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Abstract—Quite often, the best human decision-makers
outperform computer-aided decision systems. It is not only
because humans can take into account faint pieces of informa-
tion that cannot be formalized but also that they occasionally
behave intuitively, which can hardly be incorporated into
a formal optimization criterion. Therefore, mathematicians
enhance their decision models to make their behavior similar
to that of human decision-makers. They fit decision models
up with different parameters controlling the optimality of
the considered decision. From this point of view, the simplest
and perhaps the most popular is the Hurwitz coefficient of
pessimism controlling whether the decision process tends to
expect more the best or the worst outcome. In this paper, we
design a model with a parameter controlling the strength of
ambiguity aversion of the resulting decision process.

Index Terms—Decision making, ambiguity, belief function,
subjective characteristics.

I. INTRODUCTION

Human decision-making depends on many factors, some
of which are derived from the subjective attitude of
decision-makers, like, e.g., their attitude to risk and their
pessimism/optimism. These characteristics may signifi-
cantly influence the results of a decision process. It is
known that, in general, the most careful decision need not
be the best one. It makes the simulation of the human
way of decision-making by a machine very difficult. In
[1], the authors experimentally compared what they called
conscious and unconscious thoughts in decision-making.
The latter one was enforced by a limited time available.
Surprisingly, experiments have shown that unconscious
thinkers made the best decisions. In addition, unconscious
thought seems to lead to a better organization and polariza-
tion of the thinker’s memory. Similar results, in the case of
the creative idea selection problem, were achieved in [2],
where the authors distinguished intuitive and deliberative
decision making.

To simulate the human way of decision-making, mathe-
maticians fit some of their models up with different param-
eters controlling the optimality of the considered decision.
From this point of view, the simplest, and maybe also
the most famous is the Hurwitz coefficient of pessimism
[3], [4] controlling whether the decision process tends to
expect more the best or the worst outcome. To control the

risk aversion of decision models, the employed optimality
criterion may be based not only on the expected value of
the yield but also on its standard variation.

Starting with [5], in the last decades, psychologists have
devoted their attention also to another subjective attitude
influencing the human decision. It comes into consideration
in case of a lack of information. We have in mind the
ambiguity aversion. One can hardly incorporate this attitude
into probabilistic models because this theory does not have
the proper means to describe ambiguity. This can be seen,
for example, from the fact that the Bayesian approach uses
uniform priors in case that all the considered situations are
equally probable, as well as in situations when there is no
information about their distribution.

In the second half of the last century, the belief function
theory of evidence [6], [7] was designed. As we will see in
the next section, having all the power of probability theory,
belief functions can describe and distinguish the situations
under risk and the situations under vague information. The
basic ideas on how to apply this theory to the decision were
laid by Gilboa and Schmeidler [8], and other authors like
Strat [9].

Ambiguity and its effect on decision-making are well-
known, established topics in economics [10], [11]. It may
seem that, nowadays, there is plenty of data to support
business decision-making and that there is no place for am-
biguity. Nevertheless, some situations have never occurred
before. Moreover, even if data are available, it may not be
the question of their amount, but the question of trust [12].

Human decision makers distinguish from each other
not only by their intuition by also by their subjective
risk and ambiguity attitude. Therefore, when constructing
a mathematical model simulating the behavior of human
decision-makers, one has to introduce a parameter allowing
the adaptation of the model. The model should be able to
simulate persons avoiding ambiguity, as well as those who
are irrelevant to ambiguity, or even those who are seeking
ambiguity.

The main contribution of the paper is to present a
decision method, the behavior of which depends on a co-
efficient of ambiguity aversion. If no available information
is ambiguous, then the method corresponds to a usual op-
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timal probabilistic decision-making. The more ambiguous
information is available, the more influenced is the resulting
decision by the coefficient of ambiguity. Moreover, the user
can adapt the result of the decision process to a type of
ambiguity aversion discussed below.

As explained below, the method is based on the idea that
humans with ambiguity aversion expect a lower yield than
that corresponding to any (reasonably selected) probability
distribution. It looks like that their subjective probabilities
do not sum up to one, and therefore the expected yield
must be reduced accordingly. As shown in [13], the method
thus simulates the behavior of most of the experimental
persons described in the above-cited Ellesberg’s seminal
paper. However, in the same way, it can easily imitate
the behavior of a decision-maker seeking ambiguity, which
occurred in our experiments more often than we expected.

The rest of the paper is organized as follows. Based on
a simple example guiding the reader through the whole
paper, the next section introduces the basic notions and
notation from belief function theory. The main contribution
is explained in Section III, where a coefficient of ambiguity
and its role in a decision model is explained.

