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Abstract. For applications to practical problems, the paper proposes
to use the approximations of belief functions, which simplify their depen-
dence structure. Using an analogy with probability distributions, we rep-
resent these approximations in the form of compositional models. As no
theoretical apparatus similar to probabilistic information theory exists
for belief functions, the problems arise not only in connection with the
design of algorithms seeking the optimal approximations but even in con-
nection with a criterion comparing two different approximations. With
this respect, the application of the analogy with probability theory fails.
Therefore, the paper suggests the employment of simple heuristics easily
applicable to real-life problems.
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1 Motivation

Consider a large set of discrete random variables W with a joint probability dis-
tribution π. For an arbitrary partition {U1,U2, . . . ,Uk} of W, one can decompose
the joint distribution π using the chain rule as follow:

π“π(U1)π(U2|U1) . . . π(Uk|(U1 Y . . . Y Uk´1))

“
k∏

i“1

π(Ui|(U1 Y . . . Y Ui´1)). (1)

Notice that in the product formula of Eq. (1) (which will be often used through-
out this paper), for i “ 1, π(Ui|(U1 Y . . . Y Ui´1)) is just the marginal π(U1).
For i “ 2, π(U2|U1) is the conditional probability table for U2 given U1, etc. In
large models (|W| is large), it is rarely the case that the conditional marginal of
Ui depends on all variables in U1 Y . . . Y Ui´1. This fact was exploited by Perez
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[10], who suggested using an ε-admissible approximation by simplification of
the dependence structure1 to overcome the computational-complexity problems
accompanying the application of multidimensional probability distributions. His
basic idea is as follows. Substitute each set (U1 Y . . . Y Ui´1) in Eq. (1) by its
smaller subset Ti such that the conditional probability distribution π(Ui|Ti) is
almost the same as π(Ui|(U1 Y . . .YUi´1)). The non-similarity of probability dis-
tributions π and κ defined on Ω can be measured using Kullback-Leibler (KL)
divergence [9] defined as follows2

KL(π‖κ) “
∑

xPΩ:κ(x)ą0

π(x) log
(

π(x)
κ(x)

)
. (2)

Let κ “ ∏k
i“1 π(Ui|Ti). If KL(π‖κ) ď ε, then κ is called an ε-admissible approx-

imation of π.
Now, consider a different problem. Let {V1,V2, . . . ,Vk} be a set of subsets of

W (generally not disjoint) such that
⋃k

i“1 Vi “ W. Given a set of low-dimensional
distributions {κi(Vi)}i“1,...,k, a question is whether there exists a multidimen-
sional distribution for W such that all κi’s are its marginals. If there exists a
distribution π such that all κi are its marginals, Perez [10] found an answer to a
related question: What is the best ε-admissible approximation of π (in the sense
of the smallest ε) that can be assembled from {κi(Vi)}i“1,...,k? Thus, Perez was
looking for a permutation (j1, j2, . . . , jk) of indices (1, 2, . . . , k), which minimizes
KL

(
π‖

∏k
i“1 κji

(Vji
\ Tji

|Tji
)
)
, where Tji

“ Vji
X (Vj1 Y . . . Y Vji´1). For this,

he showed [10] that (H denotes the Shannon entropy [12])

KL

(
π‖

k∏

i“1

κji
(Vji

\ Tji
|Tji

)

)
“ ´H(π)`

k∑

i“1

(
H(κji

(Vji
))´H(κji

(Tji
))

)
, (3)

which equals H(
∏k

i“1 κji
(Vji

\ Tji
|Tji

)) ´ H(π) in case that all κi are marginals
of both π and

∏k
i“1 κji

(Vji
\ Tji

|Tji
). Thus, regardless of whether distribution

π is known or not, he proved that its best approximation (that simplifies the
dependence structure), which can be set up from {κi(Vi)}i“1,...,k, is that which

minimizes
∑k

i“1

(
H(κji

(Vji
)) ´ H(κji

(Tji
))

)
. If one considers only the approx-

imations
∏k

i“1 κji
(Vji

\ Tji
|Tji

) having all κi for its marginals, then the best
approximation minimizes its Shannon entropy H(

∏k
i“1 κji

(Vji
\ Tji

|Tji
)) (which

corresponds with the intuition that it maximizes its information content).

