that λ̄ ∈ �0(x̄) implies the first-order necessary conditions for local
efficient solution, minν∈Iδ(λ̄)

〈
λ̄ν ,∇Fν(x̄)w

〉 ≤ 0 for all w ∈ R
n, as can be seen from (16).

The above corollary motivates the following definition.

Definition 3.12 Given a feasible point x̄ for (1) and a multi-index δ, we say that the second-
order sufficient condition for PQ-normality w.r.t. δ, SOSCPQN(δ) for short, holds at x̄

provided: For every λ̄ ∈ �0(x̄) \ {0}, every u ∈ R
n \ {0} with

〈
λ̄ν ,∇Fν(x̄)u

〉 = 0 for all
ν ∈ Iδ(λ̄) and every w with 〈w, u〉 = 0 one has (15).
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Moreover, we refer to SOSCPQN(δP ) and SOSCPQN(δQ) as second-order sufficient
condition for pseudo-/quasi-normality (SOSCPN and SOSCQN), respectively.

Naturally, one can also consider higher-order sufficient conditions. We do so in Section 4,
where we focus on pseudo-normality. Note that pseudo-normality is connected to standard
maximality since ϕλ is a scalar function in that case.

The following example shows that SOSCPN on its own, i.e., without Assumption 3.7 for
δP , does not guarantee pseudo-normality, not even MSCQ.

Example 3.13 Consider � ⊂ R
2 given by � := {y ∈ R

2 | y2 ≥ |y1|3/2} and F :
R → R

2 defined by F(x) := (x, x2)T and let x̄ := 0. Clearly ∇F(x̄) = (1, 0)T and
�0(x̄) = R+(0,−1)T . Thus, for every λ ∈ �0(x̄) \ {0} and every u ∈ R \ {0} we
have uT ∇2 〈λ, F 〉 (x̄)u = −2αu2 < 0, where α > 0 is such that λ = (0,−α), show-
ing that SOSCPN holds at x̄. On the other hand, for a sequence {xk} → 0 we obtain
dF−1(�)(xk) = |xk|, while

d�(F (xk)) ≤
∥∥∥(xk, x

2
k ) − (xk, |xk|3/2)

∥∥∥ ≤ |xk|3/2,

showing the violation of MSCQ and consequently of pseudo-normality as well.

We point out that the set � in Example 3.13 equals epi | · |3/2 and is therefore convex, yet
SOSCPN still does not imply MSCQ.

Theorem 3.14 Let x̄ be feasible for (1) with F twice differentiable at x̄ and consider two
multi-indices δ ∈ N

l , δ′ ∈ N
l′ with δ′ ⊂ δ. Then SOSCPQN(δ) implies SOSCPQN(δ′). In

particular, we have SOSCPN ⇒ SOSCPQN(δ) ⇒ SOSCQN.

Proof Consider 0 �= λ̄ ∈ �0(x̄), 0 �= u ∈ R
n and w ∈ R

n with
〈
λ̄ν′ ,∇Fν′(x̄)u

〉 = 0
for all ν′ ∈ Iδ′(λ̄) and 〈w, u〉 = 0. For any ν ∈ Iδ(λ̄), we find some index set I ν

δ′ ⊂ Iδ′
such that zν = (zν′)ν′∈I ν

δ′ by δ′ ⊂ δ. Summing up
〈
λ̄ν′ , ∇Fν′(x̄)u

〉 = 0 over I ν
δ′ yields〈

λ̄ν , ∇Fν(x̄)u
〉 = 0. Thus, we can apply SOSCPQN(δ) in order to infer the existence of

ν̄ ∈ Iδ(λ̄) such that
∑

ν̄′∈I ν̄
δ′

(〈
λ̄ν̄′ ,∇Fν̄′(x̄)w

〉+uT ∇2 〈λ̄ν̄′ , Fν̄′
〉
(x̄)u
)

= 〈λ̄ν̄ , ∇Fν̄(x̄)w
〉+ uT ∇2 〈λ̄ν̄ , Fν̄

〉
(x̄)u < 0.

This yields, however, that SOSCPQN(δ′) is fulfilled.
The second statement now follows from the obvious relation δQ ⊂ δ ⊂ δP valid for

any δ.

The above theorem holds regardless of Assumption 3.7. If one seeks to use any of the
sufficient conditions to get metric subregularity, however, one clearly needs it, see Examples
3.13 and 3.16. Note also that if Assumption 3.7 holds for δ′, then it also holds for any δ ⊃ δ′.

The following example shows that SOSCQN is, in fact, strictly milder than SOSCPN.
Moreover, it demonstrates that one can effectively verify MSCQ by means of SOSCQN
even when pseudo-normality is not fulfilled.

Example 3.15 Let � := �1 × �2 ⊂ R
2 for two convex polyhedral sets �1 = �2 := R−

and let F := (F1, F2)
T : R → R

2 for F1(x) := −x and F2(x) := x + x2 and let x̄ := 0.
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In particular, Assumption 3.7 for δQ is fulfilled by Corollary 5.1. Clearly, ∇F1(x̄) = −1,
∇F2(x̄) = 1 and hence �0(x̄) = R+(1, 1)T .

SOSCQN is fulfilled since for any λ = (λ1, λ2) = α(1, 1)T for some α > 0 and for
u = ±1 one has |λi∇Fi(x̄)u| = α �= 0, i = 1, 2. In particular, quasi-normality and MSCQ
follows.

On the other hand, let λ̄ := (1, 1)T and consider a sequence {xk} ↓ 0. We obtain

〈
λ̄, F (xk) − F(x̄)

〉 = −xk + xk + x2
k > 0,

showing the violation of pseudo-normality.

The next example shows that, without Assumption 3.7 for δQ, the simplified form of
quasi-normality from Lemma 3.6 does not imply MSCQ even if � is a convex polyhedral
set.

Example 3.16 Let � ⊂ R
2 be convex polyhedral set given by � := {y ∈ R

2 | y2 ≥ y1}
and F : R → R

2 given by F(x) := (x, sin x)T and let x̄ := 0. Clearly ∇F(x̄) = (1, 1)T

and we find that �0(x̄) = R+(1,−1)T . For every λ = (λ1, λ2) = α(1,−1)T for some
α > 0 and every x ∈ R close to x̄ we have λ1(F1(x) − F1(x̄)) = αx < 0 if x < 0 and
λ2(F2(x) − F1(x̄)) = −α sin x ≤ 0 if x ≥ 0, showing that the simplified form of quasi-
normality holds at x̄. On the other hand, for a sequence {xk} ↓ 0 we obtain dF−1(�)(xk) =
|xk|, while

d�(F (xk)) ≤ ‖(xk, sin xk) − (xk, xk)‖ = o(|xk|),
showing the violation of MSCQ.

3.3 Simplified CQs and second-order sufficient conditions: The directional case

In this subsection, we consider the directional case, where the situation is slightly different.

Theorem 3.17 Let x̄ be feasible for (1) and consider u ∈ R
n with ‖u‖ = 1. Then under

Assumption 3.7 for δ, PQ-normality w.r.t. δ at x̄ in direction u holds if: there is no nonzero
λ̄ ∈ �0(x̄; u) such that there exists a sequence {xk} → x̄ with (xk − x̄)/

∥∥xk − x̄
∥∥ → u

fulfilling (12).

Proof The proof follows by the same arguments as used in the proof of Theorem 3.8.

In contrast to the standard case, the following example shows that the reverse implication
in the above theorem is not true in general.