II. BELIEF FUNCTION NOTIONS AND NOTATION

Let us explain the basic notion of belief functions and
the corresponding notation. We will do it with an exam-
ple inspired by the current pandemic situation. Trying to
specify a model, one can hardly gain reliable estimates
of the probabilities about the future development. What is
the probability that a required amount of doses of a given
vaccine will be available within the next ten days? What
is the probability that a specific mutation of a virus will
be detected in a given region? What is the probability that
a given vaccine will be authorized by EMA by the end of
this month? These and many similar questions should be
answered to set up a probabilistic model.

Using belief function models, we can do with rough
estimates of the limits of considered probabilities. To sim-
plify the situation, assume that the future development will
follow one of the mutually exclusive scenarios A,B,C, and
denote by D that none of A,B,C realizes. Thus, we are
sure (with probability 1) that one and only one of the four
considered scenarios comes true. Let scenarios A,B, and
C be such that one of them realizes with high probability
(90 %). Further, assume that B materializes with at least
40 % probability. Assume, it is difficult to say whether A
is more probable than C, or vice versa, but we guess that
one of them comes true with the probability not lower than
20 %. All this knowledge should be encoded using the tools
of the belief function apparatus. In probability theory, we
would have to define a probability measure for which the
specified knowledge is not satisfactory. Let us do it in belief
function theory. For this, let us start with the notion, which
is perhaps the simplest one for the reader familiar with
probability theory. It is the notion of a basic probability
assignment.

Formally, basic probability assignment (BPA) is a
mapping1 m : 2Ω → {0, 1}, for which m(∅) = 0,
and

∑
a⊆Ωm(a) = 1. Ω (often called a frame of

discernment) represents the possible situations. In our
example Ω = {A,B,C,D}. Values of m encode what we
are sure about. We are sure, that probability of B is (at
least) 40 %, so we assign m({B}) = 0.4. Analogously,
assigning m({A,C}) = 0.2, we encode the knowledge that
one from the couple A,C comes true with the probability
of at least 20 %. Not knowing which of them, we place
the probability on the corresponding pair of scenarios.
The last piece of knowledge to be encoded is that one
of the scenarios A,B,C realizes with probability 90 %.
Realize that we have already encoded that B (belonging
to the considered triplet) occurs with probability 0.4, and
that the couple A,C (also belonging to the considered
triplet) occurs with probability 0.2. Thus, from this, we
already assured that the probability of a triplet A,B,C is
at least 40 + 20 = 60 %. To guarantee that a scenario from
A,B,C realizes with the probability at least 0.9, we have
to assign m({A,B,C}) = 0.9 − 0.4 − 0.2 = 0.3. In this
way, we exploited all the given knowledge. To assure that
we do not add any misleading knowledge, and to meet
the requirement that values of the assignment m sum up
to one, we eventually assign m({Ω}) = 0.1. Thus, we have

m({B}) = 0.4 B will be available with 40 %,
m({A,C}) = 0.2 A or C with probability 20 %,
m({A,B,C}) = 0.3 with 90 % it will not be D,
m({Ω}) = 0.1 for sure, one of them occurs.

Repeat that the specified values of BPA m sum up to one
for the given subsets of Ω, which means that for all other
subsets (not specified above), their basic assignment is
zero.

Apart from BPA, the same information can be expressed
by the corresponding belief or plausibility functions (both
of which are also defined on the power set 2Ω):

Belm(a) =
∑

b⊆Ω:b⊆a

m(b), (1)

Plm(a) =
∑

b⊆Ω:b∩a6=∅

m(b), (2)

Let us point out that, whenever one of these functions is
given, it is always possible to reconstruct the corresponding
BPA m. For example, denoting ¬a = Ω \ a:

Plm(a) = 1−Belm(¬a),

m(a) =
∑
b⊆a

(−1)|a\b|Belm(b).

In this paper, we do not need too many notions from
belief function theory, but it may help the reader better un-
derstand the model introduced in this paper when realizing
that each BPA m specifies a set of probability measures

1Note that 2Ω denotes the powerset of Ω, i.e. the set of all subsets of
Ω.
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defined on Ω. Denote the set of all probability measures on
Ω by PΩ. Then

Pm =

{
P ∈ PΩ :

∑
x∈a

P (x) ≥ Belm(a) ∀a ⊆ Ω

}
, (3)

is called a credal set of BPA m. It is not difficult to show
that for any probability measure P ∈ Pm

Belm(a) ≤ P (a) ≤ Plm(a),

for any event a ⊆ Ω, which explains a possible interpreta-
tion of belief functions [14]. For event a, we are sure that
it will come true with the probability at least Belm(a), and
on contrary, that its negation ¬a will come true with the
probability at least Belm(¬a) = (1−Plm(a)). This is why
some authors interpret Belm(a) as a lower probability and
Plm(a) as an upper probability of a. From this, the reader
can see that a basic assignment is a more general notion
than a probability distribution as it encodes a whole class
of probability distributions.

