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Abstract
We study the approximation of finite-dimensional rate-independent quasistatic systems, via
a vanishing-inertia asymptotic analysis of dynamic evolutions.We prove the uniform conver-
gence of dynamic solutions to a rate-independent one, employing the variational concept of
energetic solution. Motivated by applications in soft locomotion, we allow time-dependence
of the dissipation potential, and translation invariance of the potential energy.
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1 Introduction andmotivation

The approximation and the selection of rate-independent quasistatic evolutions, via the
asymptotic analysis of richer and more natural viscous or dynamic problems, has been inten-
sively and increasingly investigated from a rigorous mathematical perspective in the last two
decades. If, on the one hand, the vanishing-viscosity approach, concerning the limit behaviour
of a first order singular perturbation of the rate-independent model, has been widely studied
and discussed (see for instance [24,48] in finite dimension, [47,49,55] for abstract analyses
in infinite dimension and the concepts of Balanced Viscosity and parametrized solutions,
[61] for an adhesive contact model of visco-elastic bodies, and the recent comparison in [34]
of different approaches), on the other hand the second order analysis dealing with inertial
systems still offers open questions and hard challenges.

In this latter direction we may identify two main lines of investigation. The first family of
results is inspired by physical models where the quasistatic evolution is defined by a driving
potential and a rate-independent dissipation. We mention for instance: an approximation of
perfect elastoplasticity by suitable dynamicviscoelasto-plastic problems [22,60]; a vanishing-
inertia limit in models of dynamic debonding [36,58]; a vanishing-inertia and -viscosity
limits for a delamination model [63], or for damage in a thermo-viscoelastic material [37];
a realisation of fully rate-independent system for viscoelastic solids [62] or systems with
hardening [40,46] as inertia vanishes.

A second approach deals with vanishing-inertia (and -viscosity) approximation of evo-
lutions of critical points (namely driven by a potential energy alone), aiming at a deeper
comprehension in an abstract but finite-dimensional setting. Starting from [3,4,54] and
culminating with [64], a detailed description of the limiting evolution coming from a
vanishing-inertia and -viscosity procedure has been given. We also mention [8], where an
alternative method to obtain evolutions of critical points is presented and analysed.

In this paper we contribute to the topic in a third, intermediate direction, introducing
new features with respect to both approaches. More precisely, we derive abstract finite-
dimensional rate-independent systems of the form

∂vR(t, ẋ(t)) + DxE(t, x(t)) � 0, (1.1)

as the limit, for ε → 0+, of the dynamic problem

ε2Mẍε(t) + εVẋε(t) + ∂vR(t, ẋε(t)) + DxE(t, xε(t)) � 0. (1.2)

Here E is a driving potential energy,R a time-dependent dissipation potential (one homoge-
neous in space to ensure rate-independence of (1.1)), whileM is a symmetric positive-definite
operator representingmasses, andV a positive-semidefinite (hence, possiblyV = 0) operator
describing the possible presence of viscosity in the model.

Our framework is motivated by an emergent application in soft locomotion [27], which we
discuss later in this section. There are however several substantial differences with respect to
the other applications cited above. Firstly, usually in suchmodels rate-independent dissipation
and inertia act on twodisjoint variables (e.g. plastic strain anddisplacement). In the framework
above, writing x = (u, p), this would correspond to settingMẍ = (˜Mü, 0), with ˜M positive-
definite, and R(t, ẋ) = ˜R(t, ṗ), resulting in two equations for u and p with the gradient of
the energy working as coupling term, cf. for instance [46]. The opposite occurs instead in our
dynamic problem (1.2), since the matrix M is nondegenerate and we will assume a positive
dissipation for each change in the state, namelyR(t, v) > 0 for every v �= 0. Also, up to our
knowledge, our paper is the first to study a nonautonomous dissipation in a vanishing-inertia
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limit, while in all the references above time-dependence is assumed only in the potential
energy. Indeed, even in the rate-independent setting, the case of a nonautonomous functional
R has been considered only very recently within the theory of rate-independent systems [29]
(see also [27,45] for applications), even if it was well discussed in the special framework of
sweeping processes [35].

Our finite-dimensional settingwith invertibleMmay therefore seem closer to the approach
of [3,54,64].We notice however that the presence of a one-homogeneous dissipation potential
affects the structure of the problem. The most evident consequence is that we may neglect
viscosity in our analysis, while it is crucial in [64], where V has to be positive-definite.
Indeed, the key point seems to be that at least one kind of dissipation must be included in
the model, otherwise kinetic effects persist in the limit preventing the resulting evolution
from being rate-independent. Compare for instance [36] with [58], or [54] with [64], where
the addition of viscous terms makes dynamic solutions converge to quasistatic evolutions, in
contrast with the undamped case where counterexamples are shown.

The aim of our paper is to rigorously derive the rate-independent evolution (1.1) as a slow-
actuation limit for a class of finite-dimensional systems, which includes models of crawling
locomotion. Indeed, equations arising from mechanics always appear as dynamic problems;
rate-independent systems are introduced as reduced models, provided that inertia may be
neglected, as well as all the other rate-dependent terms possibly present, such as viscosity.

Ameasure of how inertia is negligible in the dynamics requires the comparison ofmultiple
parameters, see for instance the notion ofFroude’s number below.However, often the suitable
approach is to perform a slow-actuation (or slow-loading) limit, namely to assume that
the time-scale of the actuation (or, generally, of the input) is asymptotically slow, cf. (1.3)
below. This is indeed an effective procedure to obtain rate-independent systems, since a slow-
actuation limit does not affect only inertia, but all the rate-dependent terms in the model.
Observe that if no other rate-dependent force is considered in the dynamic model, then the
slow-actuation limit coincides with its quasistatic limit, as it happens in our framework in
the inviscid case V = 0.

We remark that vanishing-inertia (and -viscosity) limits have also been studied with a
different aim, namely to characterize the behaviour of solutions at jumps [3,64], produced
by certain nonconvex energies, as often done also with vanishing-viscosity limits [4,34,47–
49]. Such an issue does not arise in our motivating application to crawling, since those
models are driven by convex energies. Notice, however, that part of our analysis does not
require convexity, cf. Remark 6.4. Moreover, energies in locomotion models do not satisfy
the coercivity condition that is usually assumed in the results cited above, also when focusing
on nonconvex energies.

1.1 Themotivatingmodel

Ourwork ismotivated by an application to a discretemodel of soft crawler [19,20,27]. Crawl-
ing encompasses the motility strategies employed by several animals, such as earthworms
and leeches, and by biomimetic robots. Usually, a crawler can be effectively modelled as a
chain of material points on a line, each subject to dry friction. The case N = 4 is portrayed in
Fig. 1. The attribute soft is due to the fact that each couple of adjacent masses is joined by an
elastic, actuated link. By a mathematical point of view, this means that the actual shape of the
locomotor is not directly prescribed, but undergoes hysteresis. Soft actuation is widespread in
Nature, where soft bodies and soft body parts, compliant joints and soft shells are the norm.
This is even more evident for worm-like locomotion: for instance earthworms and leeches
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m1 m2 m3 m4

Fig. 1 A model of soft crawler, discussed in Subsection 7.2

are entirely soft-bodied, while no lever action on the skeleton is employed by snakes during
rectilinear locomotion. The properties of compliance and adaptability to a continuously vari-
able and unstructured environment, observed in (soft) animal locomotion, have caught the
attention of engineers, leading, in the last two decades, to the design of bio-inspired robotic
locomotors—crawling, but also swimming, running, etc.—and the development of the novel
field of soft robotics [17,32]. In robotic crawlers, soft actuation may be implemented in
several ways. One common approach is to couple an elastic structure with a motor-tendon
actuator [68], or a coil made of shape-memory alloy [66], or a pneumatic actuator [57]. Alter-
natively, also links made of nematic elastomers have been successfully employed to provide
both elasticity and actuation [31].

In addition to the soft actuation on the links, a second active control is sometimes available
to crawlers: the ability to change the friction coefficients in time. The most remarkable
example is inching, i.e. the locomotion strategy of leeches and inchworms, which has been
also reproduced in soft robotic devices [26,68]. In inching locomotion the crawler can be
modelled as a single link, periodically elongating and contracting, with the two extremities
alternately increasing the friction coefficient (anchoring): during elongation the backward
extremity has more grip, so it remains steady while the forward extremity advances, and vice
versa during contraction. Other examples of active control of the friction coefficients can
be observed in crawlers using anisotropic friction: changing the tilt angle of bristles—such
as setae and chaetae in anellids [1,56]—or scales—such as in snakes [30]—and analogous
mechanisms in robotic replicas [39,42,57] produces a change in the friction coefficients [28],
which is used to facilitate sliding or gripping.

In the modelling of crawling locomotion, it is quite customary to work at a quasistatic
regime. In particular, the rate-independent case provides an effective model, since the yield
forces associated with dry friction are essential to reproduce the qualitative behaviour
observed in crawling strategies, namely, that in each phase of the gait part of the body is
advancing while the other acts as an anchor. With our work, we provide a theoretical jus-
tification of the quasistatic assumption in such situations and a mathematically rigorous
derivation of the rate-independent model as a slow-actuation limit of the dynamics of the
locomotor.

To explain the occurrence of system (1.2), let us take a reference input τ �→
(E(τ, ·),R(τ, ·)), for τ ∈ [0, T ], and suppose that it can be applied at an arbitrarily slow rate
ε > 0, so that the characteristic time of the systems is proportional to 1/ε. The evolution of
the system is described by the following subdifferential inclusion

Mẍε(τ ) + Vẋε(τ ) + ∂vR(ετ, ẋε(τ )) + DxE(ετ, xε(τ )) � 0, (1.3)

on a time interval τ ∈ [0, T /ε]. In the specific example of the locomotion model of Fig. 1,
the components (xε)i of the solution will represent the position of the i-th block. The term
Mẍε describes the inertial forces, hence M := Diag{m1, . . . , m N } is the mass distribution.
In this case the matrix V (possibly V = 0) could describe for instance viscous resistances to
length changes in the links, or the linear component of a Bingham type friction on the blocks,
caused by lubrication with a non-Newtonian fluid [23]. The term R will in general have the
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form

R(t, v) = χK (v) + Rfinite(t, v),

where χK is the indicator function of a closed convex cone K and Rfinite is positively
homogeneous of degree one (in space) with values in [0,+∞). The dissipation potential
Rfinite accounts for dry friction forces, which may change in time. The term χK represents
a constraint on velocities and may be used to describe situations in which hooks or hard
scales [43] are used to create an extreme anisotropy in the interaction with the surface, so
that motion “against the hair” may be considered impossible. The mathematical difference
between a velocity constraint and a large but finite dry friction becomes extremely relevant
for planar models, cf. Sect. 7.4.

The term E describes the elastic energy of the system. We emphasize that, since we
are dealing with a locomotion problem, rigid translations must be included in the space of
admissible configurations. This implies that the elastic energy E takes the form

E(t, x) = Esh(t, πZ (x)),

where Esh is defined on a smaller subspace Z ⊆ X , on which it assumes the usual properties
of coercivity/uniform convexity. The linear operator πZ : X → Z assigns with each configu-
ration x ∈ X the corresponding shape of the locomotor; in the example of Fig. 1 with N = 4
a natural choice could be πZ (x) = (x2 − x1, x3 − x2, x4 − x3). We remark however that our
results hold also outside locomotion, in the more classical framework with Z = X and the
energy E coercive on the whole space.

We are therefore interested in the behaviour of the solutions xε : [0, T /ε] → X of (1.3) as
ε → 0+. In order to properly compare such solutions it is necessary to rescale them in time,
so that they are all defined on the same domain and to each instant t there corresponds the
same stage of the input for all solutions. Hence we consider the rescaled solutions xε(t) :=
xε(t/ε) : [0, T ] → X . It is easy to verify that xε is a solution of (1.3) if and only if xε

is a solution of (1.2). Let us remark how velocity-independent forces (as elastic forces),
rate-independent forces (as dry friction), and autonomous constraints are preserved by time-
rescaling, whereas viscous and inertial forces are rescaled.

A more thorough interpretation of the dynamic problem (1.2) is the following: we may
assume thatM andR have been normalized and their ratio has been absorbed in the parameter
ε2, so that equation (1.2) can be seen as the result of a nondimensionalization of the system,
and ε2 can be interpreted as a parameter expressing the ratio of the magnitude of inertial
forces to that of dry friction forces. Measuring the weight of inertial forces compared to the
other relevant forces in the system is a pivotal concept in the analysis of gaits; in terrestrial
locomotion such ratio is often referred as Froude’s number, from an analogy to its namesake
in fluidodynamics [5,67]. For instance, in legged locomotion Froude’s number, together with
the hip-height/stride-length ratio, plays a key role in characterizing gaits, and has led to the
first estimates of the speeds achieved by dinosaurs [65]. Let us also remark that very low
Froude’s numbers, corresponding to quasistaticity, are not uncommon in locomotion: indeed
a key challenge in the design of walking robots has been the transition from quasistatic to
dynamic gaits.

For crawling locomotion, following [69], Froude’s number can be defined as the ratio

Froude’s number := inertial forces

dry friction forces
= mchar Lchar

T 2
char Fchar

(1.4)

where mchar, Lchar, Tchar, Fchar are respectively the characteristic mass (e.g. the total mass),
length (e.g. the distance covered in one iteration of the gait), time (e.g. the period of the
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gait) and friction force (e.g. the average friction force during sliding) of the locomotor.1

It is therefore possible to compute the relevance of inertial forces for specific locomotors
and gaits. For example, Froude’s number can be estimated in the order of 10−3 both for
an earthworm on the ground [5, Chapter 6], and for rectilinear locomotion in boas [41].
Crawling gaits characterized by a large Froude’s number, employing inertial effects to break
the symmetry of the system, are theoretically possible [69]; yet they require an inefficient
continuous sliding and therefore are not usually found in Nature or in robotics.

We finally remark that our results are not limited to soft locomotion. For instance, within
the same formalism it is possible to describe finite-dimensional models made of elastic,
viscous or plastic elements; these are often studied as rheological models, see e.g. [10,15,33]
and references therein. We briefly present some simple examples in Sect. 7, where, on a
more theoretical perspective, we also recall how the play operator and the sweeping process
are related with the rate-independent problem (1.1) and briefly discuss the corresponding
dynamic approximation.

1.2 Summary

The paper is structured as follows. In Sect. 2 we present in detail our assumptions and
state the main result of the paper. Section 3 is dedicated to the dynamic problem (1.2),
studying existence, uniqueness and useful bounds on the solutions. The time-dependence
of the dissipation functional R requires a time-dependent generalization of BV functions,
which we study in Sect. 4; since the arguments are the same, these results are presented in
the more general framework of an arbitrary Banach space. The rate-independent problem
(1.1) is analysed in Sect. 5, and the vanishing-inertia limit is performed in Sect. 6. Finally,
we present some applications and examples in Sect. 7.

2 Setting of the problem andmain result

Let X be a finite-dimensional vector space endowed with the norm | · |. The same symbol
will be also adopted for the modulus in R; however, its meaning will be always clear from
the context. We denote by X∗ the topological dual of X , and by 〈x∗, x〉 the duality product
between x∗ ∈ X∗ and x ∈ X . The dual norm in X∗, as well as any operator norm, will be
denoted by | · |∗. Given R > 0, by BX

R we denote the open ball in X of radius R and centered

at the origin, and with BX
R its closure.

Let us also recall some basic notions on set-valued maps. Given two topological spaces
A1, A2, we denote with F : A1 ⇒ A2 a map from A1 having as values subsets of A2. We say
that such a set-valued map is upper continuous at a point a ∈ A1 if for every neighbourhood

1 Sometimes Froude’s number for crawlers is defined as

Froude’s number := inertial forces

gravitational forces
= v2char

gLchar

(

= μchar
mchar Lchar

T 2
char Fchar

)

,

which is the same expression used in legged locomotion. The validity of this second definition is based on
the assumption that the normal load proportional to dry friction forces is caused by gravity, so that Fchar =
mchargμchar . The two notions are thus related by setting the characteristic speed as vchar = Lchar/Tchar . We
prefer definition (1.4) for two reasons. Firstly, it provides a direct measure of the relevance of inertia in the
gait, without the need to compare it with the characteristic friction coefficient μchar . Secondly, not necessarily
the normal load is produced by gravity: consider for instance a crawler underground or in a pipe.
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U ⊆ A2 of F(a) there exists a neighbourhood V ⊆ A1 of a such that F(ã) ⊂ U for every
ã ∈ V . We say that a map is upper semicontinuous if it is so for every point of its domain.
We recall that if a set-valued map has compact values, then it is upper semicontinuous if and
only if its graph is closed (cf. e.g. [9]).

Given a convex, lower semicontinuous map φ : X → [0,+∞], we define its subdifferen-
tial ∂φ(x0) ⊆ X∗ at each point x0 ∈ X as

∂φ(x0) = {ξ ∈ X∗ | φ(x0) + 〈ξ, x − x0〉 ≤ φ(x), for every x ∈ X}.
Notice that ∂φ has closed convex values. Moreover, if φ(x0) = +∞ and φ is finite in at least
one point, then ∂φ(x0) = ∅. Given a subset K ⊂ X , we denote with χK : X → [0,+∞] its
indicator function:

χK(x) :=
{

0, if x ∈ K,

+∞, if x /∈ K.

Let us now present in detail our assumptions on the mechanical problems which will be
the subject of our investigation.

2.1 Mass and viscosity

Let M : X → X∗ be a symmetric positive-definite linear operator, which will represent
mass distribution. Since X has finite dimension, we observe that there exist two constants
M ≥ m > 0 such that

m|x |2 ≤ |x |2
M

:= 〈Mx, x〉 ≤ M |x |2, for every x ∈ X . (2.1)

Wewant to stress that the requirement onM of being positive-definite, crucial for our analysis,
fits well with the finite-dimensional setting in which we are working; in particular, all the
applications we have in mind, see Sect. 7, fulfil this assumption. On the contrary, in infinite-
dimensional models the mass operator is usually null on a subspace (see for instance [46]),
thus in that caseM turns out to be only positive-semidefinite.

We consider also the (possible) presence of viscous dissipation, by introducing the
positive-semidefinite linear operatorV : X → X∗ (symmetry is not needed here). As before,
we notice that there exists a nonnegative constant V ≥ 0 such that

0 ≤ |x |2
V

:= 〈Vx, x〉 ≤ V |x |2, for every x ∈ X . (2.2)

We point out that we include also the case V ≡ 0, corresponding to the absence of viscous
friction forces in the dynamic problem (2.3). Indeed, in this paper we are mostly interested
in the presence of a different type of dissipation (modelling dry friction), which will be
introduced in the following, and which actually overwhelms the effects of viscosity for the
purposes of the vanishing-inertia analysis.