1 The notion reflects the fact that the considered approximation extends the set of con-
ditional independence relations holding for the probability distribution in question
[15].

2 Eq. (2) defines the KL divergence if κ dominates π, i.e., if for all x P Ω, for which
κ(x) “ 0, π(x) is also 0. Otherwise, the KL divergence is defined to be `∞.
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2 Belief Functions

As in Sect. 1, let W denote a set of variables with finite number of states. For
X P W, Let ΩX denote the set of states of variable X. A basic assignment for
variables U Ď W (or equivalently basic assignment on the Cartesian product
ΩU “×XPU ΩX) is a mapping mU : 2ΩU → [0, 1], such that

∑
aĎΩU

mU (a) “ 1
and mU (H) “ 0.

Consider a basic assignment mU . If the set of the corresponding variables is
clear from the context, we omit the subscript U . Thus, we say that a is a focal
element of m if m(a) ą 0.

For basic assignment mV , we often consider its marginal basic assignment
m↓U

V for U Ď V. A similar notation is used also for projections: for a P ΩV ,
symbol a↓U denotes the element of ΩU , which is obtained from a by omitting
the values of variables in V \ U . For a Ď ΩV ,

a↓U “ {a↓U : a P a}.

Thus, the marginal m↓U
V of basic assignment mV for U is defined as follows:

m↓U
V (b) “

∑

aĎΩV : a↓U “b

mV(a).

for all b Ď ΩU .
The projection of sets enables us to define a join of two sets. Consider two

arbitrary sets U and V of variables (they may be disjoint or overlapping, or one
may be a subset of the other). Consider two sets a Ď ΩU and b Ď ΩV . Their
join is defined as

a Ź� b “ {c P ΩUYV : c↓U P a & c↓V P b}.

Notice that if U and V are disjoint, then a Ź� b “ a × b, if U “ V, then
a Ź� b “ a X b, and, in general, for c Ď ΩUYV , c is a subset of c↓U Ź� c↓V ,
which may be a proper subset.

A basic assignment m can equivalently be defined by the corresponding belief
function, or by plausibility function, or by commonality function [11] as follows:

Belm(a) “
∑

bĎΩ:bĎa

m(b),

P lm(a) “
∑

bĎΩ:bXa �“H
m(b),

Qm(a) “
∑

bĎΩ:bĚa

m(b).

These representations are equivalent in the sense that when one of these functions
is given, it is always possible to compute the others uniquely. For example:

Plm(a) “ 1 ´ Belm(Ω \ a),
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m(a) “
∑

bĎa

(´1)|a\b|Belm(b),

m(a) “
∑

bP2Ω :bĚa

(´1)|b\a|Qm(b). (4)

After normalizing the plausibility function for singleton subsets, one gets for
each a Ď Ω

λm(a) “
∑

bPa Plm({b})∑
bPΩ Plm({b}) (5)

a probability function on Ω. λm is called a plausibility transform of basic assign-
ment m [1]. There is a number of other probabilistic transforms of a mass assign-
ment m described in literature (e.g., [2]) but in this text we need only the so-
called pignistic transform [13,14] defined as follows:

πm(a) “
∑

aPa

∑

bĎΩ:aPb

m(b)
|b| . (6)

To construct multidimensional models from low-dimensional building blocks,
we need some operators connecting two low-dimensional basic assignments into
one more-dimensional. One possibility is the classical Dempster’s combination
rule, which is used to combine distinct belief functions. Consider two basic assign-
ments mU and mV for arbitrary sets of variables U and V. Dempster’s combina-
tion rule is defined for each c Ď ΩUYV as follows:

(mU ‘ mV)(c) “ 1
1 ´ K

∑

aĎΩU ,bĎΩV :aŹ�b“c

mU (a) · mV(b), (7)

where
K “

∑

aĎΩU ,bĎΩV :aŹ�b“H
mU (a) · mV(b), (8)

which can be interpreted as the amount of conflict between mU and mV . If
K “ 1, then we say that the basic assignments mU and mV are in total conflict
and their Dempster’s combination is undefined.