The credal set interpretation of a belief function may
also better clarify why we assigned m({A,B,C}) = 0.3
in our example. It guarantees that Belm({A,B,C}) =
0.9, and Plm({A,B,C}) = 1. Simultaneously, Plm(Ω \
{A,B,C}) = Plm({D}) = 0.1 – see Table I.

Realize that any probability distribution can also be
specified by a BPA, the credal set of which contains only
one probability distribution. It occurs if and only if the cor-
responding BPA assigns positive values only to singletons
(one-element sets). Such a BPA is called Bayesian.

For various reasons, one may want to replace a BPA just
by one probability distribution – its probabilistic represen-
tative. There are many such transformations proposed in the
literature [15]–[17] nevertheless, for the sake of simplicity,
we will do with that, which was strongly advocated as a
basis for decision-making by Philippe Smets [18], [19]. For
BPA m, the probability distribution2

πm(a) =
∑
a∈a

∑
b⊆Ω:a∈b

m(b)

|b|
, (4)

is called a pignistic transform of m.

III. COEFFICIENT OF AMBIGUITY AVERSION

A situation in which the probability is unknown, or when
it is not well specified, is called ambiguous in this paper. Let
x be an element of Ω. In our example, it means that x is one
of the considered scenarios. If for all P ∈ Pm, P (x) = p,
then we are sure that the probability of x equals p, and
there is no ambiguity about x. The greater the difference

max
P∈Pm

{P (x)} − min
P∈Pm

{P (x)} = Plm({x})−Belm({x}),

the more ambiguous is x. This difference is used to measure
the amount of ambiguity connected with the state x by
Srivastava [20]. As we will see later, we use a slightly

2Recall that |b| denote the cardinality of set b.

TABLE I
UNCERTAINTY OF THE SCENARIOS

Set functions
Scenarios πm Belm Plm rm,0.2 rm,0.4

A 0.225 0 0.6 0.18 0.135
B 0.525 0.4 0.8 0.5 0.475
C 0.225 0 0.6 0.18 0.135
D 0.025 0 0.1 0.02 0.015

A, B 0.75 0.4 1 0.68 0.61
A, C 0.45 0.2 0.6 0.4 0.35
A, D 0.25 0 0.6 0.2 0.015
B, C 0.75 0.4 1 0.68 0.61
B, D 0.55 0.4 0.8 0.52 0.49
C, D 0.25 0 0.6 0.2 0.15

A, B, C 0.975 0.9 1 0.96 0.945
A, B, D 0.775 0.4 1 0.7 0.625
A, C, D 0.475 0.2 0.6 0.42 0.365
B, C, D 0.775 0.4 1 0.7 0.625

A, B, C, D 1 1 1 1 1

different measure of ambiguity, but the difference is almost
negligible.

In his seminal paper [5], Ellsberg showed that most of
human decision-makers try to avoid situations burdened
with ambiguity. In our experiments [13], the participants
had to decide how much was their maximum bet they were
willing to pay to take part in two lotteries. In both the
considered lotteries, balls of six colors were placed in the
drawing urn. It appeared that, on average, the experimental
persons were willing to pay by about 28 % more to take
part in the lottery, in which they knew that all colors
were equally distributed in the urn, in comparison with
the lottery when the distribution of colors in the drawing
urn was unknown. This observation suggests the basic
principle of the proposed model: The lack of knowledge
may psychologically decrease the subjective chance of
success. This attitude is subjective and differs from person
to person, depending on the intensity of ambiguity aversion
of experimental persons.

Let us get back to the example considered in this paper.
As said above, Smets [19] proposed to base the decision on
the pignistic transform, the values of which are computed
using Formula (4) (see the second column of Table I). We
propose to first reduce the values of the pignistic transform
due to the above expressed basic principle. The magnitude
of the reduction should be affected by two parameters: the
strength of subjective aversion to ambiguity and the amount
of ambiguity connected with the specific state.

The strength of subjective ambiguity aversion is ex-
pressed by the coefficient of ambiguity aversion α. α = 0
corresponds to decision-makers, who are neutral to am-
biguity. The higher α ∈ (0, 1], the greater ambiguity
aversion is manifested by the resulting process. As it is
known from literature [21], [22], though rarely, there are
situations in which some people manifest a positive attitude
to ambiguity; they are seeking ambiguity. Thus, like there
are people with a positive attitude to risk, so-called risk-
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takers, there are also ambiguity-seekers. In the described
model, this fact is reflected by the possibility of choosing
α negative. In our experiments [13] we came about (very
rare) situations when α < −2.