2.2 The elastic energy

Before introducing our assumptions on the elastic energy E , we recall that our main appli-
cation concerns a locomotion problem. This implies that the space of admissible states X
must include translations, for which the elastic energy is invariant. Hence the elastic energy
will be coercive only on a subspace, intuitively corresponding to the shape of the locomo-
tor. A subscript ‘sh’ will usually indicate a function that has been suitably restricted to this
shape-subspace.
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Let us therefore consider a linear subspace Z ⊆ X ,which is often convenient to endowwith
its own norm |·|Z , cf. the examples in [27].We assume that the elastic energy E : [0, T ]×X →
[0,+∞) has the form E(t, x) = Esh(t, πZ (x)), where πZ : X → Z is a linear and surjective
operator and Esh : [0, T ] × Z → [0,+∞) satisfies:

(E1) Esh(·, z) is absolutely continuous in [0, T ] for every z ∈ Z ;
(E2) there exists μ > 0 such that Esh(t, ·) is μ-uniformly convex for every t ∈ [0, T ],

namely for every θ ∈ [0, 1], z1, z2 ∈ Z :

Esh(t, θ z1 + (1 − θ)z2) ≤ θEsh(t, z1) + (1 − θ)Esh(t, z2) − μ

2
θ(1 − θ)|z1 − z2|2Z ;

(E3) Esh(t, ·) is differentiable for every t ∈ [0, T ] and the differential DzEsh is continuous
from [0, T ] × Z to Z∗;

(E4) for a.e. t ∈ [0, T ] and for every z ∈ Z it holds
∣

∣

∣

∣

∂

∂t
Esh(t, z)

∣

∣

∣

∣

≤ ω(Esh(t, z))γ (t),

whereω : [0,+∞) → [0,+∞) is nondecreasing and continuous, while γ ∈ L1(0, T )

is nonnegative;
(E5) for every R > 0 there exists a nonnegative function ηR ∈ L1(0, T ) such that for a.e.

t ∈ [0, T ] and for every z1, z2 ∈ BZ
R it holds

∣

∣

∣

∣

∂

∂t
Esh(t, z2) − ∂

∂t
Esh(t, z1)

∣

∣

∣

∣

≤ ηR(t)|z2 − z1|Z .

Let us also introduce some additional assumptions on the energy E , which are in general not
required, but provide sharper results.

(E6) for every λ > 0 and R > 0 there exists δ = δ(λ, R) > 0 such that if |t − s| ≤ δ and
z ∈ BZ

R , then
∣

∣

∣

∣

∂

∂t
Esh(t, z) − ∂

∂t
Esh(s, z)

∣

∣

∣

∣

≤ λ;

(E7) for every R > 0 there exists a nonnegative function ςR ∈ L1(0, T ) such that for a.e.

t ∈ [0, T ] and for every z1, z2 ∈ BZ
R it holds

|DzEsh(t, z2) − DzEsh(t, z1)|Z∗ ≤ ςR(t)|z2 − z1|Z .

In particular, condition (E7) will be used only to provide uniqueness of solution to the Cauchy
problem (2.3) associated with the dynamic equation (1.2), as stated in Theorem 3.8. We also
point out that it is not necessary for our main result, namely Theorem 2.12.

We finally present the classical case of a quadratic energy:

(QE) Esh(t, z) = 1
2 〈Ash(z − �sh(t)), z − �sh(t)〉Z , where Ash : Z → Z∗ is a symmetric,

positive-definite linear operator and �sh ∈ AC([0, T ]; Z).

It can be easily verified that (QE) implies conditions (E1)–(E5) and (E7), whereas it implies
(E6) if and only if �sh has continuous derivative. However, for our purposes, the additional
structure of (QE) will alone provide a suitable alternative to (E6).

Remark 2.1 We point out that the commoner case Z ≡ X is also included in our formulation.
In such a case all the assumptions above on Esh are taken directly on E .
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Remark 2.2 Let us notice that, since πZ is linear, if any of (E1), (E3)–(E7) holds, the same
property stated for Esh is satisfied also “directly” by the whole function E on [0, T ]× X , with
the only changeof the additionof themultiplicative term |πZ |∗ in the bounds of (E5), (E7). The
only caveat is with (E2), which implies that E(t, ·) is convex, but in general not uniformly
convex in the whole X . We however point out that convexity will not be necessary when
dealing with the dynamic problem (1.2) and for the first part of the subsequent vanishing-
inertia analysis performed in Sect. 6, where also nonconvex energies are allowed.

Thanks to the above remark, we observe that by (E1) and (E3) we deduce that E is
continuous in [0, T ] × X , while from (E1) and (E5) we get that ∂

∂t E is a Carathéodory
function. Thus for every x : [0, T ] → X measurable, the function t �→ ∂

∂t E(t, x(t)) is
measurable too. Moreover if x is also bounded, namely sup

t∈[0,T ]
|x(t)| ≤ R, then (E4) implies

that ∂
∂t E(·, x(·)) is summable in [0, T ], indeed:

T
∫

0

∣

∣

∣

∣

∂

∂t
E(τ, x(τ ))

∣

∣

∣

∣

dτ ≤
T
∫

0

ω(E(τ, x(τ )))γ (τ ) dτ ≤ ω(MR)

T
∫

0

γ (τ) dτ < +∞,

where MR denotes the maximum of E on the compact set [0, T ] × BX
R . If in addition x

is absolutely continuous from [0, T ] to X , by (E1), (E3) and (E4) we also deduce that
t �→ E(t, x(t)) is absolutely continuous in [0, T ] too, indeed for every 0 ≤ s ≤ t ≤ T it
holds:

|E(t, x(t)) − E(s, x(s))| ≤ |E(t, x(t)) − E(t, x(s))| + |E(t, x(s)) − E(s, x(s))|

≤ CR |x(t) − x(s)| +
t
∫

s

∣

∣

∣

∣

∂

∂t
E(τ, x(s))

∣

∣

∣

∣

dτ

≤ CR |x(t) − x(s)| + ω(MR)

t
∫

s

γ (τ) dτ,

where CR is the maximum of |DxE|∗ on [0, T ] × BX
R .

2.3 The dissipation potential

We introduce the main dissipative forces involved in the system, described by a time-
dependent dissipation potential R : [0, T ] × X → [0,+∞] which takes into account both
possible constraints on the velocity and the presence of dry friction. It originates from a
functionRfinite : [0, T ] × X → [0,+∞) with finite values on which we make the following
assumptions:

(R1) for every t ∈ [0, T ], the function Rfinite(t, ·) is convex, positively homogeneous of
degree one, and satisfies Rfinite(t, 0) = 0;

(R2) there exist two positive constants α∗ ≥ α∗ > 0 for which

α∗ |v| ≤ Rfinite(t, v) ≤ α∗ |v| , for every (t, v) ∈ [0, T ] × X;
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(R3) there exists a nonnegative function ρ ∈ L1(0, T ) for which

|Rfinite(t, v) − Rfinite(s, v)|≤|v|
t
∫

s

ρ(τ) dτ, for every 0≤s ≤ t ≤ T and for every v ∈ X .

Remark 2.3 We observe that the second inequality in (R2) actually follows from (R1) and
(R3). Indeed, sincewe are in finite dimension, the convex functionRfinite(t, ·) is automatically
continuous on X ; by (R3) this easily implies Rfinite is continuous on the whole [0, T ] × X ,
and hence by one-homogeneity we get Rfinite(t, v) ≤ C |v| for some constant C > 0 and
every (t, v) ∈ [0, T ] × X .

Concerning R we finally assume that:

(R4) there exists a nonempty closed convex cone K ⊆ X , independent of time, and there
exists a function Rfinite : [0, T ] × X → [0,+∞) satisfying (R1)–(R3) such that for
every (t, v) ∈ [0, T ] × X it holds

R(t, v) = χK (v) + Rfinite(t, v).

We will denote with ∂vR the subdifferential of R with respect to its second variable. The
choice of the letter v when dealing with the dissipation potential is reminiscent of the fact
that the second argument of R is usually a velocity.

As an immediate consequence of condition (R4) we can rephrase conditions (R1)–(R3)
directly on R:

Corollary 2.4 Let R be as in (R4). Then it holds:

(I) for every t ∈ [0, T ], the function R(t, ·) is convex, positively homogeneous of degree
one, lower semicontinuous, and satisfies R(t, 0) = 0;

(II) for every (t, v) ∈ [0, T ] × K one has

α∗ |v| ≤ R(t, v) ≤ α∗ |v| ,
with the same constants α∗ and α∗ from (R2);

(III) for every 0 ≤ s ≤ t ≤ T and for every v ∈ K one has

|R(t, v) − R(s, v)| ≤ |v|
t
∫

s

ρ(τ) dτ,

with the same function ρ of (R3).

Moreover the following properties hold true:

(IV) for every (t, v) ∈ [0, T ] × X one has

∂vRfinite(t, v) ⊆ BX∗
α∗ ,

with α∗ as in (R2). In particular ∂vRfinite has compact, convex, non-empty values.
(V) the multivalued map ∂vRfinite is upper semicontinuous on [0, T ] × X;

Proof The first three points are a trivial consequence of (R1)–(R3), respectively, due to the
form of R given by (R4). We indeed notice that, since K is a nonempty closed convex
cone, its indicator function χK is convex, positively homogeneous of degree one, lower
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semicontinuous, and vanishes at v = 0. To prove (IV), since Rfinite has finite values, we
deduce that ξ ∈ ∂vRfinite(t, v) if and only if

〈ξ, ṽ〉 ≤ Rfinite(t, ṽ + v) − Rfinite(t, v), for every ṽ ∈ X .

We now recall that convexity plus one-homogeneity easily yield subadditivity, thus we can
continue the above inequality getting

〈ξ, ṽ〉 ≤ Rfinite(t, ṽ), for every ṽ ∈ X .

By means of (R2) we thus deduce that |ξ |∗ ≤ α∗, and so (IV) is proved.
To prove (V), since ∂vRfinite has compact values, it is sufficient to show that for every

sequence (tk, vk, ξk) in [0, T ] × X × X∗ such that ξk ∈ ∂vRfinite(tk, vk), if (tk, vk, ξk) →
(t̄, v̄, ξ̄ ) ∈ [0, T ] × X × X∗ then ξ̄ ∈ ∂vRfinite(t̄, v̄). By definition of subdifferential, for
every k ∈ N we have

Rfinite(tk, vk) + 〈ξk, v − vk〉 ≤ Rfinite(tk, v), for every v ∈ X .

By the continuity of Rfinite on [0, T ] × X and of the dual coupling, passing to the limit in
the above estimate gives

Rfinite(t̄, v̄) + 〈ξ̄ , v − v̄〉 ≤ Rfinite(t̄, v), for every v ∈ X ,

namely ξ̄ ∈ ∂vRfinite(t̄, v̄), concluding the proof. ��
Remark 2.5 (Comparison with ψ-regularity [29]) Let us remark that our assumptions on
R are very close to the notion of ψ-regularity introduced in [29] (see also Definition 4.1).
Most of the differences between the two frameworks are due to the fact that [29] deals with
functionals R defined on a general Banach space X , but with finite values. For instance, if
the functionalR has finite values, we observe that assumption (R4) is automatically satisfied
with K = X .

There are only two points in which our assumptions are actually slightly stricter than
[29], and both are motivated. The first one is the left inequality in (R2), corresponding in the
framework of [29] to the additional assumption c |v| ≤ ψ(v). This is related to the fact that
we do not require coercivity for the energy E , and such loss has to be compensated with a
coercivity in the dissipation potential R, in order to recover some a priori estimates, such
as (i) in Corollary 3.4. We however point out that such a request is absolutely natural in the
finite-dimensional setting we are considering, as we will see in the examples of Sect. 7. On
the contrary, it becomes very restrictive in infinite dimension: indeed, in standard models
of elasticity where the simplest ambient space is H1

0 (�), a common choice of dissipation
potential is

∫

�
|v(x)| dx , which of course lacks coercivity.

The second stronger assumption is that the modulus of continuity appearing in (R3) is
of integral type. This is because we are interested in absolutely continuous solutions of the
rate-independent problem (2.5), not just continuous ones, cf. Proposition 5.7. However, a
general modulus of continuity (as the one used in [29]) would be enough to get all the results
presented in Sect. 4.

Let us also introduce an optional assumption onR (actually on the set K ), which will be
used to improve the regularity of the solutions of the rate-independent problem:

(R5) there exists a constant CK > 0 such that, for every z ∈ Z

• either πZ (x) �= z for every x ∈ K ;
• or there exists x ∈ K such that πZ (x) = z and |x | ≤ CK |z|Z .
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We remark that, by a physical point of view, assumption (R5) is usually satisfied. Indeed,
violating (R5) would mean that the constraints allow a locomotor to achieve an arbitrarily
large displacement with an arbitrarily small change in shape. All the concrete models we
consider in Sect. 7 satisfy (R5); we discuss a purely theoretical counterexample in Sect. 7.6.
By a mathematical point of view, let us highlight some common situations where (R5) is
true.

Proposition 2.6 Each of the following is a sufficient condition for (R5):

(i) K = X or K = {0};
(ii) dim Z = dim X;
(iii) dim X = 1 + dim Z and K is a polyhedral closed cone, i.e. there exist J covectors

f K
1 , . . . f K

J ∈ X∗ such that

K = {x ∈ X |
〈

f K
j , x

〉

≥ 0, for every j = 1, . . . , J };

Proof The first two points are trivial. Let us therefore prove the third point. First of all we
observe that for z = 0Z the second alternative of (R5) is satisfied by x = 0X . For z �= 0Z ,
by homogeneity, it is sufficient to consider the case |z|Z = 1. Moreover, without loss of
generality we can assume

∣

∣ f K
j

∣

∣∗ = 1.
Let i : Z × ker πZ → X be the canonical identification. For every z ∈ Z we write ẑ :=

i(z, 0) ∈ X ; moreover, fixed any nonzero vector y ∈ ker πZ , we set η := i(0, y)/ |i(0, y)|.
Since dim X = 1 + dim Z , we deduce that πZ (x) = z if and only if x = ẑ + λη for some
λ ∈ R.

Let us write S = {ẑ = i(z, 0) ∈ X | |z|Z = 1} and set

C1 := max
j=1,...,J

max
ẑ∈S

∣

∣

∣

〈

f K
j , ẑ

〉∣

∣

∣ ,

C2 := min
j=1,...,J

{
∣

∣

∣

〈

f K
j , η

〉∣

∣

∣ |
〈

f K
j , η

〉

�= 0},
C3 := max

ẑ∈S
∣

∣ẑ
∣

∣ .

We claim that we can take CK = C3 + (C1/C2). Fix z with norm 1, and consider the
corresponding ẑ ∈ S. Since K is closed, we have two alternative possibilities:

• either πZ (x) �= z for every x ∈ K ;
• or there exists λ̄ ∈ R such that ẑ + λ̄η ∈ K and

∣

∣ẑ + λ̄η
∣

∣ ≤ ∣∣ẑ + λη
∣

∣ , for every λ ∈ R such that ẑ + λη ∈ K .

To prove (R5) it is sufficient to show that, if the second option holds,
∣

∣λ̄
∣

∣ ≤ C1/C2, so that
∣

∣ẑ + λ̄η
∣

∣ ≤ ∣∣ẑ∣∣+ ∣∣λ̄∣∣ ≤ C3 + (C1/C2). To show this estimate on
∣

∣λ̄
∣

∣, let us observe that, in
order to minimize the absolute value, either λ̄ = 0 or there exists an index j such that

〈

f K
j , ẑ

〉

+ λ̄
〈

f K
j , η

〉

= 0, and
〈

f K
j , η

〉

�= 0,

which implies |λ| ≤ C1/C2. ��

We now present the dynamic and rate-independent problems we will study and state our
main result.
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2.4 The dynamic problem

LetM,V be as above, and assume that (E1), (E3)–(E5) and (R4) are satisfied. For ε > 0 we
refer as dynamic problem to the subdifferential inclusion

{

ε2Mẍε(t) + εVẋε(t) + ∂vR(t, ẋε(t)) + DxE(t, xε(t)) � 0,

xε(0) = xε
0, ẋε(0) = xε

1,
(2.3)

where the initial velocity satisfies the admissibility condition

xε
1 ∈ K , (2.4)

for K as in (R4).

Definition 2.7 We say that a function xε ∈ W 2,1(0, T ; X) is a differential solution of (2.3)
if the subdifferential inclusion holds true in X∗ for a.e. t ∈ [0, T ] and initial position and
velocity are attained.

We discuss existence and uniqueness of a differential solution for (2.3) in Sect. 3, see Theo-
rem 3.8.

2.5 The rate-independent problem

Assume that (E1)–(E5) and (R4) are satisfied. We refer as rate-independent problem to the
differential inclusion

{

∂vR(t, ẋ(t)) + DxE(t, x(t)) � 0,

x(0) = x0.
(2.5)

We highlight that this problem corresponds to the quasistatic approximation of the dynamic
one in the inviscid case V = 0.

For the rate-independent problem we introduce two notions of solution. The existence of
a solution in either sense will follow from our main result, Theorem 2.12. Nonetheless, the
existence for both solution concepts could be directly proved (see for instance [29,50] for a
general argument based on time discretization).

Definition 2.8 We say that a function x ∈ AC([0, T ]; X) is a differential solution of (2.5)
if the subdifferential inclusion holds true in X∗ for a.e. t ∈ [0, T ] and the initial position is
attained.

We observe that the existence of differential solutions for (2.5) requires the admissibility
condition on the initial datum

− DxE(0, x0) ∈ ∂vR(0, 0). (2.6)

The second (weaker) notion of solution is the natural translation, to the case of a time-
dependent dissipation potential, of the classical concept of energetic solution (see [44,50,51]).
In order to introduce it, let us first state a suitable generalization of functions of bounded
variation, which we will discuss in detail in Sect. 4.

Definition 2.9 Given a function f : [a, b] → X , we define its (pointwise) R-variation in
[s, t], with a ≤ s < t ≤ b, as:

VR( f ; s, t) := lim
n→+∞

n
∑

k=1

R(tk−1, f (tk) − f (tk−1)), (2.7)
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where {tk}n
k=0 is a fine sequence of partitions of [s, t], namely it is of the form s = t0 < t1 <

· · · < tn = t and satisfies

lim
n→+∞ sup

k=1,...,n
(tk − tk−1) = 0. (2.8)

We also set VR( f ; t, t) := 0, for every t ∈ [a, b].
We say that f is a function of bounded R-variation in [a, b], and we write f ∈

BVR([a, b]; X), if its R-variation in [a, b] is finite, i.e. VR( f ; a, b) < +∞.