Example 3.18 Consider � ⊂ R
2 given by � := {y ∈ R

2 | y2 ≤ y2
1 } and F : R → R

2

defined by F(x) := (x, x4)T and let x̄ := 0 and u := 1. Clearly ∇F(x̄) = (1, 0)T and
�0(x̄; 1) = �0(x̄) = R+(0, 1)T . Set λ̄ := (0, 1)T and note that any sequence {xk} ↓ 0
fulfills (xk − x̄)/ ‖xk − x̄‖ → u as well as (12) for δP , since

〈
λ̄, F (xk) − F(x̄)

〉 = x4
k > 0.

On the other hand, for arbitrary sequence yk = (yk
1 , yk

2 )T → F(x̄) = (0, 0)T with
N�(yk) �= {0} we have yk = (yk

1 , (yk
1 )2)T . Hence, for any λ ∈ R+(0, 1)T one has〈

λ, yk − F(x̄)
〉 = λ2(y

k
1 )2 ≥ 0, showing that Assumption 3.7 for δP is fulfilled. Moreover
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(yk
1/xk, (y

k
1 )2/xk)

T = (yk − F(x̄))/ ‖xk − x̄‖ → ∇F(x̄)u = (1, 0)T yields yk
1/xk → 1.

Then, however, we obtain
〈
λ, F (xk) − yk

〉
= λ2(x

4
k − (yk

1 )2) = λ2x
2
k (x2

k − (yk
1 )2/x2

k ) ≤ 0,

showing that pseudo-normality at x̄ in direction u is fulfilled.

Nevertheless, the previous theorem still allows us to use sufficient conditions. Con-
sider the following second-order sufficient condition for directional PQ-normality w.r.t. δ,
SOSCdirPQN(δ) for short.

Proposition 3.19 (SOSCdirPQN(δ)) Let x̄ be feasible for (1) with F twice differentiable at
x̄ and let Assumption 3.7 for some δ be fulfilled. Then directional PQ-normality w.r.t. δ, in
particular MSCQ, holds at x̄ if the following SOSCdirPQN(δ) is fulfilled: For every u ∈ R

n

with ‖u‖ = 1, every 0 �= λ̄ ∈ �0(x̄; u) with
〈
λ̄ν , ∇Fν(x̄)u

〉 = 0, for all ν ∈ Iδ(λ̄) and every
w with 〈w, u〉 = 0 condition (15) is fulfilled.

Proof Assume that directional PQ-normality w.r.t. δ is violated. Theorem 3.17 yields
the existence of u ∈ R

n, 0 �= λ̄ ∈ �0(x̄; u) and a sequence {xk} → x̄ with
(xk − x̄)/

∥∥xk − x̄
∥∥ → u such that ϕλ̄

ν (xk) − ϕλ̄
ν (x̄) > 0 for all ν ∈ Iδ(λ̄) with

ϕλ̄ as in (14). Hence, by passing to a subsequence if necessary, we can assume that
(ϕ(xk) − ϕ(x̄))/

∥∥ϕ(xk) − ϕ(x̄)
∥∥→ p with p ≥ 0 and ‖p‖ = 1, where for simplification

we dropped the upper index λ̄ from ϕ.
By Taylor expansion, we have

∥∥ϕ(xk) − ϕ(x̄)
∥∥

∥∥xk − x̄
∥∥2

ϕ(xk) − ϕ(x̄)∥∥ϕ(xk) − ϕ(x̄)
∥∥ = ∇ϕ(x̄)

(xk − x̄)∥∥xk − x̄
∥∥2

+ uT ∇2ϕ(x̄)u + o(1), (17)

where uT ∇2ϕ(x̄)u denotes the vector in R
|Iδ(λ̄)| with components uT ∇2ϕλ̄

ν (x̄)u for ν ∈
Iδ(λ̄). If there exists a subsequence K such that

∥∥ϕ(xk) − ϕ(x̄)
∥∥ /
∥∥xk − x̄

∥∥2 → ∞, we
conclude from (17) that

ϕ(xk) − ϕ(x̄)∥∥ϕ(xk) − ϕ(x̄)
∥∥ = ∇ϕ(x̄)

(xk − x̄)∥∥ϕ(xk) − ϕ(x̄)
∥∥ + qk,

where qk → 0 for k ∈ K . Passing to a subsequence if necessary, and taking into account
that ∇ϕ(x̄)(xk − x̄)/

∥∥ϕ(xk) − ϕ(x̄)
∥∥ ∈ Im(∇ϕ(x̄)) with Im(∇ϕ(x̄)) being a closed set,

we conclude that p ∈ Im(∇ϕ(x̄)), i.e., there exists z ∈ R
n with p = ∇ϕ(x̄)z =

(
〈
λ̄ν ,∇Fν(x̄)z

〉
)ν∈Iδ(λ̄). This is, however, a contradiction with ‖p‖ = 1, since we obtain that

p = 0 by p ≥ 0 and (16), which clearly holds due to λ̄ ∈ �0(x̄; u) ⊂ �0(x̄).

Consequently,
∥∥ϕ(xk) − ϕ(x̄)

∥∥ /
∥∥xk − x̄

∥∥2
remains bounded and by passing to a subse-

quence K if necessary we assume that
∥∥ϕ(xk) − ϕ(x̄)

∥∥ /
∥∥xk − x̄

∥∥2 → α ≥ 0. Note also
that in this case we get ∇ϕ(x̄)u = 0 by (17). By similar arguments as before, (17) now
yields the existence of w such that

αp = ∇ϕ(x̄)w + uT ∇2ϕ(x̄)u.

Moreover, we can clearly take w with 〈w, u〉 = 0 since R
n is the direct sum of the span

of u and its orthogonal complement and ∇ϕ(x̄)u = 0. The assumed SSOSCdirPQN(δ)
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(15) implies the existence of ν ∈ Iδ(λ̄) with αpν < 0, a contradiction. This completes the
proof.

Remark 3.20 Note that �0(x̄;u) �= ∅ includes the condition ∇F(x̄)u ∈ T�(F (x̄)).

As before, we will refer to SOSCdirPQN(δP ) and SOSCdirPQN(δQ) as second-order
sufficient condition for directional pseudo/quasi-normality (SOSCdirPN and SOSCdirQN).

The following directional counterpart of Theorem 3.14 follows by the same arguments.

Theorem 3.21 Let x̄ be feasible for (1) with F twice differentiable at x̄ and consider two
multi-indices δ ∈ N

l , δ′ ∈ N
l′ with δ′ ⊂ δ. Then SOSCdirPQN(δ) implies SOSCdirPQN(δ′).

In particular, we have SOSCdirPN ⇒ SOSCdirPQN(δ) ⇒ SOSCdirQN.

We point out here that, unlike in the non-directional case, we could not find an example
to show that the above implications can be indeed strict, so this remains an open question.

3.4 Summary

We now summarize our findings of this section. We studied the directional versions of
pseudo- and quasi-normality, first established in the paper by Bai et al. [3]. In addition,
we introduced the new concept of PQ-normality, together with its directional counterpart,
that unifies the two standard CQs. As a result, we obtained novel and improved results for
the metric subregularity constraint qualification and we established interesting connections
among the well-known CQs and the new ones.

In the following diagram (Fig. 1), we summarize the relations between the various
constraint qualifications weaker than GMFCQ that imply MSCQ.

The point-based conditions are naturally of primary interest and are hence emphasized in
double-framed boxes. Note that pseudo- and quasi-normality are included as special cases
of PQ-normality for δP and δQ.

Fig. 1 Constraint qualifications for GMP (1)
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4 Programs with Disjunctive Constraints

In this section we study a special case of problem (1) in which the set � is disjunctive, that
is it can be written as a union of finitely many convex polyhedra, i.e.,

� =
N⋃

�=1

�� with �� ⊂ R
d convex polyhedral, (18)

where we refer the reader to Section 4.1 for a definition of convex polyhedral sets. Subse-
quently, we call problem (1) with � disjunctive (in the sense of (18)) as a (mathematical)
program with disjunctive constraints or simply a disjunctive program.