The amount of ambiguity connected with state x ∈ Ω
is encoded in the respective BPA. As already said above,
Srivastava [20] measures this strength by the difference
Plm({x}) − Belm({x}). We use for this purpose the
difference πm(x)−Belm({x}) [23]. Namely, as described
in the next section, we propose to base the decision-
making on computing the reduced expected reward, the
computation of which is based on the set function

rm,α(a) = (1− α)πm(a) + αBelm(a), (5)

called reduced capacity function. Notice that, for positive
α, rm,α(a) = π(a) if and only if Belm(a) = π(a), which
means, in our model, that there is no ambiguity connected
with the state a. The greater the difference π(a)−Belm(a),
the more ambiguous is the information about the state a,
and the greater reduction is realized when switching from
π to rm,α.

Functions π to rm,α, corresponding to BPA m from our
example for two different α, are in the last two columns of
Table I.

IV. DECISION-MAKING WITH THE REDUCED CAPACITY

The reduced capacity function is a convex combination
of a probability transform of the considered BPA and
the corresponding belief function. In the previous section,
we considered only a pignistic transform of BPA. Let us
say that similar results can also be achieved using other
probability transforms of BPAs. The interested reader is
referred to [13], [17] where the decision models based
on five other probabilistic transforms were discussed. The
presented results showed that there are no strong reasons to
prefer one of the considered transforms to others. Another
conclusion says that in practical situations corresponding
to psychological tests described in the literature, all the
decision models evince the same results regardless of the
used probability transform.

For positive α, rm,α ≤ πm. It corresponds to what
was said above: the ambiguity may subjectively decrease
the chances of success. Notice also that the reduction
does not depend only on coefficient α, but also on the
difference between πm and Belm. In comparison with a
probability measure, set function rm,α is neither normalized
nor additive. It is only superadditive in the sense that for
α ∈ [0, 1], and disjoint subsets a and b of Ω

rm,α(a ∪ b) ≥ rm,α(a) + rm,α(b).

Such functions are called capacities in mathematics, and a
lot of literature was written on their application to decision.
Let us only note that the seminal paper by D. Choquet [24],
in which the so-called Choquet integral was introduced, has
more than five thousand citations.

TABLE II
DECISION TABLE

Expected Scenarios
Gain A B C D

Action I 110 30 5 0
Action II 100 10 70 10
Action III 21 40 60 21
Action IV 32 32 32 160

Considering a nonnegative real function g : Ω −→ R+,
denote g(Ω) = {g(x) : x ∈ Ω} the set of values of function
g. For a probability measure π on Ω, the well-known
expected value of g with respect to probability measure
π is defined by the sum∑

x∈Ω

g(x)π(x) =
∑

c∈g(Ω)

c π({x : g(x) = c}),

where the equality holds due to the additivity of a proba-
bility measure π.

As an analogue of the expected value of a nonnegative
function g for nonadditive measures, Choquet proposed to
use the value computed in the following way. Order set
g(Ω) = {c1, c2, . . . , ck} in the way that 0 ≤ c1 < c2 <
. . . < ck. Set c0 = 0. Then, the Choquet integral of g with
respect to capacity function r is defined

Cr(g) =
k∑
i=1

(ci − ci−1) r({x : g(x) ≥ ci}). (6)

Thus in this paper, we accept the decision for which the
value defined by Formula (6) achieves its extreme. If g
expresses gains, then we seek the maximum of its value. If
g measures losses, then, naturally, we look for its minimum.

Returning to the considered pandemic example, we as-
sume that the enterprise management has to make a decision
on which of the four possible actions should be realized.

The revenue of the individual actions depends on which
of the four considered scenarios comes true. Let the rela-
tionship between the actions and scenarios be as expressed
in a decision table (see Table II), where the values cor-
respond to the expected gain (for the sake of simplicity
expressed using monetary values). For example, under
scenario A, Action I produces the gain of $ 110 thousand,
whereas Action III results with only $ 21 thousand. Thus,
if we knew that none of the scenarios A,B,C comes
true, we should undertake Action IV because it brings the
highest revenue of $ 160 thousand. Not knowing anything
more than what is in Tables I and II, the managers should
compute the Choquet integral for all four actions.