3 Compositional Models

Dempster’s rule of combination may be equivalently expressed using the corre-
sponding commonality functions QmU and QmV [11]

QmU ‘mV (c) “
(

1
1 ´ K

)
QmU (c

↓U ) · QmV (c
↓V),

where K is the same as defined in Eq. (8). Let us stress that it was designed
to combine independent sources of information. When combining the sources
of uncertain information, which may not be distinct, we have to ensure that no
information is double-counted. For this, an operator of composition was designed.
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Definition 1. Consider two arbitrary basic assignments mU , mV , and their
commonality functions QmU and QmV . Their composition is a basic assign-
ment mU Ź mV , the corresponding commonality function of which is given by
the composition of their commonality functions defined for each c Ď ΩUYV by
the following expression:

(QmU Ź QmV )(c) “
⎧
⎨

⎩

1
L

QmU (c↓U )·QmV (c↓V)

Q
m

↓UXV
V

(c↓UXV)
if Qm↓UXV

V
(c↓UXV) ą 0,

0 otherwise,
(9)

where the normalization constant

L “
∑

dĎΩUYV :Q
m

↓UXV
V

(c↓UXV)ą0

(´1)|d|`1 QmU (c
↓U ) · QmV (c

↓V)
Qm↓UXV

V
(c↓UXV)

.

If L “ 0 then mU and mV are in total conflict and the composition is undefined.

Remark. Definition 1 is taken from [4], where the reader can find the moti-
vation not repeated in this paper. Unfortunately, there is no explicit formula
for computing the composition of two basic assignments. However, there is a
way to avoid the necessity to transform the first argument into its commonal-
ity representation. When computing the composition of two basic assignments
we transform the second argument mV into QmV , and compute the correspond-
ing conditional commonality function QmV\U|VXU “ QmV /Qm↓UXV

V
. Then, using

Eq. (4), we compute the corresponding conditional basic assignment mV\U|VXU .
Eventually

mU Ź mV “ mU ‘ mV\U|VXU .

Thus, the computations of composition are limited by the dimensionality of the
second argument because, as a rule, the representation of the corresponding com-
monality function requires the space for 2(2

|V|) values regardless of the number
of focal elements of mV .

In the following assertion, we briefly describe the main properties of the
composition operator. These properties are proved for Shenoy’s valuation-based
systems (VBS) in [4], from which it follows that all of them hold for belief
functions also. Notice that Properties 2 and 3 of the following assertion prove
the fact that the introduced operator of composition avoids double-counting the
information about the variables U X V. Namely, we can see that the operator
disregards the information about these variables that is contained in the second
argument.

Proposition 1. For arbitrary basic assignments mU1 ,mU2 ,mU3 the following
statements hold, if the respective expressions are defined.

1. (Domain): mU1 Ź mU2 is a basic assignment for variables U1 Y U2.
2. (Composition preserves first marginal): (mU1 Ź mU2)

↓U1 “ mU1 .
3. (Reduction:) If U2 Ď U1 then, mU1 Ź mU2 “ mU1 .
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4. (Non-commutativity): In general, mU1 Ź mU2 �“ mU2 Ź mU1 .
5. (Commutativity under consistency): If mU1 and mU2 are consistent, i.e.,

m↓U1XU2
U1

“ m↓U1XU2
U2

, then mU1 Ź mU2 “ mU2 Ź mU1 .
6. (Non-associativity): In general, (mU1 Ź mU2) Ź mU3 �“ mU1 Ź (mU2 Ź mU3).
7. (Associativity under RIP): If U1 ⊃ (U2 X U3), or, U2 ⊃ (U1 X U3) then,

(mU1 Ź mU2) Ź mU3 “ mU1 Ź (mU2 Ź mU3).