Definition 2.10 We say that x ∈ BVR([0, T ]; X) is an energetic solution for the rate-
independent problem (2.5) if the initial position is attained and the following global stability
condition and (weak) energy balance hold true:

(GS) E(t, x(t)) ≤ E(t, v) + R(t, v − x(t)), for every v ∈ X and for every t ∈ [0, T ];

(WEB) E(t, x(t)) + VR(x; 0, t) = E(0, x0) +
t
∫

0

∂

∂t
E(τ, x(τ )) dτ, for every t ∈ [0, T ].

Remark 2.11 We point out that we refer to the above energy balance as weak (and we
write (WEB) instead of (EB)) to distinguish it from the analogous energy balance (labelled
by (EB)) fulfilled by differential solutions (see Proposition 5.1), where the simpler term
∫ t
0 R(τ, ẋ(τ )) dτ replaces the R-variation.

The justification of this definition, together with themain properties of energetic solutions,
will be given in Sect. 5; see in particular Proposition 5.1. We remark that the notion of
energetic solution is more flexible than the one of differential solution, since it does not
involve derivatives and in general allows for discontinuous solutions. We refer to [50] for a
wide and complete presentation on the topic.

2.6 Main result

We are now ready to state the main result of this paper, concerning the asymptotic behaviour
as ε → 0+ of differential solutions of the dynamic problem (2.3).

Theorem 2.12 Let M,V be as above; assume that R satisfies (R4), and that E(t, x) =
Esh(t, πZ (x)) satisfies (E1)–(E6) or (QE). Let xε be a differential solution of the dynamic
problem (2.3) related to the initial position xε

0 ∈ X and the initial velocity xε
1 ∈ K , and

assume

lim
ε→0

xε
0 = x0, lim

ε→0
εxε

1 = 0, (2.9)

for some x0 satisfying (2.6). Then there exist a subsequence ε j ↘ 0 and a function x ∈
BVR([0, T ]; X) ∩ C0([0, T ]; X) such that x is an energetic solution for (2.5) with initial
position x0 and:

(a) lim
j→+∞ xε j (t) = x(t) uniformly on [0, T ];

(b) lim
j→+∞

∫ t

s
R(τ, ẋε j (τ )) dτ = VR(x; s, t) for every 0 ≤ s ≤ t ≤ T ;

(c) lim
j→+∞ ε j |ẋε j (t)|M = 0 uniformly on [0, T ];

(d) lim
j→+∞ ε j

∫ T

0
|ẋε j (τ )|2

V
dτ = 0.
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In particular, in case of uniqueness of energetic solutions to the rate-independent problem
(2.5), cf. for instance Lemmata 5.8 and 5.9, the result holds true for the whole sequence xε.

If, in addition, (R5) holds or R does not depend on time, then the limit function x is
absolutely continuous and, in particular, it is a differential solution of (2.5).

We remark that assumption (2.9) can be relaxed to the boundedness of the sequences. In
such a case, as we argue in Theorem 6.9, we obtain similar results with energetic solutions
having a (possible) jump in t = 0.

3 Existence of solutions for the dynamic problem

This section is devoted to the analysis of the dynamic problem (2.3) and to the proof of an
existence result under the main assumptions (E1), (E3)–(E5) and (R4). Convexity, i.e. (E2),
here is not needed. Condition (E7) will be also added to obtain uniqueness of differential
solutions, see Theorem 3.8. Of course in this section the parameter ε > 0 is fixed; however,
since some results we obtain here will be useful also in the rest of the paper where ε is sent
to 0, for the sake of brevity we prefer to assume that the initial data are uniformly bounded
in ε. Namely we require there exists a positive constant � > 0 for which

∣

∣xε
0

∣

∣ ≤ �, and
∣

∣εxε
1

∣

∣ ≤ �, for every ε > 0. (3.1)

Before starting the analysis we prove the following Grönwall-type estimate:

Lemma 3.1 (Grönwall inequality) Let f : [a, b] → [0,+∞) be a bounded measurable
function such that

f (t) ≤ C +
t
∫

a

ω( f (τ ))g(τ ) dτ, for every t ∈ [a, b], (3.2)

where C > 0 is a positive constant, ω : [0,+∞) → [0,+∞) is a nondecreasing continuous
function such that ω(x) > 0 if x > 0, and g ∈ L1(a, b) is nonnegative.

Then it holds:

f (t) ≤ ϕ−1

⎛

⎝ϕ(C) +
t
∫

a

g(τ ) dτ

⎞

⎠ , for every t ∈ [a, b],

where ϕ(t) :=
∫ t

1

1

ω(τ)
dτ .

Proof We consider the auxiliary function F(t) := ∫ t
a ω( f (τ ))g(τ ) dτ . Since f is bounded,

F is absolutely continuous in [a, b] and F(a) = 0. Moreover by (3.2) we deduce:

Ḟ(τ ) = ω( f (τ ))g(τ ) ≤ ω(C + F(τ ))g(τ ), for a.e. τ ∈ [a, b].
From the above inequality we thus infer for every t ∈ [a, b]:

t
∫

a

g(τ ) dτ ≥
t
∫

a

Ḟ(τ )

ω(C + F(τ ))
dτ =

C+F(t)
∫

C

1

ω(τ)
dτ = ϕ(C + F(t)) − ϕ(C)

≥ ϕ( f (t)) − ϕ(C),

123



191 Page 16 of 54 P. Gidoni, F. Riva

where in the last inequality we used again (3.2) and exploited the monotonicity of ϕ. Hence
we conclude. ��

For a reason which will be clear later, to develop all the arguments of this section we
need to introduce a truncated version of the elastic energy E . We argue as follows: for every
ρ ∈ (0,+∞), letλρ : [0,+∞) → [0, ρ+1] be a C∞, monotone increasing, concave function
such that λρ(r) = r for r ≤ ρ and let us consider the truncated energies

Eρ(t, x) = E (t, σρ(x)
)

, where σρ(x) := λρ(|x |)x

|x | , (3.3)

setting in the limit case E+∞ ≡ E . Notice that σρ is the identity on BX
ρ and that the Jacobian

of σρ at each point has (operator) norm less or equal to one.
We observe that the new functions Eρ cannot be expressed any longer as functions of

(t, πZ (x)). Yet they inherit many of the regularity properties of E and Esh. Indeed we observe
that, by (E1) and (E3), the functions Eρ and DxEρ are continuous in [0, T ] × X , while from
(E1) and (E5) we get that ∂

∂t Eρ is a Carathéodory function. Moreover, by (E4) it holds
∣

∣

∣

∣

∂

∂t
Eρ(t, x)

∣

∣

∣

∣

≤ ω(Eρ(t, x))γ (t), for a.e. t ∈ [0, T ]and for everyx ∈ X , (3.4)

where ω and γ are the same of (E4) and in particular do not depend on ρ. Furthermore, by
compactness and the properties of σρ , if ρ ∈ (0,+∞) then we get that DxEρ is bounded on
the whole [0, T ] × X , namely there exists a constant Cρ > 0 such that

sup
(t,x)∈[0,T ]×X

|DxEρ(t, x)|∗ ≤ Cρ. (3.5)

The above estimate is the main reason why we introduced the truncated energy; it will be
indeed crucial in the proof of Proposition 3.7.

If in addition also (E7) holds, we deduce that there exists a function ς̃ρ ∈ L1(0, T ) such
that

|DxEρ(t, x1) − DxEρ(t, x2)|∗ ≤ ς̃ρ(t) |x1 − x2| , (3.6)

for a.e. t ∈ [0, T ], and every x1, x2 ∈ BX
ρ .

Let us thus consider the approximate problems
{

ε2Mẍε(t) + εVẋε(t) + ∂vR(t, ẋε(t)) + DxEρ(t, xε(t)) � 0,

xε(0) = xε
0, ẋε(0) = xε

1,
(3.7)

where for the sake of clarity we do not stress the dependence on ρ of the solution. We recall
that we are always assuming (E1), (E3)–(E5), (R4) and considering M,V as in Sect. 2, in
particular satisfying (2.1) and (2.2).

As a first step we present an alternative formulation of (3.7), based on the definition
of subdifferential. We emphasize that the following results, where not otherwise explicitly
stated, hold also for the original dynamic problem (2.3), corresponding to ρ = +∞. In
particular, the uniform estimates with respect to the initial data of Corollary 3.4 for the
original dynamic problem will be employed later in the paper.

Proposition 3.2 For every ε > 0 and ρ ∈ (0,+∞], a function xε ∈ W 2,1(0, T ; X) is a
differential solution of (3.7) if and only if initial data are attained and the following dynamic
local stability condition and dynamic energy balance hold true:
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(LSε) for a.e. time t ∈ [0, T ] and for every v ∈ X

R(t, v) + 〈DxEρ(t, xε(t)) + ε2Mẍε(t) + εVẋε(t), v〉 ≥ 0;
(EBε) for every t ∈ [0, T ]

ε2

2
|ẋε(t)|2

M
+ Eρ(t, xε(t)) +

t
∫

0

R(τ, ẋε(τ )) dτ + ε

t
∫

0

|ẋε(τ )|2
V
dτ

= ε2

2
|xε

1 |2M + Eρ(0, xε
0) +

t
∫

0

∂

∂t
Eρ(τ, xε(τ )) dτ.

Proof By definition of subdifferential we deduce that xε ∈ W 2,1(0, T ; X) is a differential
solution of (3.7) if and only if initial data are attained and for a.e. t ∈ [0, T ] and for every
ṽ ∈ X it holds:

R(t, ṽ) + 〈DxEρ(t, xε(t)) + ε2Mẍε(t) + εVẋε(t), ṽ〉
≥ R(t, ẋε(t)) + 〈DxEρ(t, xε(t)) + ε2Mẍε(t) + εVẋε(t), ẋε(t)〉. (3.8)

We thus conclude if we show that (3.8) is equivalent to (LSε) and (EBε).
We first assume that (3.8) holds true. We fix v ∈ X and we choose ṽ = nv, with n ∈ N;

by means of the one homogeneity of R(t, ·) and letting n → +∞ we deduce the validity
of (LSε). Choosing ṽ = 0 and exploiting (LSε), we instead get the following local energy
balance (also called power balance):

(LEBε) for a.e. time t ∈ [0, T ] it holds
R(t, ẋε(t)) + 〈DxEρ(t, xε(t)) + ε2Mẍε(t) + εVẋε(t), ẋε(t)〉 = 0.

Integrating (LEBε) between 0 and t we finally get (EBε). Indeed we recall that, since xε is
absolutely continuous, the map Eρ(·, xε(·)) is absolutely continuous too and ∂

∂t Eρ(·, xε(·))
is summable in [0, T ].

We now assume that (LSε) and (EBε) hold true. By differentiating (EBε) we easily get
(LEBε); combining it with (LSε) we thus obtain (3.8) and we conclude. ��
Thanks to the energy balance (EBε) we are able to infer the following uniform bound of the
involved energy along a differential solution. As we said before we assume that the initial
data are uniformly bounded with respect to ε since this result will be useful also for the next
sections.

Proposition 3.3 Assume that the initial data satisfy (3.1) and let xε be a differential solution of
(3.7). Then there exists a positive constant˜C� > 0, independent of ε > 0 and ofρ ∈ (0,+∞],
such that:

ε2

2
|ẋε(t)|2

M
+Eρ(t, xε(t)) +

t
∫

0

R(τ, ẋε(τ )) dτ +ε

t
∫

0

|ẋε(τ )|2
V
dτ ≤˜C�, for every t ∈[0, T ].

(3.9)

Proof We denote byFε(t) the left-hand side of (3.9). By means of the energy balance (EBε),
together with the estimates (2.1) and (3.4), we deduce that the following inequality holds
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true for every t ∈ [0, T ]:

Fε(t) = ε2

2
|xε

1 |2M + Eρ(0, xε
0) +

t
∫

0

∂

∂t
Eρ(τ, xε(τ )) dτ ≤ C +

t
∫

0

ω(Eρ(τ, xε(τ )))γ (τ ) dτ

≤ C +
t
∫

0

ω(Fε(τ ))γ (τ ) dτ.

We now conclude by means of the Grönwall Lemma 3.1. ��

As a simple corollary we deduce:

Corollary 3.4 Assume that the initial data satisfy (3.1) and let xε be a differential solution of
(3.7). Then there exists a positive constant C� > 0, independent of ε > 0 and ofρ ∈ (0,+∞],
such that:

(i) max
t∈[0,T ] |x

ε(t)| < C�;

(ii)
∫ T

0
R(τ, ẋε(τ )) dτ < C�;

(iii) max
t∈[0,T ] ε|ẋ

ε(t)|M < C�.

Proof The bounds in (ii) and (iii) simply follow from (3.9). To get (i) we recall that xε belongs
to W 2,1(0, T ; X), and hence by using (R2) we obtain:

|xε(t)| ≤ |xε
0 | + |xε(t) − xε

0 | ≤ � +
t
∫

0

|ẋε(τ )| dτ ≤ � + 1

α∗

t
∫

0

R(τ, ẋε(τ )) dτ.

We indeed notice that ẋε(t) is forced to live in K for almost every time t ∈ [0, T ], otherwise
∂vR(t, ẋε(t)) would be empty or alternatively (ii) could not be valid. Thus we conclude by
(ii). ��

Let us now recall a notion of normal cone suitable to our framework. For a convex subset
K ⊂ X and a positive-definite, symmetric linear operator A : X → X∗, we denote with
NA

K(x) the normal cone to the set K in the point x ∈ K with respect to the scalar product
〈A·, ·〉 : X × X → R, namely

NA

K(x) := {v ∈ X | 〈Av, x̃ − x〉 ≤ 0 for every x̃ ∈ K}. (3.10)

If x instead does not belong to K, for convention we set NA

K(x) := ∅. If finally the scalar
product is the one endowed to the space, we simply write NK(x).

We also recall an existence and uniqueness result for the second order perturbed sweeping
process, see [2].

Theorem 3.5 Let E be an Euclidean space, K ⊆ E a non-empty closed convex subset, and
F : [0, T ] × E ×K ⇒ E an upper semicontinuous set-valued map with non-empty compact
convex values and satisfying for every (t, η, μ) ∈ [0, T ] × E × K the bound

F(t, η, μ) ⊆ β(1 + |η|E + |μ|E )BE
1 ,
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whereBE
1 is the open unitary ball in E centered at the origin. Then, for every (η0, η1) ∈ E×K,

the problem
{

η̈(t) ∈ −NK(η̇(t)) − F(t, η(t), η̇(t)),

η(0) = η0, η̇(0) = η1,
(3.11)

admits at least one differential solution, namely a function η ∈ W 2,1(0, T ; E) such that the
differential inclusion holds true for a.e. t ∈ [0, T ] and the initial data are attained. Moreover
it actually holds η ∈ W 2,∞(0, T ; E).

Theorem 3.6 Under the assumptions of Theorem 3.5, suppose in addition that there exists
an open set U ⊆ E such that

(j) every solution η of (3.11) satisfies η(t) ∈ U for every t ∈ [0, T ];
(jj) there exists a function k ∈ L1(0, T ) such that

〈 f1 − f2, μ1 − μ2〉E ≥ −k(t)(|η1 − η2|2E + |μ1 − μ2|2E ),

for a.e. t ∈ [0, T ] and for every η1, η2 ∈ U , μ1, μ2 ∈ K, f1 ∈ F(t, η1, μ1), f2 ∈
F(t, η2, μ2).

Then the solution of (3.11) provided by Theorem 3.5 is unique.

The existence Theorem 3.5 is a special case of [2, Theorem 3.1]. The uniqueness The-
orem 3.5 is instead a straightforward corollary of [2, Theorem 3.3], noticing that once a
uniform bound (j) on the solutions is available, it is sufficient to require (jj) in a region U
where the solutions are contained.

In the next proposition we translate these results in our framework, obtaining existence
(and uniqueness) of solutions to (3.7), but only for ρ ∈ (0,+∞).

Proposition 3.7 Fix ε > 0. For every initial values xε
0 ∈ X and xε

1 ∈ K , and for every
ρ ∈ (0,+∞), there exists at least a differential solution xε ∈ W 2,∞(0, T ; X) to problem
(3.7).

Moreover, let us assume that also (E7) holds. We take � := max{∣∣xε
0

∣

∣ ,
∣

∣εxε
1

∣

∣} and take
C� as in Corollary 3.4. Then for every ρ ∈ (C�,+∞) the solution of (3.7) is unique.

Proof Let us recall that, since by (R4) the domains of χK andRfinite cannot be separated, we
can write

∂vR(t, v) = ∂χK (v) + ∂vRfinite(t, v), for every (t, v) ∈ [0, T ] × X ,

cf. [59, Corollary 10.9]. Hence we can rewrite problem (3.7) as
{

ε2Mẍε(t) ∈ −∂χK (ẋε(t)) − ˜F(t, xε(t), ẋε(t)),

xε(0) = xε
0, ẋε(0) = xε

1,
(3.12)

where

˜F(t, u, v) := εVv + ∂vRfinite(t, v) + DxEρ(t, u).

We now observe that, by (IV) and (V) in Corollary 2.4, the map ∂vRfinite : [0, T ]× K ⇒ X∗
has compact, convex, non-empty values and it is upper semicontinuous. Thus trivially also
the map ˜F : [0, T ] × X × K ⇒ X∗ has compact, convex, non-empty values and it is upper
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semicontinuous on the whole domain. Moreover, by (2.2), (IV) in Corollary 2.4 and (3.5),
for every ρ ∈ (0,+∞) there exists a constant β̃ρ > 0 such that

˜F(t, u, v) ⊆ β̃ρ(1 + |v|)BX∗
1 , for every (t, u, v) ∈ [0, T ] × X × K , (3.13)

where BX∗
1 is the open unitary ball in X∗ centered at the origin.

Let us now set Qε := ε−2
M

−1 : X∗ → X , so that Qε is a positive-definite, symmetric
linear operator. Using also that K is a closed, convex cone, for every η ∈ X∗ we have

∂χK (Qεη) = {ξ ∈ X∗ | χK (Qεη) + 〈ξ, x〉 ≤ χK (Qεη + x) for every x ∈ X}
= {ξ ∈ X∗ | χK (Qεη) + 〈ξ,Qεζ

〉 ≤ χK (Qε(η + ζ )) for every ζ ∈ X∗}
= {ξ ∈ X∗ | χMK (η) + 〈ξ,Qεζ

〉 ≤ χMK (η + ζ ) for every ζ ∈ X∗}
= {ξ ∈ X∗ | χMK (η) + 〈ξ,Qε(η̃ − η)

〉 ≤ χMK (η̃) for every η̃ ∈ X∗}
= NQ

ε

MK (η).