Disjunctive programs have been systematically studied for decades, see, e.g., [53] and
the references therein. For more recent works on disjunctive programs, which are also more
related to our approach, we refer to the papers [5, 22, 25, 45] and the thesis [6].

The most prominent examples of disjunctive programs are the aforementioned classes
of MPCCs, MPVCs, as well as mathematical programs with relaxed cardinality constraints
(MPrCCs), mathematical programs with relaxed probabilistic constraints (MPrPCs), and
the recently introduced mathematical programs with switching constraints (MPSCs).

For the mathematical background and several applications we refer the reader to the text-
books [44, 48] for MPCCs as well as to the book [17] on the closely related class of bilevel
programs. As for MPVCs we refer to the paper [1] and the thesis [35] and the references
therein. For relaxed cardinality constrained problems we point to the papers [12, 15]. For
MPrPCs see [2], and for MPSCs see [46].

Dropping standard constraints for brevity, all of these programs exhibit the general form

min
x∈Rn

f (x) s.t. (Gi(x),Hi(x)) ∈ �̃ (i ∈ V ), (19)

where f,Gi,Hi : R → R are continuously differentiable, V is a finite index set and �̃ is
given by

(a) (complementarity constraints)

�̃ := �CC := {(a, b) | ab = 0, a, b ≥ 0 } = (R+ × {0}) ∪ ({0} × R+);
(b) (vanishing constraints)

�̃ := �VC := {(a, b) | ab ≤ 0, b ≥ 0 } = (R− × R+) ∪ (R+ × {0});
(c) (relaxed cardinality constraints)

�̃ := �rCC := {(a, b) | ab = 0, b ∈ [0, 1] } = (R × {0}) ∪ ({0} × [0, 1]);
(d) (relaxed probabilistic constraints)

�̃ := �rPC := {(a, b) | ab ≤ 0, b ∈ [0, 1] } = (R− × [0, 1]) ∪ (R+ × {0});
(e) (switching constraints)

�̃ := �SC := {(a, b) | ab = 0 } = (R × {0}) ∪ ({0} × R).

Clearly, �CC, �VC, �rCC, �rPC and �SC are disjunctive, rendering the resulting optimization
problem a disjunctive program. We point out that there is generally not a unique way to
write the disjunctive sets in (a)-(e) as a union of convex polyhedral sets. For instance, �VC
can be alternatively written as �VC = (R− × R+) ∪ (R × {0}).

The main finding of this section is to show that the crucial Assumption 3.7 is auto-
matically fulfilled for disjunctive programs. In addition, we also prove that directional
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pseudo-normality does not only imply, but is, in fact, equivalent to its simplified form from
Theorem 3.17, which suggests that our sufficient conditions are not too restrictive. Recall
that Example 3.18 shows that, in general, the simplified form is strictly stronger. For these
purposes, we commence our study with a preliminary section on the variational geometry
of convex polyhedral sets and how these extend to a more general setting.

4.1 Key Properties of Convex Polyhedral Sets

Recall that a set is said to be convex polyhedral (or a convex polyhedron) if it is the inter-
section of finitely many closed half-spaces. In particular, for a convex polyhedron P ⊂ R

s

there exist p ∈ N and aj ∈ R
s , βj ∈ R (j = 1, . . . , p) such that

P = {y ∣∣ 〈aj , y
〉 ≤ βj (j = 1, . . . , p)

}
.

Clearly, every convex polyhedron is closed. Due to convexity of P , the regular and limiting
normal cone to P coincide with the classical normal cone of convex analysis, see (3). Given
y ∈ P , we have

NP (y) =
⎧⎨
⎩
∑

j∈J (y)

λj aj

∣∣ λj ≥ 0

⎫⎬
⎭ ,

where J (y) := {j ∈ {1, . . . , p} ∣∣ 〈aj , y
〉 = βj

}
, i.e., the normal cone of P at y is the convex

cone generated by
{
aj | j ∈ J (y)

}
, see e.g. [34, p. 67]. Therefore, there is only a finite

number of different normal cones induced by a convex polyhedral set, in fact, this number
is bounded by 2p (as there can be at most 2p active sets in {1, . . . , p}).

We will make use of two essential properties of convex polyhedra. The first one is the
well-known exactness of tangent approximation, see [51, Exercise 6.47]: Given a convex
polyhedron P , for any ȳ ∈ P there exists a neighborhood U of ȳ such that

P ∩ U = (ȳ + TP (ȳ)
) ∩ U . (20)

In particular, taking into account [51, Exercise 6.44], one has

NP (ȳ) = NTP (ȳ)(0).

The second property is closely related to Assumption 3.7 as stated in the following lemma.

Lemma 4.1 Let P ⊂ R
s be closed and convex, let {yk ∈ P } → ȳ and {λk ∈ NP (yk)} → λ̄.

Then there exists a subsequence K ⊂ N such that the following hold:

(i) We have
〈
λ̄, yk − ȳ

〉 ≤ 0 for all k ∈ K;
(ii) Moreover, if P is polyhedral then

〈
λ̄, yk − ȳ

〉 = 0 for all k ∈ K .

Proof (i) Taking the limit in λk ∈ NP (yk) yields λ̄ ∈ NP (ȳ). In particular, as yk ∈ P we
get
〈
λ̄, yk − ȳ

〉 ≤ 0 (k ∈ N).
(ii) Recall from the discussion above, that for a convex polyhedral set there are only

finitely many different normal cones. Hence, there exists a subsequence K ⊂ N such that
NP (yk) ≡ N for all k ∈ K and some closed convex cone N . Consequently, from λk ∈
NP (yk) we obtain λ̄ ∈ N = NP (yk) and hence

〈
λ̄, yk − ȳ

〉 ≥ 0 due to convexity of P and
ȳ ∈ P .

The above lemma immediately yields that Assumption 3.7 for the multi-index δP := d

is fulfilled at every feasible point for program (1) with convex polyhedral �, regardless of
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the constraint mapping F . However, since we are not primarily interested in this convex
polyhedral setting, we now state the desirable properties from (20) and Lemma 4.1 (ii) in a
general form.

To this end, given an arbitrary closed set C ⊂ R
d and ȳ ∈ C, consider the following

condition:

∃ U(ȳ) : C ∩ U(ȳ) = (ȳ + TC(ȳ)
) ∩ U(ȳ), (P1)

where U(ȳ) denotes a neighborhood of ȳ. Moreover, given also a multi-index δ ∈ N
l with

|δ| = d and λ̄ ∈ R
d , consider the condition:

∀{yk ∈ C} → ȳ, {λk ∈ N̂C(yk)} → λ̄, ∃ K ⊂ N :
〈
λ̄ν , y

k
ν − ȳν

〉
= 0 (ν ∈ Iδ, k ∈ K),

(P2)
where K is a subsequence of N. Note that (P2) is automatically fulfilled if λ̄ /∈ NC(ȳ). We
will repeatedly refer to these conditions in the subsequent study and hence we formulated
it for an arbitrary multi-index δ. Clearly, if x̄ is feasible for (1) and � satisfies (P2) for δ,
ȳ = F(x̄) and every multiplier λ̄ ∈ N�(F(x̄)), then Assumption 3.7 for δ is fulfilled at x̄.

Motivated by the disjunctive setting in (18), for the remainder of our study we deal with
sets generated by unions and, in addition, Cartesian products of convex polyhedra (see the
product setting in Section 5). Hence, we now examine properties (P1) and (P2) under these
set operations on convex polyhedra.