By a belief function compositional model we understand a basic assignment
m1 Ź · · · Ź mn obtained by a multiple application of the composition operator.
Let us emphasize that if not specified otherwise by parentheses, the operators
are always performed from left to right, i.e.,

m1 Ź m2 Ź m3 Ź . . . Ź mn “ (. . . ((m1 Ź m2) Ź m3) Ź . . . Ź mn´1) Ź mn.

Consider a (finite) system W of small subsets of the considered variables W.
The vague assumption that U P W is small is accepted to avoid the compu-
tational problems connected with computations with the corresponding basic
assignments. Thus, we assume that for each U P W we have (or we can easily
get) a basic assignment mU . Moreover, we assume that these basic assignments,
as well as the corresponding commonality functions QmU , can effectively be rep-
resented in computer memory.

Using an analogy with Perez’ approximations of probability distributions, we
are looking for the best approximation simplifying the dependence structure of
some basic assignment m, the marginals of which for sets from W are at our
disposal. In other words, we are looking for a sequence of sets (Ui)i“1,...,n from
W such that the model mU1 ŹmU2 Ź · · · ŹmUn

approximates the unknown basic
assignment m best. To simplify notation, we denote mi “ mUi

. Therefore we
will speak about a model m1 Ź m2 Ź . . . Ź mn, in which basic assignment mi is
defined for variables Ui, and the corresponding commonality function is Qi.

The considered compositional model is a |U1 Y . . . Y Un|-dimensional basic
assignment. It is said to be perfect if all mi are marginals of m1 Ź m2 Ź . . . Ź
mn. Thus, perfect models reflect all the information represented by the low-
dimensional basic assignments from which they are composed. So, it is not sur-
prising that the optimal approximation simplifying the dependence structure
will be, as a rule, a perfect model.

If a model is not perfect, it can always be perfectized using the following
assertion (proved in [4]).

Proposition 2 (perfectization procedure). For any compositional model
m1 Ź m2 Ź . . . Ź mn, the model m̄1 Ź m̄2 Ź . . . Ź m̄n defined

m̄1 “ m1,

m̄2 “ m̄↓U2XU1
1 Ź m2,

...
m̄n “ m̄↓UnX(U1Y...YUn´1)

n Ź mn,

is perfect, and m1 Ź m2 Ź . . . Ź mn “ m̄1 Ź m̄2 Ź . . . Ź m̄n.
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The procedure applies to any compositional model, nevertheless, its compu-
tational efficiency is guaranteed only for decomposable models introduced below.
As a rule, a perfect model can equivalently be represented by several permuta-
tions of low-dimensional basic assignments. In [4], the following two important
assertions are proved.

Proposition 3 (on perfect models). Consider a perfect model m1Ź . . .Źmn,
and a permutation of its indices i1, i2, . . . , in such that mi1 Ź mi2 Ź . . . Ź min

is
also perfect. Then,

m1 Ź m2 Ź . . . Ź mn “ mi1 Ź mi2 Ź . . . Ź min
.

Compositional model m1 Ź m2 Ź . . . Ź mn is said to be decomposable if
the sequence U1,U2, . . . ,Un of the corresponding basic assignments meets the
so called running intersection property (RIP): ∀i “ 2, . . . , n ∃j (1 ď j < i) :
Ui X (U1 Y . . . Y Ui´1) Ď Uj .