In the third step we have used the fact that K is a cone to neglect the factor ε2. The last step
follows by observing that both sets are empty if η /∈ MK , since the inequality would fail for
η̃ ∈ MK . On the other hand, if η ∈ MK , the inequality is always true for η̃ /∈ MK , while it
is equivalent to 〈ξ,Qε(η̃ − η)〉 ≤ 0 for η̃ ∈ MK .

Let us now introduce the Euclidean space E as the vector space X∗ endowed with the
scalar product 〈·,Qε·〉 with Q

ε as above. By (2.1) we observe that

1

ε
√

M
|η|∗ ≤ |η|E ≤ 1

ε
√

m
|η|∗ , for every η ∈ E . (3.14)

Then, xε is a differential solution of (3.7) if and only if ηε := ε2Mxε is a differential
solution of the following second order perturbed sweeping process on E :

{

η̈ε(t) ∈ −NMK (η̇ε(t)) − F(t, ηε(t), η̇ε(t)),

ηε(0) = ε2Mxε
0, η̇ε(0) = ε2Mxε

1,
(3.15)

where the function F : [0, T ] × E × MK ⇒ E is defined by

F(t, u, v) := ˜F(t,Qεu,Qεv).

We observe that, by (3.14) and the linearity of Qε , we have that the map F has compact,
convex, non-empty values and is upper semicontinuous on the whole domain with respect to
the norm of E . Moreover, by (3.13) and (3.14), for every ρ ∈ (0,+∞) there exists a constant
βρ > 0 such that

F(t, u, v) ⊆ βρ(1 + |v|E )BE
1 , for every (t, u, v) ∈ [0, T ] × E × MK ,

where BE
1 is the unitary ball in E centered at the origin. We have therefore verified all the

hypotheses of Theorem 3.5, hence proving the existence of a solution ηε ∈ W 2,∞(0, T ; E)

of (3.15). Noticing that xε = Q
εηε ∈ W 2,∞(0, T ; X), we complete the first part of the proof.

It remains to show that such a solution is unique. Therefore, let us now consider ρ ∈
(C�,+∞) and assume (E7), with the consequence that also (3.6) holds.

Since to every solution ηε of (3.15) there corresponds a solution xε = Q
εηε of (3.7),

which by Corollary 3.4 is contained in the open ball BX
C�

, we deduce that every solution ηε

of (3.15) is contained in the set U := ε2MBX
C�

, which is open also in the topology of E .
Hence condition (j) of Theorem 3.6 is satisfied.
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We then observe that the function ˜F can be decomposed in two parts. The first part
˜Fa(t, v) := εVv + ∂vRfinite(t, v), at each time t , is included in the subdifferential with
respect to v of a convex function, namely ˜Fa(t, v) ⊆ ∂v[ε 〈Vv, v〉 +Rfinite(t, v)]. Hence by
monotonicity of the subdifferential it holds:

〈

˜f a
1 − ˜f a

2 , v1 − v2
〉 ≥ 0,

for every t ∈ [0, T ], v1, v2 ∈ K , ˜f a
1 ∈ ˜Fa(t, v1), ˜f a

2 ∈ ˜Fa(t, v2). Therefore, taking
μ1 = ε2Mv1 and μ2 = ε2Mv2, we infer that

〈

˜f a
1 − ˜f a

2 , μ1 − μ2
〉

E = 〈 ˜f a
1 − ˜f a

2 ,Qεμ1 − Q
εμ2
〉 = 〈 ˜f a

1 − ˜f a
2 , v1 − v2

〉 ≥ 0,

(3.16)

for every t ∈ [0, T ], μ1, μ2 ∈ MK , ˜f a
1 ∈ ˜Fa(t,Qεμ1), ˜f a

2 ∈ ˜Fa(t,Qεμ2).
Let us now consider the second part ˜Fb(t, u) := DxEρ(t, u) of ˜F . By (3.6) there exists a

function ς̃ρ ∈ L1(0, T ) such that

|˜Fb(t, u1) − ˜Fb(t, u2)|∗ ≤ ς̃ρ(t) |u1 − u2| ,
for a.e. t ∈ [0, T ], and for every u1, u2 ∈ BX

C�
. As before, taking η1 = ε2Mu1 and η2 =

ε2Mu2, we deduce that

|˜Fb(t,Qεη1) − ˜Fb(t,Qεη2)|E ≤ 1

ε
√

m
|˜Fb(t,Qεη1) − ˜Fb(t,Qεη2)|∗

≤ ς̃ρ(t)

ε
√

m
|Qεη1 − Q

εη2| ≤ ς̃ρ(t)

ε2
√

mM
|η1 − η2|E , (3.17)

which therefore holds for a.e. t ∈ [0, T ], and every η1, η2 ∈ U .
Hence, by combining (3.16) and (3.17) we obtain

〈 f1 − f2, μ1 − μ2〉E ≥
〈

˜Fb(t,Qεη1) − ˜Fb(t,Qεη2), μ1 − μ2

〉

E

≥ −|˜Fb(t,Qεη1) − ˜Fb(t,Qεη2)|E |μ1 − μ2|E

≥ − ς̃ρ(t)

2ε2
√

mM
(|η1 − η2|2E + |μ1 − μ2|2E ),

for a.e. t ∈ [0, T ], and for every η1, η2 ∈ U , μ1, μ2 ∈ MK , f1 ∈ F(t, η1, μ1), f2 ∈
F(t, η2, μ2).

Hence also condition (jj) of Theorem 3.6 is satisfied, yielding the uniqueness result of the
proposition. ��
The main result of this section, concerning the original problem (2.3), is a straightforward
corollary of Proposition 3.7. Indeed, we just need to remove the truncation provided by the
parameter ρ.

Theorem 3.8 Fix ε > 0, let M,V be as in Sect. 2, and assume that R satisfies (R4) and
E(t, x) = Esh(t, πZ (x)) satisfies (E1), (E3)–(E5). Then for every initial values xε

0 ∈ X and
xε
1 ∈ K there exists at least a differential solution xε ∈ W 2,∞(0, T ; X) to problem (2.3).

If in addition (E7) holds, then such a solution is unique.

Proof Let us set � := max{∣∣xε
0

∣

∣ ,
∣

∣εxε
1

∣

∣}. Considering the constant C� > 0 given by Corol-
lary 3.4, we fix ρ ∈ (C�,+∞).

We observe that by definition of the truncated energy Eρ the two problems (2.3) and (3.7)
coincide in the region (t, xε, ẋε) ∈ [0, T ]×BX

ρ ×K ; moreover, byCorollary 3.4, the solutions
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of both initial value problems are contained in that region. Hence, the solutions of (2.3)
and (3.7) coincide. Since, by Proposition 3.7, problem (3.7) admits at least one differential
solution xε , which additionally satisfies xε ∈ W 2,∞(0, T ; X) and which is unique if also
(E7) is satisfied, so does the original dynamic problem (2.3). ��

4 R-absolutely continuous functions and functions of bounded
R-variation

In this section we introduce and present the main properties of the analogue of absolutely
continuous (vector-valued) functions and of functions of bounded variation when the norm
| · | is replaced by a general time-dependent functional R. These two notions will be useful
to deal with both problems (2.3) and (2.5). Here we consider the case of a general

reflexive Banach space X ,

and instead of limiting ourselves to potentialsR satisfying (R4) we consider the larger class
ofψ-regular functionals used in [29] (but still with the additional coercivity assumption (ψ5),
see Remark 4.2 below). This choice is motivated by two reasons: first of all we provide new
results which are not investigated in [29] (see the behaviour of theR-variation with respect to
the right- and left-limits of Proposition 4.10, or the improvement from pointwise to uniform
convergence of Lemma 4.13), and thuswe prefer to state them in the broadest possible setting;
furthermore all the proofs here presented would not be simplified by restricting to our more
specific framework. We also want to recall that a more general theory can be developed even
in a metric setting, see for instance [6], Chapter 1, for absolutely continuous functions, or
[53] for functions of bounded variation.

We follow thepresentationgiven in [29] for the definition and themain features of functions
of boundedR-variation whenR depends on time, and we provide some more properties we
will need during the paper.We alsomention [21], where an analogous notion of total variation
associated with a time-dependent dissipation potential is analysed, under some additional
monotonicity assumptions. We finally refer to the Appendix of [14] for a very well detailed
presentation of the classical case in which R is the norm of the Banach space X .

We thus consider a reflexive Banach space X and a ψ-regular functionR : [a, b] ×X →
[0,+∞] in the sense of the following Definition, see also [29]:

Definition 4.1 Given an admissible function ψ : X → [0,+∞], namely satisfying

(ψ1) ψ(0) = 0;
(ψ2) ψ is convex;
(ψ3) ψ is positively homogeneous of degree one;
(ψ4) ψ is lower semicontinuous;
(ψ5) there exists a positive constant c > 0 such that c| · | ≤ ψ(·),
we say that R : [a, b] × X → [0,+∞] is ψ-regular if:

• for every t ∈ [a, b], R(t, ·) is convex, positively homogeneous of degree one, lower
semicontinuous, and satisfies R(t, 0) = 0;

• there exist two positive constants α∗ ≥ α∗ > 0 for which

α∗ψ(v) ≤ R(t, v) ≤ α∗ψ(v), for every (t, v) ∈ [a, b] × X ; (4.1)

• there exists a nonnegative and nondecreasing function σ ∈ C0([0, b − a]) satisfying
σ(0) = 0 and for which

|R(t, v) − R(s, v)| ≤ ψ(v)
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σ(t − s), for every a ≤ s ≤ t ≤ b and for every v ∈ X s.t. ψ(v) < +∞. (4.2)

Remark 4.2 We again notice that this definition actually differs from the one considered in
[29] due to the additional assumption (ψ5), which gives coercivity. Most of the results of this
section are however valid without (ψ5), as the Reader can check from the proofs; we always
stress the points where it is really necessary.

We point out that ifR satisfies (R4), then it is ψ K -regular (with an absolutely continuous σ )
with respect to the admissible function

ψ K (v) = χK (v) + |v| , (4.3)

where K is given by (R4). On the other hand, any ψ-regular functionalR can be written as

R(t, v) = χ{ψ<+∞}(v) + R|{ψ<+∞}(t, v),

where R|{ψ<+∞} has finite values due to (4.1) and the set {ψ < +∞} is a nonempty convex
cone thanks to (ψ1)–(ψ3). However, in general, this set is not closed and moreover the
second inequality in (4.1) cannot be improved to (R2), since no bounds from above for ψ

are available. These are the main differences between ψ-regular functionals and functionals
satisfying (R4).

We first deal with the notion of R-absolutely continuous functions:

Definition 4.3 We say that a function f : [a, b] → X is R-absolutely continuous, and we

write f ∈ ACR([a, b];X ) if f is absolutely continuous and
∫ b

a
R(τ, ḟ (τ )) dτ < +∞.

Our next proposition provides a natural link betweenR-absolutely continuous and classical
absolutely continuous functions.

Proposition 4.4 Given a function f : [a, b] → X , the following are equivalent:

(1) f is R-absolutely continuous;

(2) f is absolutely continuous and
∫ b

a
ψ( ḟ (τ )) dτ < +∞;

(3) there exists a nonnegative function m ∈ L1(a, b) such that:

ψ( f (t) − f (s)) ≤
t
∫

s

m(τ ) dτ, for every a ≤ s ≤ t ≤ b.

Proof The equivalence between (1) and (2) follows by means of (4.1).
Now assume (2). Then for every a ≤ s ≤ t ≤ b we have:

ψ( f (t) − f (s)) = ψ

⎛

⎝

t
∫

s

ḟ (τ ) dτ

⎞

⎠ ≤
t
∫

s

ψ( ḟ (τ )) dτ,

where in the last step we have used Jensen’s inequality combined with the one-homogeneity
of ψ given by (ψ3). Since ψ( ḟ (·)) is summable we obtain (3) with m(t) = ψ( ḟ (t)).

If instead we assume (3), then by (ψ5) we get that f is absolutely continuous, so ḟ is well
defined almost everywhere in [a, b] as a (strong) limit of differential quotients. By means of
(ψ3) and (ψ4) we thus deduce:

ψ( ḟ (τ )) ≤ lim inf
h↘0

ψ( f (τ + h) − f (τ ))

h
≤ lim inf

h↘0

1

h

τ+h
∫

τ

m(θ) dθ = m(τ ), for a.e. τ ∈ [a, b],
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which implies
∫ b

a
ψ( ḟ (τ )) dτ ≤

∫ b

a
m(τ ) dτ < +∞. ��

Remark 4.5 In the special case of a potentialR satisfying (R4), namely whenψ has the form
(4.3), from (2) we deduce that f ∈ ACR([a, b];X ) if and only if f is absolutely continuous
and ḟ (t) ∈ K for almost every time t ∈ [a, b].

Recalling that the notions of R-variation and of functions of bounded R-variation have
already been introduced in Definition 2.9, we make some additional remarks and present
some of their properties.

Remark 4.6 We point out that the limit in (2.7) exists and it does not depend on the fine
sequence of partitions chosen, thus the Definition is well-posed. If R does not depend on
time, the limit in (2.7) can be replaced by a supremum. For a proof of these facts we refer to
[29], Appendix A.

Remark 4.7 (Notation) During this section it will be useful to consider the variation of a
function with respect to the time-independent function R(t̄, ·), namely when the time t = t̄
is frozen. In this case we denote the variation by VR(t̄ )( f ; s, t). We notice that VR(t̄ )( f ; s, t)
can be obtained by replacingR(tk, f (tk) − f (tk−1)) withR(t̄, f (tk) − f (tk−1)) in (2.7), or
by taking the supremum over finite partitions since the frozen potential does not depend on
time.

From the Definition 2.9 we easily notice that (4.1) allows us to deduce that a function
f belongs to BVR([a, b];X ) if and only it it is a function of bounded ψ-variation, i.e.
Vψ( f ; a, b) < +∞; moreover by (ψ5) we deduce that f is a function of bounded variation
in the classical sense. As a byproduct, see for instance [53] or the Appendix in [14], we obtain
that any f ∈ BVR([a, b];X ) has at most a countable number of discontinuity points, and at
every t ∈ [a, b] there exist the right- and left- (strong) limits of f , namely:

f +(t) := lim
tk↘t

f (tk), and f −(t) := lim
tk↗t

f (tk). (4.4)

Remark 4.8 Given a function f : [a, b] → X , with a little abuse of notation we will always
consider, and still denote, by f its constant extension to a slightly larger interval (a−δ, b+δ),
for some δ > 0; namely f (t) = f (a) if t ∈ (a − δ, a] and f (t) = f (b) if t ∈ [b, b + δ).
This ensures that the limits in (4.4) are well defined also in t = a, b and in particular it holds
f −(a) = f (a) and f +(b) = f (b).

Remark 4.9 In the particular case in which R satisfies (R4), namely when ψ is given by
(4.3), it is easy to see that f ∈ BVR([a, b];X ) if and only if f has bounded variation (in
the classical sense) and f (t) − f (s) ∈ K for every a ≤ s ≤ t ≤ b.
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Trivially, the R-variation of f is monotone in both entries (see (a) in the next proposition),
thus for every a ≤ s ≤ t ≤ b they are well defined:

VR( f ; s, t+) := lim
tk↘t

VR( f ; s, tk), VR( f ; s, t−) := lim
s≤tk ,tk↗t

VR( f ; s, tk),

VR( f ; s−, t) := lim
sk↗s

VR( f ; sk, t), VR( f ; s+, t) := lim
sk≤t,sk↘s

VR( f ; sk, t),

VR( f ; s−, t+) := lim
sk↗s,tk↘t

VR( f ; sk, tk),

VR( f ; s−, t−) := lim
sk≤tk ,sk↗s,tk↗t

VR( f ; sk, tk),

VR( f ; s+, t+) := lim
sk≤tk ,sk↘s,tk↘t

VR( f ; sk, tk).

Our next proposition gathers all the properties of the R-variation we will need throughout
the paper.

Proposition 4.10 Given a function f : [a, b] → X , the following properties hold true:

(a) for every a ≤ r ≤ s ≤ t ≤ b it holds:

VR( f ; r , t) = VR( f ; r , s) + VR( f ; s, t);
(b) for every a ≤ s ≤ t ≤ b it holds:

VR( f ; s−, t+) = VR( f ; s−, s) + VR( f ; s, t) + VR( f ; t, t+);
(c) if f ∈ BVR([a, b];X ), then for every t ∈ [a, b] the following equalities hold true:

VR( f ; t, t+) = VR(t)( f ; t, t+) = lim
tk↘t

R(t, f (tk) − f (t)), VR( f ; t, t−) = 0,

VR( f ; t−, t) = VR(t)( f ; t−, t) = lim
tk↗t

R(t, f (t) − f (tk)), VR( f ; t+, t) = 0

VR( f ; t−, t−) = 0, VR( f ; t+, t+) = 0;
(d) if f ∈ BVR([a, b];X ), then f +, f − belong to BVR([a, b],X ) and for every a ≤ s ≤

t ≤ b the following inequalities hold true:

VR( f ; s−, t+) ≥ max
{

VR( f +; s−, t+), VR( f −; s−, t+)
}

,

VR( f ; s+, t+) ≥ VR( f +; s, t+),

VR( f ; s−, t−) ≥ VR( f −; s−, t).

Proof For (a) it is enough to take a fine sequence of partions of [r , t] containing s. The proof
of (b) follows easily by (a).

The only nontrivial part in (c) are the two equalities:

VR( f ; t, t+) = VR(t)( f ; t, t+), and VR( f ; t−, t) = VR(t)( f ; t−, t). (4.5)

We prove only the first one, the other being analogous. Exploiting (4.2) we deduce that for
every t ′ > t we have:

|VR( f ; t, t ′) − VR(t)( f ; t, t ′)|≤ lim sup
n→+∞

n
∑

k=1

|R(tk−1, f (tk) − f (tk−1))−R(t, f (tk)− f (tk−1))|

≤ lim sup
n→+∞

n
∑

k=1

ψ( f (tk) − f (tk−1))σ (tk−1 − t)
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≤ Vψ( f ; t, t ′)σ (t ′ − t),

where {tk}n
k=0 is a fine sequence of partitions of [t, t ′]. Letting now t ′ ↘ t we get (4.5).