Consider first a collection of closed sets Ci ⊂ R
d for i = 1, . . . , q and set C :=⋃q

i=1 Ci . We start with some elementary observations about tangent and normal cones. To
this end, for y ∈ C, let us denote I(y) := {i ∈ {1, . . . , q} ∣∣ y ∈ Ci

}
and observe that, by

the definition of the tangent cone, we have

TC(y) =
⋃

i∈I(y)

TCi (y), (21)

hence, by polarization

N̂C(y) =
⋂

i∈I(y)

N̂Ci (y). (22)

This yields the following elementary estimate

NC(y) ⊂
⋃

i∈I(y)

NCi (y), (23)

which can be derived, e.g., from the more general result [7, Proposition 3.1].
On the other hand, consider now C = ∏r

i=1 Ci , where Ci ⊂ R
di is closed for i =

1, . . . , r and let y = (y1, . . . , yr ) ∈ C. By [51, Proposition 6.41], we have

N̂C(y) =
r∏

i=1

N̂Ci
(yi) and NC(y) =

r∏
i=1

NCi
(yi). (24)

Note that for the tangent cones, [51, Proposition 6.41] in general yields only the inclusion
TC(y) ⊂∏r

i=1 TCi
(yi). It can be easily seen, however, that

TC(y) =
r∏

i=1

TCi
(yi) (25)

holds, provided Ci satisfies (P1) at ȳi for all i = 1, . . . , r . Indeed, for v = (vi) ∈∏r
i=1 TCi

(yi) we readily obtain from (P1) for every i = 1, . . . , r the existence of αi > 0
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such that yi + αvi ∈ Ci holds for all α ≤ αi . Taking ᾱ := min αi yields y + αv ∈ C for all
α ≤ ᾱ and v ∈ TC(y) follows.

Next we show that conditions (P1) and (P2) are preserved under unions and products,
provided the obvious adjustments of multi-index, point and multiplier are made if needed.

Proposition 4.2 Let C =⋃q

i=1 Ci with Ci ⊂ R
d (i = 1, . . . , q) closed and let ȳ ∈ C.

(i) If Ci satisfies (P1) at ȳ for all i ∈ I(ȳ), then C also satisfies (P1) at ȳ.
(ii) If Ci satisfies (P2) for some multi-index δ, the point ȳ and some λ̄ for all i ∈ I(ȳ),

then C also satisfies (P2) for δ, ȳ and λ̄.

Proof Denoting Ui(ȳ) for i ∈ I(ȳ) the neighborhoods given by the assumption (i) and tak-
ing into account (21), the first statement follows easily by setting U(ȳ) :=⋂i∈I(ȳ) U i(ȳ)∩
Ũ (ȳ), where Ũ (ȳ) is a neighborhood of ȳ such that C∩Ũ (ȳ) =⋃i∈I(ȳ) Ci ∩Ũ (ȳ). Clearly,

the existence of Ũ (ȳ) is guaranteed by the closedness of Ci (i /∈ I(ȳ)).
In order to prove (ii), consider sequences {yk ∈ C} → ȳ and {λk ∈ N̂C(yk)} → λ̄. From

(22), closedness of Ci and finiteness of I(ȳ) one easily obtains the existence of j ∈ I(ȳ)

and a subsequence K̃ ⊂ N such that

λk ∈ N̂Cj (yk) (k ∈ K̃).

The assumption now yields the existence of a subsequence K ⊂ K̃ such that
〈
λ̄ν , y

k
ν − ȳν

〉 =
0 for ν ∈ Iδ and k ∈ K .

Recall that if λ̄ /∈ NCi (ȳ) for some i ∈ I(ȳ), then Ci automatically satisfies (P2).

Proposition 4.3 Let C = ∏r
i=1 Ci with Ci ⊂ R

di (i = 1, . . . , r) closed and ȳ =
(ȳ1, . . . , ȳr ) ∈ C.

(i) If Ci satisfies (P1) at ȳi for all i = 1, . . . , r , then C satisfies (P1) at ȳ.
(ii) If Ci satisfies (P2) for multi-index δi with |δi | = di , the point ȳi and λ̄i for all i =

1, . . . , r , then C satisfies (P2) for δ = (δ1, . . . , δr ), ȳ and λ̄ = (λ̄1, . . . , λ̄r ).

Proof Denoting by Ui(ȳi) (i = 1, . . . , r) the neighborhoods given by the assumption in (i),
the first statement follows by simply setting U(ȳ) :=∏r

i=1 Ui(ȳi) and applying (25).
In order to prove (ii), consider sequences {yk ∈ C} → ȳ and {λk ∈ N̂C(yk)} → λ̄. By

(24), we have λk
i ∈ N̂Ci

(yk
i ) for every i = 1, . . . , r and k ∈ N. By assumption, there exists

a subsequence K1 ⊂ N with
〈
λ̄1,ν1 , y

k
1,ν1

− ȳ1,ν1

〉
= 0 (ν1 ∈ Iδ1 , k ∈ K1). Consequently,

by assumption, there exists a subsequence K2 ⊂ K1 such that
〈
λ̄2,ν2 , y

k
2,ν2

− ȳ2,ν2

〉
= 0

(ν2 ∈ Iδ2 , k ∈ K2). Repeating this argument another r − 2 times, we find that there exists

a subsequence K(= Kr) such that
〈
λ̄i,νi

, yk
i,νi

− ȳi,νi

〉
= 0 (νi ∈ Iδi

, k ∈ K) for all i =
1, . . . , r . This proves the statement.

We conclude this subsection by showing that the program (1), with � satisfying proper-
ties (P1) and (P2), automatically satisfies the crucial Assumption 3.7, and in addition, that
directional PQ-normality is equivalent to its simplified counterpart in this case. We point
out that this result is the very foundation for all remaining results of the paper.
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Proposition 4.4 Let x̄ be feasible for (1) with � closed and satisfying (P1) at ȳ = F(x̄) as
well as (P2) for some multi-index δ, the point ȳ = F(x̄) and every multiplier λ̄ ∈ N�(F(x̄)).
Then Assumption 3.7 for δ is fulfilled at x̄ and, moreover, (directional) PQ-normality w.r.t.
δ at x̄ is equivalent to its simplified form (12) from Theorem 3.8 (Theorem 3.17).

Proof Assumption 3.7 for δ at x̄ ∈ X follows from (P2) for � with δ at ȳ = F(x̄) ∈ �.
Hence, the statement for the nondirectional version follows from Theorem 3.8. Similarly,
the implication from the directional simplified form to directional PQ-normality follows
from Theorem 3.17.

It remains to show that PQ-normality w.r.t. δ in direction u implies its simplified form.
We do this by contraposition, so let us assume that there exists λ̄ ∈ �0(x̄; u) \ {0} and
{xk} → x̄ such that (xk − x̄)/

∥∥xk − x̄
∥∥→ u and

〈
λ̄ν , Fν(x

k) − Fν(x̄)
〉
> 0 for ν ∈ Iδ(λ̄), (k ∈ N).