Proposition 4 (on consistent decomposable models). Consider a decom-
posable model m1 Ź m2 Ź . . . Ź mn. The model is perfect if and only if
basic assignments m1,m2, . . . ,mn are pairwise consistent, i.e., ∀{i, j} ⊂
{1, 2, . . . , n},m

↓UiXUj

i “ m
↓UiXUj

j .

4 Entropy

In this paper, we primarily consider Shenoy’s entropy introduced in [6]. It is
defined

HS(mV) “
∑

aĎΩV

(´1)|a|QmV (a) log(QmV (a)) (10)

using the commonality function of basic assignment mV (no formula based on a
basic assignment is known). This function is not always non-negative. However,
its merit is that it is the only definition of belief function entropy that satisfies an
additivity property in the sense that HS(mX ‘ mY |X) “ HS(mX) ` HS(mY |X)
(here, mX is a basic assignment for X, and mY |X is a conditional basic assign-
ment for Y given X such that its marginal for X is vacuous). This additivity,
which is one of the fundamental properties in probabilistic information theory,
makes the computation of the entropy for perfect compositional models of very
high dimensions possible. Namely, the conditional entropy should be computed
according to the following formula (U and T are disjoint sets of variables):

HS(mU|T ) “
∑

aĎΩUYT

(´1)|a|Qm(UYT )(a) log(QmU|T (a)), (11)

where QmU|T (a) “ Qm(UYT )(a)/Qm↓T
(UYT )

(a↓T ) for all a Ď ΩUYT . Note that for

T “ H, HS(mU|T ) “ HS(mU ), and that the definition of conditional entropy
in Eq. (11) is analogous to Shannon’s definition of conditional entropy of proba-
bilistic conditionals [12].
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Thus, for arbitrary U and V, entropy HS of a composition of two consistent
mU and mV (i.e., m↓UXV

U “ m↓UXV
V ) can be computed as a sum of HS(mU ) and

the respective conditional entropy computed from mV

HS(mU Ź mV) “ HS(mU ) ` HS(mV\U|VXU ). (12)

5 Example

In this example, we consider an 8-dimensional basic assignment m for binary
variables S, T, U, V,W,X, Y, Z. Let us start studying the approximations of m
assembled from its marginals. We consider the approximations that are analogous
to Perez’ probabilistic approximations simplifying the dependence structure. For
this purpose, consider the five marginals described in Table 1.

Table 1. Five low-dimensional basic assignments

Basic assignments Number of focal elements HS

m{S,T,U} 9 0.1951790
m{T,U,V } 9 0.1644314
m{V,W,X} 10 0.1562828
m{W,Y } 5 0.0702895
m{X,Z} 5 0.1385793

Checking the validity of RIP, one can easily verify that compositional model
m{S,T,U} Ź m{T,U,V } Ź m{V,W,X} Ź m{W,Y } Ź m{X,Z} is decomposable. Due to
Proposition 4, it means that this model is perfect, and therefore it contains all the
information from all the given low-dimensional basic assignments. Therefore, we
are sure that this compositional model is optimal among those approximations
that can be assembled from the marginals from Table 1.

In addition to this optimal one, let us consider four other approximations
defined by the permutations not satisfying RIP. Thus, in this example, we com-
pare the following five compositional models:

M1 : m{S,T,U} Ź m{T,U,V } Ź m{V,W,X} Ź m{W,Y } Ź m{X,Z},

M2 : m{S,T,U} Ź m{V,W,X} Ź m{W,Y } Ź m{X,Z} Ź m{T,U,V },

M3 : m{S,T,U} Ź m{W,Y } Ź m{X,Z} Ź m{T,U,V } Ź m{V,W,X},

M4 : m{W,Y } Ź m{X,Z} Ź m{V,W,X} Ź m{T,U,V } Ź m{S,T,U},

M5 : m{W,Y } Ź m{S,T,U} Ź m{X,Z} Ź m{V,W,X} Ź m{T,U,V }.
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To efficiently compute their entropy HS , we modify the expressions defining the
considered models using the properties from Proposition 1 receiving

M2 : m{S,T,U} Ź m{V,W,X} Ź m{W,Y } Ź m{X,Z},

M3 : m{S,T,U} Ź m{W,Y } Ź m{X,Z} Ź m{T,U,V },

M4 :
(
m{W,Y } Ź m{X,Z}

) Ź m{V,W,X} Ź m{T,U,V } Ź m{S,T,U},

M5 :
(
m{W,Y } Ź m{X,Z}

) Ź m{V,W,X} Ź m{S,T,U}.