Concerning the first inequality in (d), it is enough to prove

VR( f ; s′, t ′) ≥ max
{

VR( f +; s′, t ′), VR( f −; s′, t ′)
}

, (4.6)

where s′ < s ≤ t < t ′ are continuity points of f . So we fix δ > 0 and a fine sequence of
partitions of [s′, t ′], denoted as usual by {tk}n

k=0. Then, exploiting the lower semicontinuity
ofR(tk−1, ·) and recalling (4.4) and that f is continuous almost everywhere, for any of these
partitions there exists another partition of [s′, t ′], denoted by {t̃k}n

k=0, consisting of continuity
points of f and such that each point t̃k−1 belongs to [tk−1, tk), which satisfies:

R(tk−1, f +(tk) − f +(tk−1)) ≤ R(tk−1, f (t̃k) − f (t̃k−1)) + δ

n
, for every k = 1, . . . , n.

(4.7)

By summing up the previous inequality over the index k, and using (4.2), we thus get:

n
∑

k=1

R(tk−1, f +(tk) − f +(tk−1)) ≤
n
∑

k=1

R(tk−1, f (t̃k) − f (t̃k−1)) + δ

≤
n
∑

k=1

R(t̃k−1, f (t̃k) − f (t̃k−1)) +
n
∑

k=1

ψ( f (t̃k) − f (t̃k−1))σ (t̃k−1 − tk−1) + δ

≤
n
∑

k=1

R(t̃k−1, f (t̃k) − f (t̃k−1)) + Vψ( f ; s′, t ′) sup
k=1,...n

σ(tk − tk−1) + δ.

By letting first n → +∞ and then δ → 0, recalling (2.8) and the uniform continuity of
σ , we get VR( f ; s′, t ′) ≥ VR( f +; s′, t ′), and arguing in a similar way we also obtain
VR( f ; s′, t ′) ≥ VR( f −; s′, t ′), thus the first inequality in (d) is proved.

We now prove the second inequality of (d). We fix t ′ > t a continuity point of f , we
consider δ > 0 and a fine sequence of partitions of [s, t ′]. As before, for any of these partitions
there exist continuity points t̃k−1 of f such that each point t̃k−1 belongs to (tk−1, tk) and they
satisfy:

n
∑

k=1

R(tk−1, f +(tk) − f +(tk−1))

≤
n
∑

k=1

R(t̃k−1, f (t̃k) − f (t̃k−1)) + Vψ( f ; s′, t ′) sup
k=1,...n

σ(tk − tk−1) + δ

=
n
∑

k=1

R(t̃k−1, f (t̃k) − f (t̃k−1)) + R(s, f (t̃0)− f (s)) − R(s, f (t̃0)− f (s))

+ Vψ( f ; s′, t ′) sup
k=1,...n

σ(tk − tk−1) + δ.

Letting n → +∞, thanks to (2.8) we deduce

VR( f +; s, t ′) ≤ VR( f ; s, t ′) − VR(s)( f ; s, s+) + δ = VR( f ; s+, t ′) + δ.

Letting now δ → 0 and t ′ ↘ t we deduce VR( f ; s+, t+) ≥ VR( f +; s, t+).
The third inequality in (d) follows in a similar way, thus we conclude. ��
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As in the classical case, the inclusion ACR([a, b];X ) ⊆ BVR([a, b];X ) holds true, as
stated in the next proposition:

Proposition 4.11 A function f : [a, b] → X is R-absolutely continuous if and only if it is
of bounded R-variation and the function t �→ VR( f ; a, t) is absolutely continuous. In this
case it holds

VR( f ; s, t) =
t
∫

s

R(τ, ḟ (τ )) dτ, for every a ≤ s ≤ t ≤ b.

Proof Assume f is R-absolutely continuous. We fix a ≤ s ≤ t ≤ b and we consider a fine
sequence of partitions of [s, t]. Thanks to (4.1) and (4.2) we estimate:

n
∑

k=1

R(tk−1, f (tk) − f (tk−1)) ≤
n
∑

k=1

tk
∫

tk−1

R(tk−1, ḟ (τ )) dτ

≤
n
∑

k=1

⎛

⎝

tk
∫

tk−1

R(τ, ḟ (τ )) dτ +
tk
∫

tk−1

ψ( ḟ (τ ))σ (τ − tk−1) dτ

⎞

⎠

≤
t
∫

s

R(τ, ḟ (τ )) dτ + sup
k=1,...n

σ(tk − tk−1)

t
∫

s

ψ( ḟ (τ )) dτ.

Letting n → +∞ (we again recall (2.8)) we deduce

VR( f ; s, t) ≤
t
∫

s

R(τ, ḟ (τ )) dτ, (4.8)

thus f is of bounded R-variation and the R-variation is absolutely continuous.
To obtain also the other implication and the opposite inequality in (4.8) we argue as

follows: first of all we notice that (4.1) implies:

VR( f ; s, t) ≥ α∗Vψ( f ; s, t) ≥ α∗ψ( f (t) − f (s)), for every a ≤ s ≤ t ≤ b, (4.9)

and thus f isR-absolutely continuous by applying Proposition 4.4 (thus (ψ5) here is needed).
To conclude, introducing the notation vR(t) := VR( f ; a, t), we only need to prove that
v̇R(τ ) ≥ R(τ, ḟ (τ )) for almost every τ ∈ [a, b].

With this aim we fix a point τ of differentiability for both vR and f , and we consider
h > 0. By using (4.2) we obtain:

vR(τ + h)−vR(τ )=VR( f ; τ, τ + h) ≥ R(τ, f (τ + h) − f (τ ))−Vψ( f ; τ, τ + h)σ (h).

Hence, letting h → 0 we deduce:

v̇R(τ ) ≥ lim inf
h→0

R
(

τ,
f (τ + h) − f (τ )

h

)

− lim
h→0

1

h
Vψ( f ; τ, τ + h)σ (h)

≥ R(τ, ḟ (τ )),

where the limit vanishes if we pick τ which is also a differentiability point of Vψ( f ; a, ·),
which is absolutely continuous by (4.9). Hence the proof is complete. ��
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Like in the classical case, theR-variation is lower semicontinuous with respect to pointwise
weak convergence, as stated in the following lemma:

Lemma 4.12 Let { f j } j∈N be a sequence of functions from [a, b] to X such that f j (t)⇀ f (t)
weakly for every t ∈ [a, b]. Then one has

VR( f ; s, t) ≤ lim inf
j→+∞ VR( f j ; s, t), for every a ≤ s ≤ t ≤ b.

Proof We only sketch the proof, see the Appendix of [29] for more details. If s = t the
inequality is trivial, thus let us fix a ≤ s < t ≤ b and without loss of generality we assume
lim inf
j→+∞ VR( f j ; s, t) < +∞. We now consider a fine sequence of partitions of [s, t] and,
recalling that convexity plus lower semicontinuity implies weak lower semicontinuity, we
obtain:

n
∑

k=1

R(tk−1, f (tk) − f (tk−1)) ≤ lim inf
j→+∞

n
∑

k=1

R(tk−1, f j (tk) − f j (tk−1)). (4.10)

We now fix j ∈ N and we notice that by subadditivity (ensured by convexity and one
homogeneity), (4.1) and (4.2) we have

n
∑

k=1

R(tk−1, f j (tk) − f j (tk−1)) ≤ VR( f j ; s, t) + Vψ( f j ; s, t) sup
k=1,...n

σ(tk − tk−1)

≤ VR( f j ; s, t)

(

1 + 1

α∗
sup

k=1,...n
σ(tk − tk−1)

)

.

(4.11)

Combining (4.10) and (4.11) we hence deduce:

n
∑

k=1

R(tk−1, f (tk) − f (tk−1)) ≤ lim inf
j→+∞ VR( f j ; s, t)

(

1 + 1

α∗
sup

k=1,...n
σ(tk − tk−1)

)

.

Letting n → +∞ and recalling (2.8) we conclude. ��
Wefinally state and prove a useful generalisation in BVR([a, b];X ) of the following classical
result: a sequence of nondecreasing and continuous scalar functions pointwise converging to
a continuous function (in a compact interval) actually converges uniformly.

Lemma 4.13 Let { f j } j∈N ⊆ BVR([a, b];X ) be a sequence of functions pointwise strongly
converging to f ∈ BVR([a, b];X ). Assume that:

• the functions VR( f j ; a, ·) are continuous in [a, b] for every j ∈ N and VR( f ; a, ·) is
continuous in [a, b];

• lim
j→+∞ VR( f j ; a, t) = VR( f ; a, t), for every t ∈ [a, b].

Then the (strong) convergence of f j to f is actually uniform in [a, b].

Proof We denote for simplicity v
j
R(t) := VR( f j ; a, t) and vR(t) := VR( f ; a, t). By

our assumptions and since the R-variation is nondecreasing, we deduce that {v j
R} j∈N is

a sequence of nondecreasing and continuous functions pointwise converging to the nonde-
creasing continuous function vR; this implies that the convergence is actually uniform in
[a, b].
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We now fix s, t ∈ [a, b] and we estimate by using (ψ5) and (4.1):

cα∗| f j (t) − f j (s)| ≤ |v j
R(t) − v

j
R(s)|

≤ |vR(t) − vR(s)| + |v j
R(t) − vR(t)| + |v j

R(s) − vR(s)|
≤ |vR(t) − vR(s)| + 2 max

τ∈[a,b] |v
j
R(τ ) − vR(τ )|.

Since v
j
R uniformly converges to vR and vR is (uniformly) continuous on [a, b], we get that

for every ε > 0 there exist jε ∈ N and δε > 0 such that, assuming |t − s| ≤ δε , it holds:

| f j (t) − f j (s)| ≤ ε

3
, for every j > jε. (4.12)

So we fix ε > 0 and we consider a finite partition of [a, b] of the form a = τ0 < τ1 <

· · · < τNε = b such that max
k=1,...Nε

(τk − τk−1) ≤ δε . This means that for every t ∈ [a, b] there
exists a point of this partition, denoted by τ(t), for which |t − τ(t)| ≤ δε . Without loss of
generality we can assume that δε is also the treshold given by the (uniform) continuity of f
(indeed notice that f is continuous since vR is continuous by assumption). Thus, by means
of (4.12) we deduce that for every j > jε and for every t ∈ [a, b] we have:

| f j (t) − f (t)| ≤ | f j (t) − f j (τ (t))| + | f j (τ (t)) − f (τ (t))| + | f (t) − f (τ (t))|
≤ ε

3
+ max

k=0,...,Nε

| f j (τk) − f (τk)| + ε

3
.

Since the maximum in the above estimate involves only a finite number of terms, by means
of the assumption of pointwise convergence and by considering a possibly greater Jε ≥ jε
we conclude that for every t ∈ [a, b] it holds

| f j (t) − f (t)| ≤ ε, for every j > Jε,

and we conclude. ��

5 Differential and energetic solutions for the rate-independent
problem

In this section we discuss the rate-independent problem (2.5) and in particular the notion of
energetic solution, which we recalled in Definition 2.10. Hence all the assumptions for the
rate-independent problem (2.5), namely (E1)–(E5) and (R4), hold here. The main purpose
of this section is to prove temporal regularity of the energetic solutions to (2.5), which we
obtain in Proposition 5.7. Such regularity will allow us to deduce the equivalence between
the two notions of energetic and differential solutions. We also present some well known
cases in which uniqueness for energetic (and differential) solutions holds; we point out that
for a general elastic energy, as the one we consider here, the question of uniqueness is still
open.

To start, we notice that, in the rate-independent setting, it is possible to provide a char-
acterisation of differential solutions analogous to that of Proposition 3.2 for the dynamic
problem. In fact, convexity leads to a better result, which also clarifies Definition 2.10 of
energetic solutions.

Proposition 5.1 A function x ∈ AC([0, T ]; X) is a differential solution of the rate-
independent problem (2.5) if and only if the initial position is attained and one of the following
two equivalent conditions is satisfied:
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(1)

{

(LS) R(t, v) + 〈DxE(t, x(t)), v〉 ≥ 0 for every t ∈ [0, T ] and for every v ∈ X;
(LEB) R(t, ẋ(t)) + 〈DxE(t, x(t)), ẋ(t)〉 = 0 for a.e. t ∈ [0, T ];

(2)

⎧

⎨

⎩

(GS) E(t, x(t)) ≤ E(t, v) + R(t, v − x(t)) for every t ∈ [0, T ] and v ∈ X;
(EB) E(t, x(t))+

∫ t

0
R(τ, ẋ(τ )) dτ =E(0, x0) +

∫ t

0

∂

∂t
E(τ, x(τ )) dτ for every t ∈[0, T ].

Proof The fact that x ∈ AC([0, T ]; X) is a differential solution of (2.5) if and only if the
initial position is attained and (1) is fulfilled follows by arguing as in the proof of Propo-
sition 3.2. Notice that the passage from almost every to every process time is granted by
continuity. We only need to show that (1) and (2) are equivalent; first of all we notice that
(LEB) is equivalent to (EB) since we can obtain the first one by differentiating the second
one. The fact that (GS) implies (LS) follows since R(t, ·) is one homogeneous, while the
contrary follows since the function v �→ E(t, x(t) + v) is convex by (E2). ��

Remark 5.2 As the Reader can check from the proof, convexity assumption (E2) is needed
only to deduce the global stability (GS) from the local one (LS).

Remark 5.3 We point out that, by (EB), any differential solution x of (2.5) is actually R-
absolutely continuous. In particular, due to Proposition 4.11, it is of boundedR-variation and
there holds VR(x; 0, t) = ∫ t

0 R(τ, ẋ(τ )) dτ ; thus (WEB) is satisfied and so x is an energetic
solution (since in our convex context (GS) is always fulfilled by differential solutions).

We now pass to the main object of this section, namely the temporal regularity of energetic
solutions. The argument follows the already consolidated ideas of [44], [50], [51], and [52];
the first step exploits uniform convexity to improve the estimate furnished by the global
stability condition (GS). However, since in our setting uniform convexity holds only for the
(shape-)restricted energy Esh, we need to introduce also the notion of restricted dissipation
potential from [27].

Given any functional � : X → [0,+∞] we thus define its (shape-)restricted version
�sh : Z → [0,+∞] in the following way:

�sh(z) := inf{�(x) | x ∈ X and πZ (x) = z}. (5.1)

The following properties are a straightforward consequence of the definition of �sh:

• if �1 ≤ �2 on X , then �1
sh ≤ �2

sh on Z ;
• �sh(πZ (x)) ≤ �(x) for every x ∈ X ;
• if � is positively homogeneous of degree one, then �sh is positively homogeneous of

degree one.

Notice that not all the properties ofR are inherited byRsh: for instance, to obtain an upper
bound analogous to (II) in Corollary 2.4 it is necessary to require (R5), as we show in the
following lemma.

Lemma 5.4 Suppose in addition that R satisfies (R5). If (t, z) ∈ [0, T ] × Z is such that
Rsh(t, z) < +∞, then

Rsh(t, z) ≤ α∗CK |z|Z ,

with α∗ and CK as in (R2) and (R5), respectively.
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Proof Since Rsh(t, z) < +∞, there exists x̃ ∈ K such that πZ (x̃) = z. Thus, by (R5) it is
possible to select this x̃ in such a way that |x̃ | ≤ CK |z|Z . Hence, recalling Corollary 2.4, we
have

Rsh(t, z) ≤ R(t, x̃) ≤ α∗ |x̃ | ≤ α∗CK |z|Z ,

and we conclude. ��
Wenow prove that the global stability condition (GS) is actually equivalent to an enhanced

version of stability.

Lemma 5.5 (Improved Stability) Fix t ∈ [0, T ]. If x∗ ∈ X satisfies

E(t, x∗) ≤ E(t, x) + R(t, x − x∗), for every x ∈ X , (5.2)

then also the following stronger version of stability holds true:

E(t, x∗) + μ

2
|πZ (x∗) − πZ (x)|2Z ≤ E(t, x) + Rsh(t, πZ (x) − πZ (x∗)), for every x ∈ X .

(5.3)

Proof From the definition of restricted dissipation potential (5.1) and recalling that
E(t, ·) = Esh(t, πZ (·)), we deduce that (5.2) implies:

E(t, x∗) ≤ E(t, x) + Rsh(t, πZ (x) − πZ (x∗)), for every x ∈ X . (5.4)

Furthermore, by means of (E2) we know that for every x1, x2 ∈ X and for every θ ∈ (0, 1)
it holds:

E(t, θx1 + (1 − θ)x2) ≤ θE(t, x1) + (1 − θ)E(t, x2) − μ

2
θ(1 − θ)|πZ (x1) − πZ (x2)|2Z .

(5.5)

We now fix x ∈ X and we choose θx + (1− θ)x∗ as competitor for x∗ in (5.4); by using the
one-homogeneity of Rsh(t, ·), the linearity of πZ , and (5.5), we get:

E(t, x∗) ≤ E(t, θx + (1 − θ)x∗) + Rsh(t, θ(πZ (x) − πZ (x∗)))

≤ θE(t, x) + (1 − θ)E(t, x∗) − μ

2
θ(1 − θ)

∣

∣πZ (x) − πZ (x∗)
∣

∣

2
Z

+ θRsh(t, πZ (x) − πZ (x∗)).

By subtracting E(t, x∗) from both sides and dividing by θ we hence obtain:

0 ≤ E(t, x) − E(t, x∗) − μ

2
(1 − θ)

∣

∣πZ (x) − πZ (x∗)
∣

∣

2
Z + Rsh(t, πZ (x) − πZ (x∗)).

We conclude letting θ ↘ 0. ��
The next lemma will be used in the proof of Proposition 5.7.

Lemma 5.6 Let (V , ‖·‖) be a normed space and let f : [a, b] → V be a bounded measurable
function such that:

‖ f (t) − f (s)‖2 ≤
t
∫

s

‖ f (t) − f (τ )‖g(τ )dτ + ‖ f (t) − f (s)‖
t
∫

s

h(τ )dτ,

for every a ≤ s ≤ t ≤ b, (5.6)

123



191 Page 32 of 54 P. Gidoni, F. Riva

for some nonnegative g, h ∈ L1(a, b). Then it holds:

‖ f (t) − f (s)‖ ≤
t
∫

s

(

g(τ ) + h(τ )
)

dτ, for every a ≤ s ≤ t ≤ b.

Proof Fix t ∈ [a, b]. For s ∈ [a, t] we define the functions βt (s) := ‖ f (t) − f (s)‖ and
βt (s) := sup

θ∈[s,t]
βt (θ), where the latter is finite since f is bounded.

We now fix s ∈ [a, t] and, by using (5.6), for every θ ∈ [s, t] we hence obtain:

βt (θ)2 ≤
t
∫

θ

βt (τ )g(τ ) dτ + βt (θ)

t
∫

θ

h(τ ) dτ

≤ βt (s)

t
∫

s

(

g(τ ) + h(τ )
)

dτ,

which implies

βt (s)
2 ≤ βt (s)

t
∫

s

(

g(τ ) + h(τ )
)

dτ, for every a ≤ s ≤ t ≤ b.