By the definition of the directional normal cone, there exists {tk} ↓ 0 and {wk} → ∇F(x̄)u

as well as {λk ∈ N̂�(F (x̄) + tkw
k)} → λ̄. Taking into account (P1) together with [51,

Exercise 6.44] we obtain

λk ∈ N̂�(F (x̄) + tkw
k) = N̂F(x̄)+T�(F (x̄))(F (x̄) + tkw

k) ⊂ N̂T�(F (x̄))(tkw
k)

= N̂T�(F (x̄))(αwk) = N̂�−F(x̄)(F (x̄) + αwk − F(x̄)) ⊂ N̂�(F (x̄) + αwk)

for any α > 0 sufficiently small. Hence by setting yk := F(x̄) + ∥∥xk − x̄
∥∥wk we conclude

λk ∈ N̂�(yk). Moreover, (P2) for δ yields that, by passing to a subsequence if necessary,
we may take yk such that

〈
λ̄ν , y

k
ν − Fν(x̄)

〉 = 0, for all ν ∈ Iδ and k ∈ N. Consequently, we
obtain 〈

λ̄ν , Fν(x
k) − yk

ν

〉
=
〈
λ̄ν , Fν(x

k) − Fν(x̄)
〉
> 0.

Finally, (yk − F(x̄))/
∥∥xk − x̄

∥∥ = wk → ∇F(x̄)u, showing the violation of PQ-normality
w.r.t. δ in direction u and the proof is complete.

4.2 Pseudo-normality for Disjunctive Programs

The desired results for the disjunctive setting (18) can be viewed as a corollary of our anal-
ysis in Section 4.1. Indeed, Lemma 4.1 and Proposition 4.2 yield that a disjunctive set �

satisfies properties (P1) and (P2) for the multi-index δP := d .
In particular, due to (P1), the endeavor of computing the normal cone to disjunctive �

at some point can be reduced to computing the normal cone to a union of finitely many
polyhedral cones at zero, i.e.,

N�(ȳ) = N⋃N
�=1 T

�� (ȳ)
(0) = NT�(ȳ)(0),

see [33, p. 59].
More importantly, the following corollary is a consequence of Proposition 4.4.

Corollary 4.5 Let � be disjunctive in the sense of (18). Then � satisfies (P1) at every
point ȳ ∈ � as well as (P2) for the multi-index δP := d at every point ȳ and every λ̄.
In particular, Assumption 3.7 for δP is fulfilled at every feasible point x̄ for disjunctive
programs. Moreover, (directional) pseudo-normality at x̄ is equivalent to its simplified form:
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(for any u ∈ R
n with ‖u‖ = 1) there is no nonzero λ̄ ∈ �0(x̄) (λ̄ ∈ �0(x̄; u)) such that

there exists a sequence {xk} → x̄ (with (xk − x̄)/
∥∥xk − x̄

∥∥→ u) fulfilling
〈
λ̄, F (xk) − F(x̄)

〉
> 0 (k ∈ N). (26)

We emphasize that Corollary 4.5 clarifies that the various definitions of pseudo-
normality used in the literature stem from the same concept. In the general setting
(1), pseudo-normality contains the additional sequence {yk}, but in the special cases of
disjunctive programs it reduces to the simplified version without {yk}.

Corollary 4.5 also allows us to use all the sufficient conditions for pseudo-normality,
hence also for MSCQ, studied in Section 3. These conditions now take on simpler forms
since the vector optimization techniques reduce to standard optimization in the disjunctive
setting. This can be seen from (26), which yields that pseudo-normality of x̄ is equivalent to
x̄ being a local maximizer of

〈
λ̄, F (x)

〉
for all λ̄ ∈ �0(x̄), cf. Theorem 3.9. In particular, the

second-order sufficient conditions from Corollary 3.10 and Proposition 3.19read as follows.

Corollary 4.6 Let x̄ be feasible for (1) with � disjunctive and F twice differentiable at x̄.
Consider the following two conditions:

(i) second-order sufficient condition for pseudo-normality (SOSCPN): For every 0 �=
λ̄ ∈ �0(x̄) and every 0 �= u ∈ R

n one has

uT ∇2 〈λ̄, F
〉
(x̄)u < 0; (27)

(ii) second-order sufficient condition for directional pseudo-normality (SOSCdirPN): For
every u ∈ R

n with ‖u‖ = 1 and every 0 �= λ̄ ∈ �0(x̄; u) one has (27).

Then condition (i) (condition (ii)) implies (directional) pseudo-normality at x̄. In particular,
either of the two conditions implies MSCQ at x̄.

Clearly, an affine F can never fulfill the strict inequality of SOSCPN. The required
maximality of x̄ expressed in (26) can be secured nonetheless.

Corollary 4.7 Let x̄ be feasible for (1) with � disjunctive. If F is affine then pseudo-
normality, and consequently also MSCQ, holds at x̄.

Proof For F affine we have F(x) = F(x̄) + ∇F(x̄)(x − x̄) for all x ∈ R
n. Hence, taking

into account λ̄ ∈ �0(x̄) we find that
〈
λ̄, F (x) − F(x̄)

〉 =
〈
∇F(x̄)T λ̄, x − x̄

〉
= 0,

showing that x̄ is a local maximizer of
〈
λ̄, F
〉

and pseudo-normality thus follows.

We point out that the sufficiency of SOSCdirPN for MSCQ established in Corollary
4.6 corresponds to the sufficiency of Gfrerer’s SOSCMS for MSCQ (Proposition 2.7 (iii)).
In turn, Corollary 4.7 corresponds to Robinson’s result (Proposition 2.7 (iv)). Hence, by
employing the notion of (directional) pseudo-normality and its sufficiency for MSCQ, we
found new proofs for these interesting results. Moreover, the notion of directional quasi-
normality unifies all sufficient conditions for MSCQ from Proposition 2.7.

Note that the analogous results were obtained also in [3, Theorem 4.1., Proposition 4.2.].
What was not noticed there, however, is the underlying maximality principle (26), which



Sufficient Conditions for Metric Subregularity of Constraint Systems...

provides a nice understanding and makes things much simpler. In particular, it enables us to
extend the above results by means of higher-order analysis.

4.3 Higher-order Conditions

In order to proceed, we rely once more on the notion of multi-indices. First, we introduce
the following standard notation: Given α = (α1, . . . , αn) ∈ N

n and x = (x1, . . . , xn) ∈ R
n

we set

|α| := α1 + . . . + αn, α! := α1! . . . αn!, xα = x
α1
1 . . . xαn

n .

Given a function g : Rn → R, m-times differentiable at x̄, and α ∈ N
n with |α| ≤ m we set

Dαg(x̄) = ∂ |α|g(x̄)

∂x
α1
1 . . . ∂x

αn
n

.

Corollary 4.8 Let x̄ be feasible for a disjunctive program with F m-times differentiable at
x̄. Consider the following two conditions:

(i) for every 0 �= λ̄ ∈ �0(x̄), 1 ≤ q < m, w ∈ R
n and all 0 �= u ∈ R

n one has

∑
|α|=q

Dα
〈
λ̄, F
〉
(x̄)

α! wα ≤ 0 and
∑

|α|=m

Dα
〈
λ̄, F
〉
(x̄)

α! uα < 0; (28)

(ii) for every u ∈ R
n with ‖u‖ = 1, 0 �= λ̄ ∈ �0(x̄; u), 1 ≤ q < m and all w ∈ U , where

U denotes a neighbourhood of u, one has (28).

Then condition (i) (condition (ii)) implies (directional) pseudo-normality at x̄. In particular,
either of the two conditions implies MSCQ at x̄.

Proof Both statements follows from the same arguments, namely, given 0 �= λ̄ ∈ �0(x̄)

and 1 ≤ q < m and setting uk := (xk − x̄)/
∥∥xk − x̄

∥∥, Taylor expansion together with (28)
yield

〈
λ̄, F (xk) − F(x̄)

〉
=

∑
1≤|α|≤m

Dα
〈
λ̄, F
〉
(x̄)

α! (xk − x̄)α + o(

∥∥∥xk − x̄

∥∥∥
m

)

≤
∥∥∥xk − x̄

∥∥∥
m ( ∑

|α|=m

Dα
〈
λ̄, F
〉
(x̄)

α! uα
k + o(1)

)
< 0.