Notice, these models are decomposable (for this we have to consider that models
M4 and M5 start with a four-dimensional basic assignment in parentheses),
and therefore they can easily be perfectized using Proposition 2. Therefore, the
values of HS presented in the first row of Table 2 can be computed by a successive
application of Formula (12). Using the analogy with the probabilistic paradigm
(introduced in Sect. 1) we expect that the lower the entropy, the better the
model. Thus, the values of HS from Table 2 suggest the following preferences of
models:

M2 ≈ M5 
 M1 ≈ M4 
 M3,

which is not what we would like to see because we are sure that model M1 is
the best one. Thus, entropy HS cannot be recommended as an ultimate criterion
determining, which of the compared approximations is better. In general, it is
not an easy task to say, which of two compositional models approximates better
a given basic assignment, and finding a corresponding criterion function remains
an open problem. In the next section, we consider three functions and study
whether they can heuristically be used for this purpose.

Table 2. Comparison of compositional models Mi based on HS , HA, HP

M1 M2 M3 M4 M5

HS 0.5346689 0.5324691 0.537525 0.5346689 0.5324691
HA 11.21685 11.13043 11.27071 11.23775 11.14948
HP 10.23799 10.33313 10.28555 10.24451 10.3397

Let us repeat that we can recognize the optimal solution only in very special
situations. Namely, when the considered approximation is a perfect composi-
tional model constructed from all the considered basic assignments {mU}UPW.
Then, the approximation reflects all the information from the system of the
considered low-dimensional basic assignments, and therefore it is optimal.

This fact was already employed in [3], in which we compared simple heuristic
(“hill-climbing”) algorithms that were controlled by HS and other two functions
proposed as entropy for belief functions. In short, in addition to HS , we consid-
ered the entropy suggested in [5].

HA(mV) “
∑

aĎΩV

m(a) log(|a|)`H(λm) “
∑

aĎΩV

m(a) log(|a|)´
∑

aPΩV

λ(a) log(λ(a)),
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and its modification (inspired by [7])

HP (mV) “
∑

aĎΩV

m(a) log(|a|)`H(πm) “
∑

aĎΩV

m(a) log(|a|)´
∑

aPΩV

π(a) log(π(a))

(recall that H denotes Shannon entropy, and λm and πm are the respective plau-
sibility and pignistic transforms defined by Formulas (5) and (6), respectively).
The values of HA and HP for models M1 – M5 are in Table 2. Looking at their
values, one can see that HP detects the optimal model suggesting the preferences

M1 
 M4 
 M3 
 M2 
 M5.

Note that this observation is also in agreement with results published in [3].
Nevertheless, in contrast to HS , neither HA nor HP is additive, and therefore
one cannot compute their values for compositional models of practical size. This
is why in the next section, we propose and test heuristics applicable to real size
problems.

6 Comparison of Heuristics on Random Models

In the example in Sect. 5, we mentioned three functions HS ,HA and HP pro-
posed to serve as entropy for belief functions. The great advantage of HS is
its additivity expressed in Formula (12), which is the property holding also for
Shannon entropy. It enables us to compute HS for perfect models of very high
dimensions as a sum

HS(m1 Ź . . . Ź mn) “
n∑

i“1

HS(mUi\Ûi|UiXÛi
), (13)

where Ûi “ U1 Y U2 Y . . . Y Ui´1, and mUi\Ûi|UiXÛi
is computed from mi. No

analogous formulas for the computations of the other two entropies HA and HP

exist. Not being able to compute their values for models of higher dimensions,
we performed computational experiments with a derived heuristic function HA

(and analogously also HP )

HA(m1 Ź . . . Ź mn) “
n∑

i“1

(
HA(m

↓Ui

i ) ´ HA(m
↓UiXŪi

i )
)

.