Since βt (s) ≤ βt (s), we conclude. ��
We are now in a position to state and prove the main result of this section:

Proposition 5.7 Assume that R satisfies (R4) and E(t, x) = Esh(t, πZ (x)) satisfies (E1)–
(E5). Then any energetic solution x for (2.5) is continuous.

Suppose in addition that (R5) holds or, alternatively, that R does not depend on time.
Then x is R–absolutely continuous and, therefore, a differential solution of (2.5).

Proof We fix 0 ≤ s ≤ t ≤ T ; since x satisfies (GS) we can pick x(t) as a competitor for
x(s) in (5.3), getting:

μ

2
|πZ (x(t)) − πZ (x(s))|2Z
≤ E(s, x(t)) + Rsh(s, πZ (x(t)) − πZ (x(s))) − E(s, x(s))

= E(s, x(t)) − E(t, x(t)) + E(t, x(t)) − E(s, x(s)) + Rsh(s, πZ (x(t)) − πZ (x(s)))

=
t
∫

s

( ∂

∂t
E(τ, x(τ ))− ∂

∂t
E(τ, x(t))

)

dτ + Rsh(s, πZ (x(t))−πZ (x(s))) − VR(x; s, t),

where for the last equality we exploited (WEB).
We recall that x is bounded since it belongs to BVR([0, T ]; X); thus there exists R > 0

such that |x(t)| ≤ R for every t ∈ [0, T ]. Hence we can use (E5) and continue the above
inequality:

μ

2
|πZ (x(t))−πZ (x(s))|2Z

≤
t
∫

s

|πZ (x(t))−πZ (x(τ ))|Z ηR(τ ) dτ + Rsh(s, πZ (x(t))−πZ (x(s))) − VR(x; s, t).
(5.7)
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To estimate the term outside the integral we exploit (R2) and (R3), getting:

VR(x; s, t) ≥ VR(s)(x; s, t) − V (x; s, t)

t
∫

s

ρ(τ) dτ

≥
⎛

⎝1 − 1

α∗

t
∫

s

ρ(τ) dτ

⎞

⎠ VR(s)(x; s, t).

The above inequality finally implies:

VR(x; s, t) ≥
⎛

⎝1 − 1

α∗

t
∫

s

ρ(τ) dτ

⎞

⎠Rsh(s, πZ (x(t)) − πZ (x(s))). (5.8)

Indeed, if the term within parentheses is negative the inequality is trivial; otherwise we
observe that VR(s)(x; s, t) ≥ R(s, x(t) − x(s)) ≥ Rsh(s, πZ (x(t)) − πZ (x(s))).

By plugging (5.8) into (5.7) we thus obtain

μ

2
|πZ (x(t))−πZ (x(s))|2Z

≤
t
∫

s

|πZ (x(t))−πZ (x(τ ))|Z ηR(τ ) dτ + 1

α∗

⎛

⎝

t
∫

s

ρ(τ) dτ

⎞

⎠Rsh(s, πZ (x(t))−πZ (x(s))).

(5.9)

Since x is bounded, we deduce that |πZ (x(t)) − πZ (x(τ ))|Z is bounded by a constant inde-
pendent of t and τ . Moreover, by (II) in Corollary 2.4, we have

Rsh(s, πZ (x(t)) − πZ (x(s))) ≤ R(s, x(t) − x(s)) ≤ VR(s)(x; s, t)

≤ α∗

α∗
VR(x; s, t) ≤ α∗

α∗
VR(x; 0, T ).

Hence, from estimate (5.9) we infer:

|πZ (x(t)) − πZ (x(s))|Z ≤ C

⎛

⎝

t
∫

s

(

ηR(τ ) + ρ(τ)) dτ

⎞

⎠

1
2

,

for some constant C > 0, and thus πZ ◦ x is continuous from [0, T ] to Z . Since E(t, x(t)) =
Esh(t, πZ (x(t))) and Esh is continuous in [0, T ] × Z by (E1) and (E3), we easily deduce that
t �→ E(t, x(t)) is continuous too. Thus by (WEB) we obtain that the R-variation of x is
continuous as a function of t ∈ [0, T ]; by employing (c) in Proposition 4.10 together with
(R2), we finally obtain that x itself is continuous too.

Let us now prove the R-absolute continuity of x under the stronger assumptions (R5) or
R autonomous. The first step is to show that both the alternative assumptions imply

|πZ (x(t)) − πZ (x(s))|Z ≤ C

t
∫

s

(

ηR(τ ) + ρ(τ)
)

dτ, for every 0 ≤ s ≤ t ≤ T ,

(5.10)
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for some constant C > 0. With this aim we notice that, in the case whereR does not depend
on time, the difference of the last two terms on the right-hand side of (5.7) is nonpositive,
since in this case trivially it holds

Rsh(πZ (x(t)) − πZ (x(s))) ≤ R(x(t) − x(s)) ≤ VR(x; s, t).

Thus (5.10) follows, actually with only ηR inside the integral, from Lemma 5.6 applied to
this improved version of (5.7).

If insteadR depends on time, but satisfies (R5), we can apply Lemma 5.4 to the rightmost
term of (5.9) and then directly apply Lemma 5.6 to obtain (5.10).

Now that we have obtained (5.10) in both the alternative cases, the second step is to deduce
R-absolute continuity. Firstly, we deduce from (5.10) that the function πZ ◦ x is absolutely
continuous from [0, T ] into Z . We now prove that t �→ E(t, x(t)) is an absolutely continuous
function. With this aim we fix 0 ≤ s ≤ t ≤ T and we estimate:

|E(t, x(t)) − E(s, x(s))| ≤ |E(t, x(t)) − E(t, x(s))| + |E(t, x(s)) − E(s, x(s))|

≤ CR |πZ (x(t)) − πZ (x(s))|Z +
t
∫

s

∣

∣

∣

∣

∂

∂t
E(τ, x(s))

∣

∣

∣

∣

dτ

≤ CR |πZ (x(t)) − πZ (x(s))|Z +
t
∫

s

ω(E(τ, x(s)))γ (τ ) dτ.

The second term on the right-hand side has been estimated using (E4); instead for the first
term we have used the fact that x is bounded by some R > 0 and, by (E3) and compactness,

Esh(t, ·) is Lipschitz continuous onBZ
R with some constantCR , which can be taken uniformly

in t ∈ [0, T ]. Moreover, since E is bounded on [0, T ] × BX
R by continuity, from the above

inequality we deduce that:

|E(t, x(t))−E(s, x(s))| ≤ CR |πZ (x(t))−πZ (x(s))|Z

+ ω(MR)

t
∫

s

γ (τ) dτ, for every 0 ≤ s ≤ t ≤ T .

Thus we have proved that t �→ E(t, x(t)) is absolutely continuous. We now conclude since
by using (WEB) we have:

VR(x; s, t) = E(s, x(s)) − E(t, x(t)) +
t
∫

s

∂

∂t
E(τ, x(τ )) dτ, for every 0 ≤ s ≤ t ≤ T ,

and thus, by using Proposition 4.11, x is R-absolutely continuous since ∂
∂t E(·, x(·)) ∈

L1(0, T ) thanks to (E4). ��
We conclude this section by listing some of the known important cases in which the

rate-independent problem (2.5) admits at most one solution. In the general framework the
issue of uniqueness is not completely clear yet. We first discuss the case dim Z = dim X ,
corresponding to a coercive energy E .
Lemma 5.8 Assume that dim Z = dim X, R satisfies (R4) and E(t, x) = Esh(t, πZ (x))

satisfies (E1)–(E5). Then each of the following additional assumptions is a sufficient condition
for uniqueness of energetic solutions to (2.5):
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(U1) R does not depend on time and Esh belongs to C3([0, T ] × Z);
(U2) R does not depend on time, Esh(t, z) = V(z) − 〈g(t), z〉 with V strictly convex,

g ∈ AC([0, T ]; Z∗), and the stable sets

S(t) = {z ∈ Z | Esh(t, z) ≤ Esh(t, w) + R(w − z) for every w ∈ Z},
are convex for every t ∈ [0, T ];

(U3) K = X and Esh satisfies (QE) with �sh ∈ W 1,∞(0, T ; Z).

Proof The case when R does not depend on time is well studied; the proof of uniqueness
under (U1) or (U2), and several discussions on their applicability, can be found for instance
in [44, Theorems 4.1 and 4.2], or [50, Section 3.4.4], or [51, Theorems 6.5 and 7.4]. Case
(U3) has been proved in [29, Theorem 4.7]. ��

The locomotion case dim Z < dim X has been deeply analysed in [27] in the case of
quadratic energies; in particular we mention Theorem 4.3 therein for the uniqueness result,
and Example 3.2 to illustrate the necessity of condition (*) below. We present here a gener-
alized result applying the very same argument.

Lemma 5.9 Assume that R satisfies (R4) and E(t, x) = Esh(t, πZ (x)) satisfies (E1)–(E5).
Suppose in addition that at least one of (U1), (U2) or (U3) holds, and that for almost every
t ∈ [0, T ] we have

(*) for every z ∈ Z with Rsh(t, z) < +∞, there exists a unique x ∈ X such that πZ (x) = z
and

Rsh(t, z) = R(t, x) < R(t, v), for every v �= x such that πZ (v) = z.

Then the differential solution to (2.5) is unique. In particular, since in each case we can apply
Proposition 5.7, uniqueness holds true also for energetic solutions.

Proof It is well known that x(t) is a differential solution of (2.5) if and only if it satisfies the
initial condition and the variational inequality

〈DxE(t, x(t)), v − ẋ(t)〉 + R(t, v) − R(t, ẋ(t)) ≥ 0, for every v ∈ Xanda.e.t ∈ [0, T ].
(5.11)

Writing z(t) := πZ (x(t)), inequality (5.11) can be equivalently split in the two conditions

Rsh(t, ż(t)) = R(t, ẋ(t)) ≤ R(t, v),

for every v ∈ X such thatπZ (v) = ż(t)and a.e. t ∈ [0, T ]; (5.12)

〈DzEsh(t, z(t)), w − ż(t)〉Z + Rsh(t, w) − Rsh(t, ż(t)) ≥ 0,

for every w ∈ Z and a.e. t ∈ [0, T ]. (5.13)

Following the same argument of [27, Lemmata 2.1 and 4.1], it can be observed that the
functional Rsh, defined according to (5.1), inherits the regularity properties (I) and (III) of
Corollary 2.4, with also (II) if K = X . These, combined with either (U1), or (U2), or (U3),
which holds, allow us to apply the results mentioned in the proof of the previous lemma, to
obtain the uniqueness of a solution z(t) of (5.13). Hence, if two differential solutions x1, x2
of (2.5) exist, they must satisfy πZ (ẋ1(t)) = πZ (ẋ2(t)) = ż(t) almost everywhere. This,
combined with (5.12), implies that R(t, ẋ1(t)) = R(t, ẋ2(t)) a.e., in contradiction with (*),
since R(t, ẋ(t)) < +∞ a.e. along solutions. Therefore the differential solution of (2.5) is
unique. ��
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6 Vanishing-inertia limit

This section is devoted to the proof of the main result of the paper, namely we discuss the
convergence as ε goes to 0 of a differential solutions xε of the dynamic problems (2.3), given
by Theorem 3.8, to a (energetic or differential) solution of the rate-independent problem
(2.5).

Hence in this section we are assuming all the basic hypotheses of both the dynamic
and rate-independent problems: X is a finite-dimensional normed space, M and V are as in
Sect. 2, E(t, x) = Esh(t, πZ (x)) satisfies (E1)–(E5) and R satisfies (R4). We however point
out that (E2), i.e. convexity, will not be necessary for the first part of the vanishing-inertia
analysis, as stressed in Remark 6.4. Moreover we assume that the initial velocity xε

1 satisfies
the admissibility condition (2.4).

We proceed as follows. Firstly, we use the uniform bound on the energy of xε, obtained
in Proposition 3.3, to deduce the existence of a convergent subsequence by means of a
compactness argument involving Helly’s Selection Theorem. Then, we prove that the limit
obtained from the subsequence is actually an energetic (and thus, from Proposition 5.7, a
differential) solution of the rate-independent problem (2.5). The main results are collected
in Theorems 6.8 and 6.9.

Theorem 6.1 Assume that xε
0 and εxε

1 are uniformly bounded, namely (3.1) is satisfied. Then
there exists a subsequence ε j ↘ 0 and a function x ∈ BVR([0, T ]; X) such that:

(a) lim
j→+∞ xε j (t) = x(t), for every t ∈ [0, T ];

(b) VR(x; s, t) ≤ lim inf
j→+∞

∫ t

s
R(τ, ẋε j (τ )) dτ , for every 0 ≤ s ≤ t ≤ T ;

(c) lim
j→+∞ ε j |ẋε j (t)|M = 0, for every t ∈ (0, T ] \ Jx , where Jx is the jump set of the limit

function x.

Proof By the uniform bounds (i) and (ii) of Corollary 3.4 together with (R2), the family
{xε}ε>0 is uniformly equibounded with uniformly equibounded variation. By means of the
classical Helly’s Selection Theorem we get the existence of a subsequence ε j ↘ 0 and
a function x ∈ BV ([0, T ]; X) for which (a) holds true. Thanks to Proposition 4.11 and
Lemma 4.12, we also infer that actually x belongs to BVR([0, T ]; X) and that property (b)
holds.

To get (c) we first notice that, by (ii) of Corollary 3.4 and (R2), we deduce that

lim
ε→0

ε

T
∫

0

|ẋε(τ )| dτ = 0,

from which we can assume without loss of generality that

lim
j→+∞ ε j ẋε j (t) = 0, for a.e. t ∈ [0, T ], (6.1)

which implies the validity of (c) almost everywhere thanks to (2.1).
Let us now fix t ∈ (0, T ] \ Jx and consider two sequences sk ↗ t and tk ↘ t along which

(6.1) holds true. By means of the energy balance (EBε j ) and exploiting the nonnegativity of
R and | · |2

V
we deduce:

ε2j

2
|ẋε j (tk)|2M + E(tk, xε j (tk)) − E(t, xε j (t)) −

tk
∫

t

∂

∂t
E(τ, xε j (τ )) dτ
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≤ ε2j

2
|ẋε j (t)|2

M

≤ ε2j

2
|ẋε j (sk)|2M + E(sk, xε j (sk)) − E(t, xε j (t)) +

t
∫

sk

∂

∂t
E(τ, xε j (τ )) dτ.

Letting first j → +∞, since sk and tk satisfy (6.1), we obtain:

E(tk, x(tk)) − E(t, x(t)) −
tk
∫

t

∂

∂t
E(τ, x(τ )) dτ

≤ lim inf
j→+∞

ε2j
2 |ẋε j (t)|2

M
≤ lim sup

j→+∞
ε2j
2 |ẋε j (t)|2

M

≤ E(sk, x(sk)) − E(t, x(t)) +
t
∫

sk

∂

∂t
E(τ, x(τ )) dτ.

Here we used the continuity of E and the dominated convergence theorem on the integral
terms, exploiting assumption (E5).

Since t /∈ Jx , letting now k → +∞ we prove (c). ��
Our aim now is to prove that such a limit function x is an energetic solution of problem
(2.5); we thus need to show the validity of the global stability condition (GS) and the (weak)
energy balance (WEB). The strategy consists in passing to the limit the dynamic local stability
condition (LSε) and the dynamic energy balance (EBε). This first proposition deals with the
validity of the stability conditions:

Proposition 6.2 Assume that xε
0 and εxε

1 are uniformly bounded. Then the limit function x
obtained in Theorem 6.1 fulfils the following inequality:

t
∫

s

(

R(τ, v) + 〈DxE(τ, x(τ )), v〉
)

dτ ≥ 0, for every v ∈ X and for every 0 ≤ s ≤ t ≤ T .

(6.2)

In particular the right- and the left-limit of x are locally stable, meaning that:

(LS+) R(t, v) + 〈DxE(t, x+(t)), v〉 ≥ 0, for every v ∈ X and for every t ∈ [0, T ];
(LS−) R(t, v) + 〈DxE(t, x−(t)), v〉 ≥ 0, for every v ∈ X and for every t ∈ (0, T ].
Proof Let ε j be the subsequence obtained in Theorem 6.1. We now fix v ∈ K , since (6.2) is
trivial if v /∈ K , and by integrating the local stability condition (LSε j ) on an arbitrary interval
[s, t] ⊆ [0, T ] we deduce:

0 ≤
t
∫

s

(

R(τ, v) + 〈DxE(τ, xε j (τ )) + ε2jMẍε j (τ ) + ε jVẋε j (τ ), v〉
)

dτ

=
t
∫

s

(

R(τ, v)+〈DxE(τ, xε j (τ )), v〉
)

dτ +ε2j 〈M(ẋε j (t) − ẋε j (s)), v〉 + ε j

t
∫

s

〈Vẋε j (τ ), v〉 dτ.
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Letting j → +∞ we obtain (6.2) by the dominated convergence on the first term (using
(E3)), while the second and the third term vanish by means of (ii) and (iii) of Corollary 3.4
together with (2.1), (2.2), and (R2).

The validity of (LS±) easily follows from (6.2) since by (E3) and (R3) the map t �→
R(t, v) + 〈DxE(t, x±(t)), v〉 is right-continuous with x+ and left-continuous with x−. ��
Our next proposition exploits the lower semicontinuity of the R-variation (Lemma 4.12) to
obtain an estimate from above of the energy:

Proposition 6.3 (Upper Energy Estimates) Assume that xε
0 and εxε

1 are uniformly bounded.
Then the limit function x obtained in Theorem 6.1 fulfils the following energy inequalities:

E(t, x+(t)) + VR(x; s−, t+) ≤ E(s, x−(s)) +
t
∫

s

∂

∂t
E(τ, x(τ )) dτ,

for every 0 < s ≤ t ≤ T . (6.3a)

E(t, x+(t)) + VR(x; s+, t+) ≤ E(s, x+(s)) +
t
∫

s

∂

∂t
E(τ, x(τ )) dτ,

for every 0 ≤ s ≤ t ≤ T . (6.3b)

E(t, x−(t)) + VR(x; s−, t−) ≤ E(s, x−(s)) +
t
∫

s

∂

∂t
E(τ, x(τ )) dτ,

for every 0 < s ≤ t ≤ T . (6.3c)

If in addition lim
ε→0

εxε
1 = 0, then (6.3a) and (6.3c) hold true also for s = 0, with the convention

x−(0) := x(0).