Similarly as in the case of affine F , the strict inequality of the above higher-order suffi-
cient conditions does not have to be fulfilled, as long as F has polynomial structure, i.e., for
every i = 1, . . . , d, and every x, we have

Fi(x) =
∑

|α|≤m

ci,αxα (29)

for some m ∈ N, denoting the degree of F , and ci,α ∈ R. We point out that one actually has
ci,α = DαFi(0)/α! and (29) can be equivalently rewritten as

Fi(x) =
∑

|α|≤m

DαFi(x̄)

α! (x − x̄)α (30)

for arbitrary x̄ ∈ R
n.
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Corollary 4.9 Let x̄ be feasible for a disjunctive program with F being polynomial of
degree m, i.e., given by (29). Consider the following two conditions:

(i) for every 0 �= λ̄ ∈ �0(x̄), 1 ≤ q ≤ m, and for all w ∈ R
n one has

∑
|α|=q

Dα
〈
λ̄, F
〉
(x̄)

α! wα ≤ 0; (31)

(ii) for every u ∈ R
n with ‖u‖ = 1, 0 �= λ̄ ∈ �0(x̄; u), 1 ≤ q < m and all w ∈ U , where

U denotes a neighbourhood of u, one has (31).

Then condition (i) (condition (ii)) implies (directional) pseudo-normality at x̄. In particular,
either of the two conditions implies MSCQ at x̄.

Proof Denoting cα := (c1,α, . . . , cd,α) and taking into account (30), for any λ̄ �= 0, one has

〈
λ̄, F (x)

〉 =
∑

|α|≤m

〈
λ̄, cα

〉
xα =

∑
|α|≤m

Dα
〈
λ̄, F
〉
(x̄)

α! (x − x̄)α

for every x. Hence, given 0 �= λ̄ ∈ �0(x̄) and 1 ≤ q ≤ m, both statements follows from
(31) since

〈
λ̄, F (x) − F(x̄)

〉 =
∑

1≤|α|≤m

Dα
〈
λ̄, F
〉
(x̄)

α! (x − x̄)α ≤ 0.

Of course the above higher-order conditions are sufficient for pseudo-normality and
MSCQ also for general programs (1) fulfilling Assumption 3.7 for δP .

4.4 Summary and Example for the Disjunctive Case

For the sake of completeness, we summarize the sufficient conditions for pseudo-normality
and MSCQ in the disjunctive setting in the following theorem.

Theorem 4.10 (Sufficient conditions for pseudo-normality and MSCQ) Consider (1) with
� disjunctive in the sense of (18) and a feasible point x̄. Then any of the conditions from
Corollaries 4.5, 4.6, 4.7, 4.8 and 4.9 implies (directional) pseudo-normality and MSCQ
at x̄.

The following parametric example demonstrates the usefulness of our conditions based
on pseudo-normality.

Example 4.11 Let � ⊂ R
3 be given by � := R × {y ∈ R

2 | y2 ≤ −|y1|}, F : R2 → R
3

defined by F(x) := (x1, x2, ax2
1 + bx4

1 + cx2
2 + dx4

2)T for some parameters a, b, c, d ∈ R

and let x̄ := (0, 0). Clearly,

∇F(x̄) =
(

1 0 0
0 1 0

)T

, ∇2 〈λ, F 〉 (x̄) = 2λ3

(
a 0
0 c

)
,

and for any λ = (λ1, λ2, λ3) ∈ �0(x̄) = �0(x̄; (±1, 0)T ) = R+(0, 0, 1)T . Note
also that �0(x̄; u) = ∅ for all directions u �= (±1, 0)T with ‖u‖ = 1 since
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T�(F (x̄)) = � and ∇F(x̄)u = (u1, u2, 0)T . Moreover, observe that X = F−1(�) ={
x ∈ R

2
∣∣ ax2

1 + bx4
1 + cx2

2 + dx4
2 ≤ −|x2|

}
.

The most crucial parameter is a. Indeed, if a > 0, then locally around x̄ = 0, the set X
is the singleton {0}, and thus it can be seen that sequence {xk := (1/k, 0)T } shows violation
of MSCQ. On the other hand, if a < 0, MSCQ holds and can be verified by SOSCMS.
Hence, suppose now that a = 0.

Next, let us look into parameter b. If b > 0, {xk := (1/k, 0)T } again shows violation
of MSCQ regardless of other parameters. Note that if b ≤ 0 < c, the sequence {x̃k :=
(1/k2, 1/k3)T } satisfies x̃k/ ‖x̃k‖ → (1, 0)T =: ū, but for λ̄ := (0, 0, 1)T ∈ �0(x̄; ū) we
get 〈

λ̄, F (x̃k) − F(x̄)
〉
= b/(k8) + c/(k6) + d/(k12) > 0

for sufficiently large k, showing violation of pseudo-normality in direction ū, hence we
cannot use any of the stronger conditions to verify MSCQ. Clearly, a similar problem occurs
if b = c = 0 < d .

We conjecture that MSCQ holds in this case, but as the direct proof appears fairly tech-
nical and since for our purposes it is more interesting to see the limitations of sufficient
conditions in this case (rather than determine if MSCQ holds), we skip the details for b < 0
and only prove MSCQ in the simpler case b = 0 below.

Let us mention, however, that if b < 0 ≥ c, we may use the directional version of the
fourth-order sufficient condition based on Corollary 4.8 (ii) to verify MSCQ, even if d > 0.

Next, we prove that MSCQ holds if b = 0, regardless of parameters c and d . Since the
feasible set X , locally around x̄ = (0, 0), equals R × {0}, we get dX (x) = |x2| for any
x ∈ R

2 close enough to x̄. On the other hand, for y, ỹ ∈ R
3 with y2 = ỹ2 and y3 ≤ ỹ3

we clearly have d�(y) ≤ d�(ỹ). Given ε ∈ (0, 1), let x be sufficiently close to 0 so that
−ε|x2| ≤ cx2

2 + dx4
2 . One computes that

d�(x1, x2,−ε|x2|) = 1 − ε√
2

|x2|.

Thus, setting κ :=
√

2
1−ε

yields

dX (x) = |x2| = κd�(x1, x2,−ε|x2|) ≤ κd�(F (x))

for all x ∈ R
2 close enough to x̄, and hence MSCQ follows.

In order to better illustrate the results of this example, in Table 1 corresponding to a =
0 > b and a = 0 = b, respectively, we provide sufficient conditions ensuring MSCQ
for given parameters. Recall from above that, for c > 0 and b ≤ 0, pseudo-normality-
based conditions are not applicable, and thus we restrict ourselves to the case c ≤ 0. As
mentioned above, the case a = 0 > b can be handled by the directional fourth-order
sufficient condition while for the case a = 0 = b we provided the direct proof. We point out,
however, that in both cases, unless c = 0 < d , one can use also other sufficient conditions as
indicated in the table. In particular, one can see the meaning of parameter d , which does not
seem to influence the validity of MSCQ, but it influences which sufficient conditions can
be invoked to verify it. Note also that if a < 0, depending on other parameters, conditions
other that SOSCMS can be used as well. Nevertheless, the only condition that can never be
used in case a = 0 is SOSCPN, which is applicable if a, c < 0. Hence, we further detail
only the case a = 0.