Using the codes developed in R-studio, we randomly generated 110 perfect
decomposable compositional models for 26 variables3. Realizing random simple
swaps on the order of the basic assignments defining the decomposable mod-
els, we damaged the running intersection property. In this way, likewise in the
3 To generate a decomposable model, first, we generate a sequence of sets of variables

satisfying running intersection property. Then we generated random basic assign-
ments for given sets of variables and run the perfectization procedure as described
in Proposition 2.
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example presented in the previous section, we got for each randomly generated
decomposable model 19 non-decomposable models. For each model from such
a 20-tuple, we computed three values: HS , and HA, HP . By HS we denote the
value computed according to Formula (13). Notice that HS “ HS only for perfect
models. Repeat that this equality is guaranteed, due to the pairwise consistency
of randomly generated low-dimensional basic assignments, only for the decom-
posable model from each of the considered 20-tuple of compositional models.

Table 3. Results from random experiments

HS HA HP

Minimum achieved for the decomposable model 13 110 110
Minimum achieved only for the decomposable model 12 107 107

In Table 3, we depict how many times the respective heuristic functions
achieved their minimum for the decomposable models. From this, one can see
that both HA and HP detected all the decomposable models as optimal. Only for
3 out of all 110 of these experiments, a non-decomposable model was found, for
which the value of HA (and also HP ) was the same as that for the decomposable
model.

Realize, that in total we generated 2,200 compositional models. In Fig. 1, the
reader can see how the values of the considered heuristics for non-decomposable
models differ from those for the respective decomposable model. The histograms
(a), (b) and (c) describe the behavior of values of heuristics HA, HP and HS

for all 19 × 110 “ 2, 090 non-decomposable models. Notice that while from his-
tograms (a) and (b) we see that all the differences were non-negative, histogram
(c) shows that values of HS for non-decomposable models were both higher and
lower than the corresponding values for the respective decomposable models.

Though the results achieved with HA and HP are rather promising, neither
of these heuristics guarantees the detection of the optimal model with certainty.
Have a look at Table 4 containing values of HA and HP for models from Sect. 5.
From this, one can see that not only entropy HA (as shown in Table 2), but also
the heuristic HA does not achieve its minimum for the optimal model.

Table 4. Comparison of compositional models Mi based on HA, HP

M1 M2 M3 M4 M5

HA 11.20454 11.12313 11.26799 11.22912 11.14770
HP 10.25123 10.33647 10.29524 10.26100 10.34624

Let us finish this section by mentioning that these results fully correspond
with the results presented in [3] describing the experiments with heuristic model
learning procedures.
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Fig. 1. .

7 Conclusions

Because of their high computational complexity, one cannot make an inference
with multidimensional belief functions. Therefore, we suggest using their approx-
imations. In this paper, we studied the approximations called approximations
simplifying the dependence structure. As illustrated with an example, the open
problem is not only to find an optimal approximation but even the problem
of recognizing, which of two approximations is better. Inspired by an analogy
with probability theory, we studied the possibility of using information-theoretic
characteristics4 to evaluate the quality of an approximation. Based on the results
from random experiments, we suggest heuristic functions denoted by HA and
HP , for this purpose.

Acknowledgment. The authors wish to acknowledge that the final version of the
paper reflects long discussions with Prakash P. Shenoy.

4 Most of the characteristics suggested in [8] cannot be used because of their high com-
putational complexity. As said above, only HS can be computed for high-dimensional
models due to its additivity.
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