Proof Weprove only (6.3a), since the other inequalities are analogous.We fix 0 < s ≤ t ≤ T
and we consider two sequences sk ↗ s and tk ↘ t such that sk, tk /∈ Jx . By means of
Theorem 6.1 and by using the nonnegativity of | · |2

V
together with the energy balance (EBε j )

we get:

E(tk, x(tk)) + VR(x; sk, tk)

≤ lim inf
j→+∞

⎛

⎝

ε2j

2
|ẋε j (tk)|2M + E(tk, xε j (tk)) +

tk
∫

sk

R(τ, ẋε j (τ )) dτ + ε j

tk
∫

sk

|ẋε j (τ )|2
V
dτ

⎞

⎠

= lim inf
j→+∞

⎛

⎝

ε2j

2
|ẋε j (sk)|2M + E(sk, xε j (sk)) +

tk
∫

sk

∂

∂t
E(τ, xε j (τ )) dτ

⎞

⎠

= E(sk, x(sk)) +
tk
∫

sk

∂

∂t
E(τ, x(τ )) dτ,

where in the last equality we employed once again the continuity of E and (E5). Letting now
k → +∞ we obtain (6.3a).

If in addition lim
ε→0

εxε
1 = 0, the same argument works choosing sk ≡ 0; thus we conclude.

��
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Remark 6.4 We highlight that up to this point the convexity assumption (E2) was not needed.
Thus, even without convexity, the limit function x satisfies the right- and left-local stability
conditions (LS±) plus the energy inequality (6.3a). Usually a function satisfying these proper-
ties is called an a.e.-local solution to the rate-independent problem (2.5), see [50, Chapter 3].
Inequality (6.3a) can be also reformulated as an energy equality in a very implicit way by
introducing a so called defect measure μD such that:

E(t, x+(t)) + VR(x; s−, t+) + μD([s, t])

= E(s, x−(s)) +
t
∫

s

∂

∂t
E(τ, x(τ )) dτ, for every 0 ≤s ≤ t ≤T .

The positive measure μD is no other than the opposite of the distributional derivative of

the function t �→ E(t, x(t)) + VR(x; 0, t) −
∫ t

0

∂

∂t
E(τ, x(τ )) dτ . The presence of such

a defect measure, which somehow takes into account the possible losses of energy in the
system, appears in many asymptotical studies of mechanical models: we refer for instance
to [4,24,47–49,61] for a vanishing-viscosity analysis and the notion of Balanced Viscosity
solutions in both finite and infinite dimension, or to [64] for a vanishing-inertia and -viscosity
analysis (without a rate-independent dissipation) in finite dimension. We however point out
that in all that papers, except [61], a precise characterisation of the defect measure is given
as the cost (in terms of energy) the evolution has to pay at jumps: this is indeed the aim and
the core of the notion of Balanced Viscosity solution.

Differently from [64], the fine properties and the characterisation of μD in our context
where a rate-independent dissipation is considered and viscosity may not be present are
beyond the scopes of the present work, thus we leave this analysis open for future research.
We simply notice that, as we will see in Theorem 6.8, the (uniform) convexity assumption
(E2) will ensure that μD is the null measure.

From now on we will exploit the convexity assumption (E2). This allows us to deduce
that the local conditions (LS+) and (LS−) are equivalent to their global counterpart:

(GS+) E(t, x+(t)) ≤ E(t, v) + R(t, v − x+(t)), for every v ∈ X and for every t ∈ [0, T ];
(GS−) E(t, x−(t)) ≤ E(t, v) + R(t, v − x−(t)), for every v ∈ X and for every t ∈ (0, T ].
These global conditions also permit to get a bound from below of the energy, see Lemma 6.5
and Proposition 6.7. We warn the Reader that for the proof of next lemma in the case of a
general elastic energy E we need to add the assumption (E6).

Lemma 6.5 Assume (E6). Assume that xε
0 and εxε

1 are uniformly bounded. Then the right-
and left-limit of the function x obtained in Theorem 6.1 fulfil the following inequalities:

E(t, x+(t)) + VR(x+; s, t) ≥ E(s, x+(s)) +
t
∫

s

∂

∂t
E(τ, x(τ )) dτ, for every 0 ≤ s ≤ t ≤ T ;

(6.4a)

E(t, x−(t)) + VR(x−; s, t) ≥ E(s, x−(s)) +
t
∫

s

∂

∂t
E(τ, x(τ )) dτ, for every 0 < s ≤ t ≤ T .

(6.4b)

If in addition x0 := x(0) satisfies (2.6), namely E(0, x0) ≤ E(0, v) +R(0, v − x0) for every
v ∈ X, then (6.4b) holds true also for s = 0.
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Proof Inequality (6.4a) is trivially satisfied for s = t , so let us fix 0 ≤ s < t ≤ T and
consider a fine sequence of partitions of [s, t] such that:

lim
n→+∞

n
∑

k=1

∣

∣

∣

∣

∣

∣

(tk − tk−1)
∂

∂t
E(tk, x+(tk)) −

tk
∫

tk−1

∂

∂t
E(τ, x(τ ))dτ

∣

∣

∣

∣

∣

∣

= 0. (6.5)

Such a sequence of partitions exists since ∂
∂t E(·, x(·)) ∈ L1(0, T ), see for instance [25,

Lemma 4.5].
So let us fix one of these partitions and by means of (GS+) we deduce that for every

k = 1, . . . , n we have:

E(tk−1, x+(tk−1)) ≤ E(tk−1, x+(tk)) + R(tk−1, x+(tk) − x+(tk−1)),

and thus we obtain:

E(tk, x+(tk)) − E(tk−1, x+(tk−1)) + R(tk−1, x+(tk) − x+(tk−1))

≥ E(tk, x+(tk)) − E(tk−1, x+(tk)) =
tk
∫

tk−1

∂

∂t
E(τ, x+(tk))dτ.

By summing the above inequality from k = 1 to k = n we get:

E(t, x+(t))−E(s, x+(s)) +
n
∑

k=1

R(tk−1, x+(tk)−x+(tk−1))

≥
n
∑

k=1

tk
∫

tk−1

∂

∂t
E(τ, x+(tk))dτ =: In . (6.6)

By letting n → +∞, we get (6.4a) if we show that lim
n→+∞ In =

∫ t

s

∂

∂t
E(τ, x(τ )) dτ . To

prove it we argue as follows:
∣

∣

∣

∣

∣

∣

In −
t
∫

s

∂

∂t
E(τ, x(τ )) dτ

∣

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

∣

∣

n
∑

k=1

tk
∫

tk−1

( ∂

∂t
E(τ, x+(tk)) − ∂

∂t
E(τ, x(τ ))

)

dτ

∣

∣

∣

∣

∣

∣

≤
n
∑

k=1

tk
∫

tk−1

∣

∣

∣

∣

∂

∂t
E(τ, x+(tk))− ∂

∂t
E(tk, x+(tk))

∣

∣

∣

∣

dτ

+
n
∑

k=1

∣

∣

∣

∣

∣

∣

(tk−tk−1)
∂

∂t
E(tk, x+(tk))−

tk
∫

tk−1

∂

∂t
E(τ, x(τ )) dτ

∣

∣

∣

∣

∣

∣

.

The second term vanishes as n → +∞ thanks to (6.5), while to deal with the first one we
use (E6): we first fix λ > 0 and we pick R = C�|πZ |∗, where C� is the constant provided
by Corollary 3.4. Then let δ be given accordingly by (E6). By means of (2.8) we know that
max

k=1,...,n
|tk − tk−1| ≤ δ for n large enough, thus (E6) implies:

n
∑

k=1

tk
∫

tk−1

∣

∣

∣

∣

∂

∂t
E(τ, x+(tk)) − ∂

∂t
E(tk, x+(tk))

∣

∣

∣

∣

dτ ≤ λ(t − s),
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and hence (6.4a) is proved.
Inequality (6.4b) can be obtained arguing in the same way replacing x+ with x−, and

recalling that (GS−) holds true only if t > 0. If in addition x0 satisfies (2.6), then (GS−)
holds true also in t = 0 and the whole argument can be performed also in s = 0. ��

Condition (E6) is useful to derive the results of Lemma 6.5 in the case of a general elastic
energy, yet it can be dropped in some situations when the global structure of the energy
is known. The most remarkable case is that of a quadratic energy Esh(t, z) = 1

2 〈Ash(z −
�sh(t)), z − �sh(t)〉Z as in (QE), which we discuss now in Lemma 6.6. Indeed, we notice that
(QE) implies (E1)–(E5), but (E6) does not hold true if �̇sh is not continuous.

Lemma 6.6 If in Lemma 6.5 assumption (E6) is replaced by (QE), the same conclusions hold.

Proof The proof follows the same strategy used for Lemma 6.5, with some adaptations.
Firstly, we need to choose fine partitions satisfying instead:

lim
n→+∞

n
∑

k=1

(tk − tk−1)〈Ash(πZ (x+(tk))−�sh(tk)), �̇sh(tk)〉Z

=
t
∫

s

〈Ash(πZ (x(τ ))−�sh(τ )), �̇sh(τ )〉Z dτ ;
(6.7a)

lim
n→+∞

n
∑

k=1

∣

∣

∣

∣

∣

∣

(tk − tk−1)�̇sh(tk) −
tk
∫

tk−1

�̇sh(τ ) dτ

∣

∣

∣

∣

∣

∣

Z

= 0. (6.7b)

As before, the existence of such a sequence of partitions is ensured by [25, Lemma 4.5]. In
this case the integral term In defined in (6.6) takes the form:

In = −
n
∑

k=1

tk
∫

tk−1

〈Ash(πZ (x+(tk)) − �sh(τ )), �̇sh(τ )〉Z dτ,

and we conclude if we prove that lim
n→+∞ In = −

∫ t

s
〈Ash(πZ (x(τ )) − �sh(τ )), �̇sh(τ )〉Z dτ .

With this aim we rewrite In as:

In = −
n
∑

k=1

(tk − tk−1)〈Ash(πZ (x+(tk)) − �sh(tk)), �̇sh(tk)〉Z

+
n
∑

k=1

〈

Ash(πZ (x+(tk)) − �sh(tk)) , (tk − tk−1)�̇sh(tk) −
tk
∫

tk−1

�̇sh(τ ) dτ

〉

Z

+
n
∑

k=1

tk
∫

tk−1

〈Ash(�sh(tk) − �sh(τ )), �̇sh(τ )〉Z dτ =: J 1
n + J 2

n + J 3
n .

By means of (6.7b) it is easy to see that lim
n→+∞ J 2

n = 0, while exploiting the absolute

continuity of �sh together with (2.8) we also deduce that lim
n→+∞ J 3

n = 0. By using (6.7a) we

conclude. ��
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As a simple corollary we get:

Proposition 6.7 (Lower Energy Estimate) Assume (E6) or (QE), and assume that xε
0 and

εxε
1 are uniformly bounded. Then the limit function x obtained in Theorem 6.1 fulfils the

following inequality for every 0 < s ≤ t ≤ T :

E(t, x+(t)) + min
{

VR(x+; s−, t), VR(x−; s, t+)
} ≥ E(s, x−(s)) +

t
∫

s

∂

∂t
E(τ, x(τ )) dτ.

(6.8)

If in addition x0 := x(0) satisfies (2.6), then it also holds:

E(t, x+(t)) + VR(x−; 0, t+) ≥ E(0, x0) +
t
∫

0

∂

∂t
E(τ, x(τ )) dτ, for every t ∈ [0, T ].

(6.9)

Proof We fix 0 < s ≤ t ≤ T and we consider two sequences sk ↗ s and tk ↘ t . By means
of (6.4a) and (6.4b) we thus deduce:

E(t, x+(t)) + VR(x+; sk, t) ≥ E(sk, x+(sk)) +
t
∫

sk

∂

∂t
E(τ, x(τ )) dτ,

E(tk, x−(tk)) + VR(x−; s, tk) ≥ E(s, x−(s)) +
tk
∫

s

∂

∂t
E(τ, x(τ )) dτ. (6.10)

Letting k → +∞ and since E is continuous in [0, T ] × X we obtain (6.8).
If in addition x0 satisfies (2.6) we can set s = 0 in (6.10), thus also (6.9) follows by letting

k → +∞. ��
Combining all the results of this section we are finally able to prove that the limit function x is
actually an energetic solution of the rate-independent problem (2.5). The rigorous statement
is the following:

Theorem 6.8 Assume (E6) or (QE), and assume that xε
0 and εxε

1 are uniformly bounded.
Then the limit function x obtained in Theorem 6.1 is continuous in (0, T ] and its right-limit
x+ is an energetic solution for (2.5)with initial position x+(0) in the sense of Definition 2.10.

If in addition x0 := x(0) satisfies (2.6) and lim
ε→0

εxε
1 = 0, then x is continuous also in

t = 0 and it is an energetic solution for (2.5) with initial position x0.

Proof We first prove that the right-limit x+ is an energetic solution for (2.5) with initial
position x+(0). We only need to prove the (weak) energy balance (WEB), since we already
know x+ is globally stable, see (GS+). With this aim we first fix t ∈ [0, T ] and by combining
(6.3b) and (6.4a) we get:

E(t, x+(t))+VR(x; 0+, t+) ≤ E(0, x+(0))+
t
∫

0

∂

∂t
E(τ, x(τ )) dτ ≤E(t, x+(t)) + VR(x+; 0, t)
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≤ E(t, x+(t)) + VR(x+; 0, t+).

Bymeansof (d) inProposition4.10wehencededuce thatVR(x; 0+, t+) = VR(x+; 0, t+) =
VR(x+; 0, t) and also the validity of (WEB):

E(t, x+(t)) + VR(x+; 0, t) = E(0, x+(0)) +
t
∫

0

∂

∂t
E(τ, x(τ )) dτ, for every t ∈ [0, T ].

Thus x+ is an energetic solution starting from x+(0) and in particular, by means of Propo-
sition 5.7, it is continuous in [0, T ] with continuous R-variation VR(x+; 0, ·).

We now show that x(t) = x+(t) for every t ∈ (0, T ]. By means of (6.3a) and (6.8) and
arguing as before we get:

VR(x; t−, t+) = VR(x+; t−, t), for every t ∈ (0, T ].
Since x+ has continuousR-variation,wededuce thatVR(x; t−, t+) = VR(x+; t−, t) = 0 if
t ∈ (0, T ]; this implies that theR-variation of x is continuous in (0, T ], and thus in particular
x itself is continuous in (0, T ] (see (c) in Proposition 4.10). This means in particular that
x(t) = x+(t) for every t ∈ (0, T ].

If in addition x0 satisfies (2.6) and lim
ε→0

εxε
1 = 0, then we can use (6.3a) in s = 0 and (6.9);

since we now know that both x and VR(x; 0, ·) are continuous in (0, T ], arguing as before
we obtain:

E(t, x(t)) + VR(x; 0, t) = E(0, x0) +
t
∫

0

∂

∂t
E(τ, x(τ )) dτ, for every t ∈ (0, T ].

Since the above equality is trivially satisfied in t = 0, we deduce that x satisfies (WEB);
since (2.6) holds, from (GS−) we also deduce that x satisfies (GS), and thus it is an energetic
solution for (2.5) with initial position x0. Thus we conclude. ��
We conclude this section by stating the main theorem of the paper, which gathers and sum-
marises what we have proved up to now about the convergence of dynamic solutions of
problem (2.3) to rate-independent solutions of (2.5) when inertia vanishes. It is a slight
generalisation of Theorem 2.12 stated in Sect. 1.

Theorem 6.9 Let M,V be as in Sect. 2, and assume that R satisfies (R4), and that E(t, x) =
Esh(t, πZ (x)) satisfies (E1)–(E6) or (QE). For every ε > 0, let xε be a differential solution
of the dynamic problem (2.3) related to the initial position xε

0 ∈ X and the initial velocity
xε
1 ∈ K , and assume that xε

0 and εxε
1 are uniformly bounded. Then there exist a subsequence

ε j ↘ 0 and a function x ∈ BVR([0, T ]; X) ∩ C0((0, T ]; X) such that its right-limit x+ is
an energetic solution for (2.5) in the sense of Definition 2.10 with initial position x+(0) and:

(a’) lim
j→+∞ xε j (t) = x(t) for every t ∈ [0, T ], and the convergence is uniform in any compact

interval contained in (0, T ];
(b’) lim

j→+∞

∫ t

s
R(τ, ẋε j (τ )) dτ = VR(x; s, t) for every 0 < s ≤ t ≤ T , and the conver-

gence is uniform in [s, T ];
(c’) lim

j→+∞ ε j |ẋε j (t)|M = 0 for every t ∈ (0, T ], and the convergence is uniform in any

compact interval contained in (0, T ];
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(d’) lim
j→+∞ ε j

∫ T

s
|ẋε j (τ )|2

V
dτ = 0 for every 0 < s ≤ T .

If in addition x0 := x(0) satisfies (2.6), namely E(0, x0) ≤ E(0, v) +R(0, v − x0) for every
v ∈ X, and lim

ε→0
εxε

1 = 0, then the limit function x is continuous in the whole [0, T ], and it is

an energetic solution of (2.5) with initial position x0; moreover the convergence in (a’) and
(c’) is uniform in the whole [0, T ], while (b’) and (d’) hold true also in s = 0.

Finally, if also (R5) holds or if R does not depend on time, then x is actually R-absolutely
continuous in [0, T ], and thus a differential solution of (2.5).

Remark 6.10 (Uniqueness) If in particular one of the assumptions of Lemma 5.8 or Lemma
5.9 is satisfied, and if lim

ε→0
εxε

1 = 0 and lim
ε→0

xε
0 = x0, for some x0 satisfying (2.6), then there

is no need to pass to a subsequence in the previous theorem. Indeed in this case the whole
sequence xε converges in the sense of (a’)–(d’) (even in t = 0) towards the unique differential
solution x to (2.5).

Proof of Theorem 6.9 Combining Theorems 6.1, 6.8 and exploiting Proposition 5.7 we get the
existence of a subsequence ε j ↘ 0 and of a function x ∈ BVR([0, T ]; X) ∩ C0((0, T ]; X)

with the property that the right-limit x+ is an energetic solution for (2.5) with initial position
x+(0) and for which the pointwise convergences in (a’) and (c’) hold. We now observe that
by the energy balances (EBε j ) and (WEB) for every 0 < s ≤ t ≤ T we have:

ε j

t
∫

s

|ẋε j (τ )|2
V
dτ +

t
∫

s

R(τ, ẋε j (τ )) dτ − VR(x; s, t)

= ε2j

2
|ẋε j (s)|2

M
− ε2j

2
|ẋε j (t)|2

M
+ E(s, xε j (s)) − E(s, x(s)) + E(t, x(t)) − E(t, xε j (t))

+
t
∫

s

( ∂

∂t
E(τ, xε j (τ )) − ∂

∂t
E(τ, x(τ ))

)

dτ. (6.11)

By means of the pointwise convergence in (a’) and (c’) and recalling (E5) we deduce that
the right-hand side of the above inequality vanishes as j → +∞. Thus the pointwise con-
vergences in (b’) and (d’) easily follow, since by (b) in Theorem 6.1 we already know that

lim inf
j→+∞

⎛

⎝

t
∫

s

R(τ, ẋε j (τ )) dτ − VR(x; s, t)

⎞

⎠ ≥ 0.