To illustrate the difference between directional and non-directional approach, observe
that the mildest non-directional sufficient condition for MSCQ, pseudo-normality, charac-
terized by the maximality condition (26), is satisfied if and only if a, c ≤ 0 and a < 0
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Table 1 Polyn. 4th-OSC and Polyn. 2nd -OSC refer to the sufficient condition for polynomial F of fourth- and
second-order, respectively (Corollary 4.9 (i)), (Dir.) 4th-OSC stands for (the directional version of) the fourth-
order sufficient condition based on Corollary 4.8, Robinson SC refers to Robinson’s result (Proposition 2.7
(iv)), and Def. means the direct proof from definition

c = 0 c < 0

(A) a = 0 > b

d = 0 Polyn. 4th-OSC Polyn. 4th-OSC

d > 0 Dir. 4th-OSC Pseudo-normality

d < 0 4th-OSC 4th-OSC

(B) a = 0 = b

d = 0 Robinson SC Polyn. 2nd -OSC

d > 0 Def. Pseudo-normality

d < 0 Polyn. 4th-OSC Polyn. 4th-OSC

We excluded the case c > 0 since validity of MSCQ either remains undetermined (b < 0) or was proven
directly (b = 0)

provided b > 0 and c < 0 if d > 0. On the other hand, on top of the above situations,
directional pseudo-normality can be applied whenever a < 0 or also in case a = 0 > b and
c ≤ 0.

The power of our new sufficient conditions is nicely demonstrated for a = 0, when
Gfrerer’s SOSCMS can never be used. Similarly, Robinson’s result can not be applied unless
all the parameters are zero.

5 Disjunctive Programs with Product Structures

The simplified form of quasi-normality is not sufficient for metric subregularity even in
case the set � under consideration is a general convex polyhedral set, see Example 3.16. On
the other hand, we realize that the set �̃ in all cases (19) (a)-(e) is a union of products of
closed intervals. This additional product structure motivates our study of ortho-disjunctive
programs in Section 5.1, which enables us to recover and extend several known quasi-
normality results for MPCCs and MPVCs and obtain new corresponding results for MPSCs,
MPrCCs and MPrPCs.

In order to clarify the role of product structures in a broader context, consider first an
instance of GMP (1), where

� =
∏
ν∈Iδ

�ν, �ν =
Nν⋃
�=1

��
ν, ��

ν convex polyhedral, (32)

for some multi-index δ ∈ N
l with l ∈ {1, . . . , d} and |δ| = d , i.e., � is the Cartesian

product of disjunctive sets. Note that all the prototypical disjunctive programs from (19)
(a)-(e) exhibit such “outer” product structure.

We emphasize that � given by (32) is still a disjunctive set in the sense of (18). Indeed,

denoting J :=∏ν∈Iδ
{1, . . . , Nν}, for �� ∈ J the set �

�� :=∏ν∈Iδ
�

�ν
ν is convex polyhedral

and � = ⋃��∈J �
��. Regardless, it turns out to be advantageous to exploit the underlying

product structure of � rather than just treating � as a disjunctive set. One of the reasons is
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that we deal with the unions of only Nν sets, which is typically a small number (Nν = 2 for
all ν in all cases (19) (a)-(e)), instead of dealing with the union of |J | =∏ν∈Iδ

Nν sets. We
point out that the newly developed concept of Q-stationarity from [4, 5] takes advantage of
this observation.

On the basis of Propositions 4.2 and 4.3 we readily infer that, on top of property (P1),
� given by (32) satisfies also (P2) for multi-index δ. Proposition 4.4 thus yields that in this
case the (directional) PQ-normality w.r.t. δ coincides with its simplified form. In particular,
standard NLPs, where � = {0}r × R

d−r− for some r ≤ d , fit into (32) with the multi-index
δQ := (1, . . . , 1) ∈ N

d and hence we can readily handle quasi-normality for NLPs with
ease.

Utilizing the “outer” product structure on its own, however, does not enable one to
analyze the quasi-normality for programs from (19) (a)-(e), where the factors �ν = �̃

are two-dimensional. To overcome this, consider the GMP (1) with the “inner” product
structure, i.e., where

� =
N⋃

�=1

��, �� =
∏
μ∈Iδ

��
μ, ��

μ convex polyhedral, (33)

for some multi-index δ ∈ N
l .

By the same arguments as before, � again satisfies (P2) for δ and PQ-normality w.r.t.
δ attains the simplified form. Moreover, the choice of multi-index δQ := (1, . . . , 1) ∈ N

d

now offers richer setting.

5.1 Ortho-disjunctive Constraints and Quasi-Normality

Motivated by the above discussion, we now introduce the new subclass of disjunctive pro-
grams containing the “inner” product structure with one-dimensional factors. To this end,
consider the mathematical program of the form

min
x∈Rn

f (x) s.t. F(x) ∈ � =
N⋃

�=1

��, �� =
∏
i∈I

[a�
i , b

�
i ], (34)

where I = {1, . . . , d}, a�
i , b

�
i ∈ R with a�

i ≤ b�
i and we also allow symbols a�

i = −∞ and
b�
i = +∞ to include unbounded intervals. Note that we do not work with extended real

numbers, i.e., given a ∈ R, [a, ∞] stands for {x ∈ R | x ≥ a}. This simply means that ��

is a product of closed convex subsets of R, i.e., closed intervals. We refer to such sets � as
ortho-disjunctive and to such programs as mathematical programs with ortho-disjunctive
constraints or briefly ortho-disjunctive programs.

Naturally, one can combine the “inner” and “outer” products and consider the Cartesian
product of ortho-disjunctive sets, a setting that indeed fits the problem class (19) best. As
before, it can be easily shown that such sets are still ortho-disjunctive. Moreover, only the
“inner” products are important for our remaining analysis. Hence, we proceed without the
“outer” product, which is also more consistent with the notion of disjunctive sets.

On the basis of Propositions 4.2, 4.3 and 4.4 we obtain the following analogon of
Corollary 4.5.

Corollary 5.1 Set � given by (34) satisfies (P1) at every point ȳ ∈ � as well as (P2)
for multi-index δQ := (1, . . . , 1) ∈ N

d at every ȳ and every λ̄. In particular, for ortho-
disjunctive program (34), Assumption 3.7 for δQ is fulfilled at every feasible point x̄ and,
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moreover, the (directional) quasi-normality at x̄ is equivalent to its simplified form: (for
any u ∈ R

n \ {0}) there is no nonzero λ̄ ∈ �0(x̄) (λ̄ ∈ �0(x̄; u)) such that there exists a
sequence {xk} → x̄ (with (xk − x̄)/

∥∥xk − x̄
∥∥→ u) fulfilling

λ̄i

(
Fi(x

k) − Fi(x̄)
)

> 0 (i ∈ I (λ̄) := IδQ(λ̄) = {i ∈ I | λ̄i �= 0}, k ∈ N). (35)

Just as in the case of pseudo-normality, cf. the comments after Corollary 4.5, we have
now clarified that, in fact, there is only one concept of quasi-normality which, in gen-
eral, contains the additional sequence {yk}, but in special cases, such as NLPs or MPCCs,
simplifies to the known versions without {yk}. Moreover, the above corollary provides the
definition of quasi-normality for all other ortho-disjunctive programs.

Before we state the main result of this subsection that parallels Theorem 4.10 for pseudo-
normality, we write down explicitly the conditions from Theorem 3.9, Proposition 3.19 and
Corollary 3.10 for multi-index δQ corresponding to quasi-normality.

Given λ = (λi)i∈I , ϕλ from (14) reads as

ϕλ(x) = (λiFi(x))i∈I (λ) . (36)

Moreover, assuming that F is twice differentiable at x̄, the second-order sufficient condi-
tions from Corollary 3.10 and Proposition 3.19, respectively, read as follows:

• Second-order sufficient condition for quasi-normality (SOSCQN): For every 0 �= λ̄ ∈
�0(x̄), every 0 �= u ∈ R

n with ∇Fi(x̄)u = 0 for all i ∈ I (λ̄) and every w ∈ R
n with

〈w, u〉 = 0 one has

min
i∈I (λ̄)

(
λ̄i∇Fi(x̄)w + uT ∇2(λ̄iFi)(x̄)u

)
< 0; (37)

• Second-order sufficient condition for directional quasi-normality (SOSCdirQN): For
every u ∈ R

n with ‖u‖ = 1, every λ̄ ∈ �0(x̄; u) with ∇Fi(x̄)u = 0 for all i ∈ I (λ̄)

and every w with 〈w, u〉 = 0 one has (37).

Moreover, for a closed interval [a, b] and c ∈ R we have

d[a,b](c) = (c − a)− + (c − b)+,

where (q)− := − min{q, 0} and (q)+ := max{q, 0} denotes the negative and the positive
part of any number q ∈ R, respectively, extended to symbols ±∞ by the natural convention
(∞)− = (−∞)+ = 0. Thus, depending on which norm we consider for the products, the
penalty function now reads as

Pα = f + α min
�=1,...,N

d�� ◦ F (38)

=
{

f + α min�=1,...,N

∑
i∈I

(
(Fi(·) − a�

i )
− + (Fi(·) − b�

i )
+) (l1-norm),

f + α min�=1,...,N maxi∈I

(
(Fi(·) − a�

i )
− + (Fi(·) − b�

i )
+) (l∞-norm)

(α > 0).

Theorem 5.2 (Sufficient conditions for quasi-normality and MSCQ) Consider an ortho-
disjunctive program (34) and a feasible point x̄. Then each of the following conditions
implies (directional) quasi-normality and MSCQ at x̄: (i) the weak efficiency of x̄ for ϕλ

from (36), (ii) SOSCQN from (37) (SOSCdirQN).

Let us briefly comment on the importance of the previous theorem (together with Corol-
lary 5.1). First, consider only the statement that the (simplified form of) quasi-normality (35)
implies MSCQ and hence M-stationarity and exactness of the penalty function (38) at local
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minimizers. For MPCCs, we thus recover the following results: [40, Theorem 3.3] (quasi-
normality implies M-stationarity), [40, Lemmas 4.3 and 4.4] (pseudo-normality implies
MSCQ), [40, Theorem 4.5 and Corollary 4.6] (pseudo-normality implies exactness of l1 and
l∞ penalty function), as well as [55, Theorem 3.1] (quasi-normality implies MSCQ). Sim-
ilarly, for MPVCs we recover and improve [36, Theorem 3.1] (pseudo-normality implies
exactness of the penalty function) and the fact that quasi-normality implies M-stationarity,
which is not stated in the paper, but follows directly from [36, Theorem 2.1 and Defini-
tion 2.3]. Moreover, to the best of our knowledge, pseudo- and quasi-normality were not
yet introduced for MPSCs, MPrCCs and MPrPCs and all our results are hence new when
applied to these problem classes.

Second, we also provide verifiable sufficient conditions for quasi-normality, together
with sufficient conditions for pseudo-normality (higher-order conditions, polynomiality of
F ) from Section 4, which enhances the applicability of our results.

Finally, we open a path for a refined analysis using directional quasi-normality as well
as all the corresponding sufficient conditions (SOSCdirQN etc.).

In order to illuminate and compare our results with the literature, we conclude this section
with application to MPCCs. The same exercise could be executed for other classes (19) (b)-
(e). Recall that, omitting standard equality and inequality constraints, an MPCC is given
as

min
x∈Rn

f (x) s.t. Gi(x),Hi(x) ≥ 0, Gi(x)Hi(x) = 0, i ∈ V .

The constraints of MPCCs fit the general setting F(x) ∈ � with F(x) :=
(Gi(x),Hi(x))i∈V , and � := �

|V |
CC , where �CC = (R+ × {0}) ∪ ({0} × R+) is clearly

ortho-disjunctive. As we mentioned, � itself is also ortho-disjunctive, but we choose to
rather keep the “outer” product as well, noting that the impact is only visible at the penalty
function. We point out that the standard approach to MPCCs is to consider � := −�

|V |
CC

and F(x) := (−Gi(x),−Hi(x))i∈V in order to work with nonnegative signs of certain
multipliers, while in our case we obtain the opposite sign restrictions.

A simple computation yields that for (G,H) ∈ �CC we have

N�CC(G,H) =

⎧
⎪⎨
⎪⎩

{0} × R if G > 0 = H,

R × {0} if G = 0 < H,

(R− × R−) ∪ ({0} × R) ∪ (R × {0}) if G = 0 = H .

Hence, denoting

I+0(x̄) := {i ∈ V | Gi(x̄) > 0 = Hi(x̄)},
I 0+(x̄) := {i ∈ V | Gi(x̄) = 0 < Hi(x̄)},
I 00(x̄) := {i ∈ V | Gi(x̄) = 0 = Hi(x̄)}

for some feasible point x̄, we conclude that λ = (λG
i , λH

i )i∈V ∈ N
�

|V |
CC

(F (x̄)) if and only if

λG
i = 0, i ∈ I+0(x̄), λH

i = 0, i ∈ I 0+(x̄) and λG
i , λH

i ≤ 0 or λG
i λH

i = 0, i ∈ I 00(x̄).
(39)

Consequently, Corollary 5.1 yields that x̄ satisfies quasi-normality provided there is no
nonzero λ̄ = (λ̄G

i , λ̄H
i )i∈V fulfilling

0 =
∑
i∈V

(
λ̄G

i ∇Gi(x̄) + ¯λH
i ∇Hi(x̄)

)
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together with (39) such that there exists a sequence {xk} → x̄ with

λ̄G
i Gi(x

k) > 0 if λ̄G
i �= 0 and ¯λH

i Hi(x
k) > 0 if λ̄H

i �= 0, (k ∈ N).

On the other hand, x̄ is M-stationary provided there exists λ̄ = (λ̄G
i , λ̄H

i )i∈V satisfying (39)
and

0 = ∇f (x̄) +
∑
i∈V

(
λ̄G

i ∇Gi(x̄) + ¯λH
i ∇Hi(x̄)

)
.

Moreover, using first the l1-norm to handle the “outer” product we get

Pα(x) = f (x) + α
∑
i∈V

d�CC(Gi(x),Hi(x)).

Next, using the l∞-norm for the “inner” product, for arbitrary (G,H) ∈ R
2 we have

d�CC(G,H) = | min{G,H }|. Note that this agrees with the corresponding expression from
(38), which reads as min

{
max{(G)−, |H |}, max{|G|, (H)−}}. Consequently, we obtain

Pα(x) = f (x) + α
∑
i∈V

| min{Gi(x),Hi(x)}|.

6 Conclusion

Building on recently developed directional techniques from variational analysis, this paper
contains a complex and self-contained study of the metric subregularity constraint qual-
ification (MSCQ) for broad classes of nonconvex optimization problems including, most
importantly, disjunctive programs. Our findings reveal a common denominator of several
prominent sufficient conditions for MSCQ occurring in the literature. Thus, our study
improves understanding of these seemingly independent approaches and provides an addi-
tional insight. Moreover, it offers a wider spectrum of sufficient conditions for MSCQ,
including point-based ones, and consequently also improves existing sufficient conditions.
Furthermore, by introducing the new notion of ortho-disjunctive programs we estab-
lished an appropriate framework for a unified study of several nonconvex optimization
problems such as mathematical programs with complementarity, vanishing or switching
constraints. These ortho-disjunctive programs hence provide an intriguing area for future
research.
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Matúš Benko1,2 ·Michal Červinka3,4 ·Tim Hoheisel5
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