By means of Lemma 4.13 we now deduce that the convergence in (a’) is uniform in any
compact interval contained in (0, T ], while the uniform convergence in (b’) is due to the
standard result that a sequence of nondecreasing and continuous scalar functions pointwise
converging to a continuous function on a compact interval actually converges uniformly. The
uniform convergence in (c’) now follows by rearranging equality (6.11) and by exploiting
(E3), (E5) and the just obtained uniform convergence in (a’), (b’) and (d’).

If in addition x0 satisfy (2.6) and lim
ε→0

εxε
1 = 0, we know by Proposition 5.7 and The-

orem 6.8 that x is continuous in [0, T ] and it is an energetic solution with initial position
x0. Arguing as before we obtain the uniform convergence in [0, T ] for (a’) and (c’) and the
validity of (b’) and (d’) also in s = 0.

To conclude, if (R5) holds or ifR does not depend on time, always by means of Proposi-
tion 5.7 we deduce that x is R-absolutely continuous in [0, T ]. ��
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Fig. 2 A mechanical model of the
scalar play operator, discussed in
Sect. 7.1

x(t) p(t)

We point out that our result is sharp, in the sense that, without additional assumptions,
no better kind of convergence (for instance in W 1,1) can be achieved in the vanishing-inertia
limit. It is enough to consider the simplest case X = Z = R, withM = I,V = 0, dissipation
potential R(t, v) = |v| and a quadratic elastic energy E(t, x) = 1

2 (x − t − 1)2. Indeed it
is easy to verify that in this setting the unique differential solution of the dynamic problem
(2.3), with initial position xε

0 = 0 and initial velocity xε
1 = 0, is the function

xε(t) = t − ε sin

(

t

ε

)

,

which of course converges as ε → 0+ towards x(t) = t , namely the unique differential
solution of the rate-independent problem (2.5) with initial position x0 = 0, in the sense of
previous theorem.

However xε does not converge to x in W 1,1(0, T ), indeed

T
∫

0

∣

∣ẋε(τ ) − ẋ(τ )
∣

∣ dτ =
T
∫

0

∣

∣

∣cos
(τ

ε

)∣

∣

∣ dτ,

which does not vanish as ε → 0+.

7 Applications and examples

In this last section we illustrate several examples which can be described by our abstract
formulation; in particular they explain and motivate our framework. Since the applications
we present here are all set in X = R

N , endowed with the euclidean norm, for simplicity we
will always identify canonically the dual space X∗ with R

N , so that the dual coupling 〈·, ·〉
coincides with the scalar product.

7.1 Theminimal example: the play operator

To gently introduce the Reader to our examples, we begin by presenting a very simple
model, illustrated in Fig. 2. We have a mass m > 0 with position x(t) on a line, and subject to
(isotropic) dry friction. The mass is connected to a (linear) spring, whose other end is moved
according to the function p(t) ∈ W 1,1(0, T ). Thus the dynamic evolution of the system is
described by the inclusion (2.3), where:

X = Z = K = R, R(t, v) = R(v) = α |v| , E(t, x) = Esh(t, x) = k

2
(x − p(t) + L rest)2,

and πZ is the identity. Notice that (QE) holds. Clearly M = m > 0, while we may assume
either V = 0, or add an additional viscous resistance to ẋ , so that the resulting friction
force-velocity law for the mass is of Bingham type.
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The relevance of this model is due to the fact that its (inviscid) quasistatic evolution
corresponds to the (scalar) play operator [33]; indeed a straightforward computation shows
that (2.5) in this case reads as

{

p(t) − L rest − x(t) ∈ α
k ∂ |ẋ(t)| ,

x(0) = x0,
(7.1)

and hence, setting u(t) = p(t) − L rest, we notice that (7.1) is equivalent to
⎧

⎪

⎨

⎪

⎩

|u(t) − x(t)| ≤ α
k ,

(u(t) − x(t) − v) ẋ(t) ≥ 0, for every v ∈ [−α
k , α

k

]

,

x(0) = x0.

More advanced models may be built by considering analogously a mass on a plane (or
abstractly in an N -dimensional space), or considering nonautonomous friction coefficients.
Such rate-independent systems may be advantageously expressed as a sweeping process: we
comment the meaning of the dynamic approximation in such formulation in Sect. 7.5.

7.2 Soft crawlers

We now minutely illustrate how the family of models represented in Fig. 1 and described in
Sect. 1 fits in our mathematical framework. Their quasistatic version has been extensively
discussed in [27], to which we refer for more details. We also mention [12], where similar
models have been studied in the dynamic case.

We are considering a model with N ≥ 2 blocks on a line, with adjacent blocks joined by
an actuated soft link. We describe with xi the position of the i-th block. The elastic energy
of the system will not depend directly on any of the positions of the block, but only on the
distances xi − xi−1 between two consecutive blocks. Hence we set

X = R
N , Z = R

N−1, πZ (x1, . . . , xN ) = (x2 − x1, . . . , xN − xN−1).

We now discuss separately each of the elements of the dynamics.

7.2.1 Mass distribution

Denoting with mi > 0 the mass of the i-th block, the linear operatorM is

M = Diag(m1, . . . , m N ).

7.2.2 Viscous friction

There are two main situations in which we may consider viscous friction. The first one is to
assume an additional viscous friction resistance when the blocks slide, in addition to the dry
friction we discuss below. Such forces are described by a diagonal matrix

Vext = Diag(νext1 , . . . , νextN ),

for some nonnegative coefficients νexti ≥ 0. This also means that the total friction force acting
on each block is of Bingham type, and may be justified by lubrication with a non-Newtonian
fluid [23].
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The second possible way to introduce viscosity in the model is to assume a viscous
resistance to deformation in the links. This is represented by the matrix

Vlink =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

νlink1 −νlink1 0 · · · 0 0
−νlink1 νlink1 + νlink2 −νlink2 · · · 0 0

0 −νlink2 νlink2 + νlink3 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · νlinkN−2 + νlinkN−1 −νlinkN−1
0 0 0 · · · −νlinkN−1 νlinkN−1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

for some nonnegative coefficients νlinki ≥ 0.
Accounting for these two effects, a general viscosity matrixV takes the formV = Vlink +

Vext.

7.2.3 Dry friction

Since each block is affected independently by dry friction, the rate-independent dissipation
potential can be represented as the sum

Rfinite(t, v) =
N
∑

i=1

Ri (t, vi ),

of N dissipation potentials Ri : [0, T ] × R → [0,+∞), each of the form

Ri (t, v) =
{

μ+
i (t)v, if v ≥ 0,

μ−
i (t)v, if v ≤ 0,

(7.2)

where the functions μ±
i : [0, T ] → (0,+∞) are strictly positive and absolutely continuous.

Concretely, it means that each block has two dry friction coefficients, one for forward and
one for backward movements, possibly varying in time. By compactness, we observe that in
this framework the assumptions (R1)–(R3) are satisfied. As argued in [27, Lemma 3.2], the
uniqueness condition (*) of Lemma 5.9 for the rate-independent problem is satisfied if, for
every subset of indices J ⊆ {1, 2, . . . , N } we have

∑

i∈J

μ+
i (t) �=

∑

i∈J C

μ−
i (t), for a.e. t ∈ [0, T ], (7.3)

where J C = {1, 2, . . . , N } \ J .

7.2.4 Velocity constraint

Most of the models of crawlers usually fit in the K = X case: indeed, the possibility to
move the body both backwards and forwards is often appreciable in locomotion. In some
situations, however, backward friction is extremely higher than forward friction, so that in
fact no backwards movement occurs. For this reason, sometimes it is convenient to assume
an infinite friction coefficient, namely a constraint on velocities. With our notation, this
corresponds to set

K =
N
⋂

i=1

K +
i , where K +

i = {v ∈ R
N | vi ≥ 0}.
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We observe that the set K is a polyhedral cone, satisfying condition (iii) of Proposition 2.6.
Notice also that, in this case, the coefficients μ−

i in (7.2) can be freely chosen, for instance
equal to a positive constant, since they are not involved in the dynamics. More generally,
we can introduce analogously the halfplanes K −

i = {v ∈ R
N | vi ≤ 0}, and set K as the

intersection of an arbitrary selection of sets K ±
i , although this would often result in something

less pragmatical in terms of locomotion. In particular, if K ⊆ K +
i ∩ K −

i , the i-th block would
be completely anchored on the surface.

7.2.5 Elastic energy

The total elastic energy will be the sum of the elastic energies of each link. Hence we have

E(t, x) =
N−1
∑

i=1

E link
i (t, xi+1 − xi ), or equivalently Esh(t, z) =

N−1
∑

i=1

E link
i (t, zi ).

In order for Esh to satisfy any of the properties (E1)–(E7), it is sufficient to ask each of the
energies E link

i : [0, T ] × R → [0,+∞) of the links to satisfy the same condition required
on Esh. The quadratic case (QE) corresponds to the case in which each link behaves as a
Hookean spring, namely

E link
i (t, zi ) = ki

2
(zi − �i (t))

2 ,

for a positive elastic constant ki > 0 and an absolutely continuous �i : [0, T ] → R. Notice
that our results also hold for nonlinear models of elasticity. For instance, the soft link may
behave like a Duffing-type nonlinear spring, i.e.

E link
i (t, zi ) = ki

2
(zi − �i (t))

2 + βi

4
(zi − �i (t))

4 ,

where the quartic term produces a hardening of the spring. In such a case assumptions
(E1)–(E5) and (E7) are all satisfied. We point out that (E6) holds only if �i are continuosly
differentiable; however in this specific example one can argue as in Lemma 6.6, thus (E6) is
not really necessary.

7.3 A rheological model

In order to illustrate a second example with multiple material points, we propose here, with
our notation, a rheological model presented in [11, Sec. 2.2.6], and illustrated in Fig. 3 for
N = 3.

The model consists on N material points and N Pi -elements connected in series. A Pi

element is composed of a St-Venant element with threshold αi > 0 and a linear spring with

α1

m1

α2

m2

α3

m3 F (t)

k1 k2 k3

Fig. 3 A rheological model discussed in Sect. 7.3, cf. also [11, Sec. 2.2.6]
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constant ki > 0 connected in parallel. As before, we denote with xi the position on the line
of the i-th material point, having mass mi > 0. The first Pi -element is connected to the first
material point at one end, whereas the other end is fixed in the origin. Moreover, the N -th
material point is subject to an external force F(t), absolutely continuous in time. Hence

X = Z = K = R
N , πZ = I, M = Diag(m1, . . . , m N ).

The energy E will be the sum of a potential energy F(t)xN used to describe the external
force, plus the elastic energies of the Pi -elements, namely:

E(t, x) = Esh(t, x) = F(t)xN + k1
2

x21 +
N
∑

i=2

ki

2
(xi − xi−1)

2.

Similarly, the dissipation potentialR will be the sum of the dissipation potentials associated
to each St-Venant element, namely

R(t, v) = R(v) = α1 |v1| +
N
∑

i=2

αi |vi − vi−1| ,

where we recall that in the first Pi -element one end is fixed. Assumptions (E1)-(E5), (E7),
(R4) are easily verified, and, likewise, (E6) if in addition F is continuously differentiable.
As before, however, (E6) can be avoided by arguing as in Lemma 6.6.

7.4 A planar model

Let us nowconsider the two-dimensional analogous of the simplemodel discussed in Sect. 7.1
and illustrated in Fig. 2. Setting for simplicity the rest length of the spring to zero, we have

X = Z = R
2, πZ = I, E(t, x) = Esh(t, x) = k

2
|p(t) − x |2 ,

and (QE) again holds. A point mass at x can be therefore considered as a test particle (or
more concretely, the point of a cantilever), probing the frictional properties of the surface. For
simplicity, here we limit ourselves to autonomous dissipation. Until now we have presented
only models lying on a line, so that the friction forces possibly acting on each mass are
described by two parameters μ+ and μ−. If instead the test mass lies on a plane, dry friction
is described by a function on the unit circle. Whereas the isotropic case R(v) = μ |v| is
simple, the nature of friction when the surface is anisotropic is a complicated matter.

Experimentally, friction of scaly surfaces, for instance snakes or sharks skins, is usually
measured only in four orthogonal directions: forwards, backwards, and the in two transverse
directions (usually showing a symmetric behaviour), cf. e.g. [13,38]. We are not aware of
experimental characterizations of the friction coefficients with respect to all the other inter-
mediate directions. There is however a mathematical restriction on the scenarios that can
be effectively described by the subdifferential of a function R. What we aim to show here
is that, by introducing the constraint K , we allow to study a qualitatively different class of
models, non included in the case R < +∞.

If X = K , namely there is no velocity constraint, then the functional R is continuous by
convexity, and so the friction coefficient changes continuously with respect to the direction
of the velocity. Moreover, we notice that convexity affects additionally the structure of the
friction coefficient: for instance, oscillations arbitrarily both ample and frequent of the friction
coefficient as the direction varies are not allowed.
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When hooks or scales introduce anisotropic friction on a plane, a scenario that can be
expected, or at least desirable, is as follows:

• friction is extremely high for all velocities with a nonzero backward component (i.e. for
all v = (v1, v2) with v1 < 0);

• friction is low for all the remaining velocities (v1 ≥ 0), in particular also for purely lateral
velocities (v1 = 0).

If X = K , such a case can only approximatively be portrayed, since a smooth transition is
compulsory from low to high friction. The scenario can instead be better described by setting

K = {v ∈ R
2 | v1 ≥ 0}.

Indeed, we emphasize thatR is in general lower semicontinuous, but not continuous, on the
boundary of K .

A situation even more radical is usually considered in the modelling of slithering loco-
motion, with “snake in a tube” models [18]. While slithering on a plane, snakes experience
a very large resistance to transversal sliding, compared to the longitudinal one, so that the
whole body of the snake follows the same path covered by its head. Hence, according to the
description in such models, a test particle on a snake skin would experience:

• extremely high friction for all velocities with a nonzero lateral component (v2 �= 0);
• high friction for a purely backward velocity (v1 < 0 and v2 = 0);
• low friction for a purely forward velocity (v1 > 0 and v2 = 0).

Again, the situation can be portrayed only approximatively by a finite dissipation functional
R, while it is effectively described by introducing the constraint K as

K = {v ∈ R
2 | v2 = 0}, or K = {v ∈ R

2 | v1 ≥ 0, v2 = 0}.
Notice that all the three examples of cones K in this subsection satisfy condition (iii) of
Proposition 2.6.

7.5 Interpretation as sweeping process

In the 70s, Moreau noticed that several mechanical problems of the form (2.5) with quadratic
energy can be fruitfully transformed in the form

ẏ(t) ∈ −NC(t)(y(t)), (7.4)

where NC (y) is the normal cone in y with respect to the convex set C . Systems of this
form are called sweeping processes, and present the obvious advantage that the dynamics is
expressed in normal form. Vanishing-viscosity approximations have played a key role in the
study of sweeping processes, not only for characterizing jumps [34], but also for instance in
the derivation of necessary conditions in optimal control [7,16]. One may therefore wonder
whether there is any strong connection between the second order sweeping process (3.11)
describing the dynamic problem and the first order sweeping process (7.4) describing the
rate-independent problem. Let us thus recall, briefly, how (7.4) can be recovered by (2.5), in
the simple case with energy

E(t, x) = 1

2
〈x − �(t), x − �(t)〉,

where X = Z = R
N . In this case, equation (2.5) reads

− x(t) + �(t) ∈ ∂vR(t, ẋ(t)). (7.5)
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Now we exploit the convexity ofR(t, ·), so that by the Legendre–Fenchel equivalence (7.5)
is equivalent to

ẋ(t) ∈ ∂vR∗(t,−x(t) + �(t)) = ∂vχC0(t)(−x(t) + �(t)) = NC0(t)(−x(t) + �(t)),

whereR∗(t, ·) denotes the Legendre transform ofR(t, ·). SinceR satisfies the properties (I)
of Corollary 2.4, thenR∗(t, ·) is exactly the indicator function of the set C0(t) := ∂vR(t, 0).
The change of coordinate y(t) := −x(t) gives (7.4) with C(t) := C0(t) − �(t).

Unfortunately, the same transformation is not as profitable when applied to the dynamic
problem (2.3). Indeed, it is already in normal form, so that the Legendre transform actually
hides the higher order derivative, resulting, for V = 0, in

ẏ(t) ∈ −NC(t)(y(t) + ε2Mÿ(t)). (7.6)

Notice that an additional vanishing-viscosityV can be incorporated with the convex function
R(t, ·) during the Legendre transform, resulting in a smooth approximation of the evolution
problem (7.6). Hence, the dynamic version (7.6) of (7.4) must not be confused with the
second order sweeping process (3.11). Indeed, although both are equivalent formulations of
the dynamic problem (2.3), in (3.11) the sweeping set K describes only a constraints on the
velocities, whereas in (7.6) the sweeping set C accounts both for the rate-independent dissi-
pation and for possible constraints on the velocities. Although the sweeping process therefore
does not seem to be the most favourable form to consider vanishing-inertia approximations,
we are confident that advancement in alternative formulations will still benefit the whole
theory.

7.6 Example of K not satisfying (R5).

As we have seen, in all our mechanical examples the set K satisfies (R5). Indeed, we expect
this assumption to be usually true in concrete problems. In order to help theReader understand
why, however, it is not automatically satisfied, we present here a—purely theoretical—
counterexample. Let us set X = R

3, Z = R
2, πZ (x) = (x2, x3) and

K := {(λ, λa, λb) | λ ≥ 0, a2 + (b − 1)2 ≤ 1}.
Let us pick z = (cos θ, sin θ), with θ ∈ (0, π/2), so that |z|Z = 1. A simple computation
shows that

(λ, cos θ, sin θ) ∈ K if and only if cos2 θ + (sin θ − λ)2 ≤ λ2 and λ > 0

if and only if λ sin θ ≥ 1

2
.

Hence (R5) is violated by any sequence θi → 0+.
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