For Action I, four values of gain functions must be
considered g(Ω) = {0, 5, 30, 110}. Using Formula (6), we
get for rm,0.2

0 · rm,0.2({A,B,C,D}) + 5 · rm,0.2({A,B,C})
+25 · rm,0.2({A,B}) + 80 · rm,0.2({A})

= 0 · 1 + 5 · 0.96 + 25 · 0.68 + 80 · 0.18 = 36.2.

2021 IEEE International Conference on Technology and Entrepreneurship (ICTE)

Authorized licensed use limited to: UTIA. Downloaded on November 22,2021 at 08:24:01 UTC from IEEE Xplore.  Restrictions apply. 



TABLE III
VALUES OF CHOQUET INTEGRALS

Choquette
Integral

Coefficient of Ambiguity
0.2 0.4 0.7 -1.0

Action I 36.2 30.78 22.64 68.75
Action II 39.4 35.05 28.53 65.5
Action III 37.52 35.29 31.94 50.9
Action IV 34.56 33.92 32.96 38.4

Analogously, for Action II we consider g(Ω) =
{10, 70, 100}, and the corresponding Choquet integral
equals

10 · rm,0.2({A,B,C,D}) + 60 · rm,0.2({A,C})
+30 · rm,0.2({A})

= 10 · 1 + 60 · 0.4 + 30 · 0.18 = 39.4.
Values of Choquet integrals for gain functions corre-

sponding to Action I – Action IV, for four different reduced
gain functions (we consider four different coefficients of
ambiguity α) are in Table III. From this, one can see
that Action I is recommendable for a decision-maker seek-
ing ambiguity. The other actions may be recommended
to decision-makers with different strengths of ambiguity
aversion.

V. CONCLUSIONS

The goal of the paper is twofold. It offers the man-
agers an alternative decision-supporting tool adapting the
optimality criterion to conform with their subjective feel-
ings. It should be stressed that we do not suggest a new
approach guaranteeing to achieve an optimal solution. On
the contrary, we start with the assumption that the notion
of optimality is subjective; it is based on probabilities
(usually subjective) and other subjective parameters like the
introduced coefficient of ambiguity.

The other message conveyed by the paper claims that the
decision achieved with the help of Gilboa and Schmeidler’s
approach (described in [8]) is not the only one that may be
considered optimal because, as said above, the optimality
is subjective. It depends on the attitude of decision-makers
to risk, ambiguity, and perhaps some other personal char-
acteristics.

To show that the behavior of the presented model is
similar to that of human decision-makers, we tested the
behavior of colleagues and students in simple decision
situations. Almost two hundred persons took part in experi-
ments, in which the participants had a chance to win money
in lotteries if they were willing to pay some amount of
money as a participation fee. In each lottery, the participants
should determine the maximum amount of money they were
willing to pay to be allowed to participate. In each lottery,
they received different (incomplete) information about the
content of the urn. For example, there was a situation when
the participants learned that there were eight balls in the
drawing urn, and one and only one of them was red. The
participants knew nothing more than that balls of six colors

were used in the experiments. So, in this situation, the
urn could contain balls of only two colors (one red and
seven, say, blue), as well as balls of all six colors. Among
the lotteries, there were also situations corresponding to
Ellsberg’s experiments [5]. In each lottery, they could win
CZK 100 if they correctly predicted the color of a ball
drawn from a drawing urn.

In the experiments mentioned above, we tested, among
others, the hypothesis that the coefficient of ambiguity
for a person does not vary too much in time. We can
hardly make definite conclusions from our experiments, but
only less than one-half of participants manifested such a
stable behavior. Thus, based on the results described in
[13], we tend to conclude that the strength of ambiguity
aversion (reflected in a personal coefficient of ambiguity
α) varies in dependence on other volatile factors like the
type of a decision task and the current mood of a decision-
maker. Nevertheless, regarding the described model and
the considered coefficient of ambiguity α, we can say
that in practice, all values from the interval [−3, 1] appear
possible. In agreement with other authors [21], the positive
attitude to ambiguity (i.e., negative α) is rare, as well as the
strong ambiguity aversion modeled by α = 1. On average,
the subjective coefficient of ambiguity fluctuated around
α = 0.28 (for details, the reader is referred to [13]).

Regarding what was said above, the orientation of future
research suggests itself. The studied models should cover
another parameter(s), which opens a way to study the
mutual dependence of two (or even several) subjective
characteristics influencing the behavior of human decision-
makers. The long-term goal is to design models simulating
the behavior of human decision-makers. Such human-like
decision models may be applicable not only in business
decision-making (micro-economy) but perhaps mainly in
other fields like in predicting consumer (or competitor)
decision-making. Simply, it may apply to problems where
the subjective attitude of humans may play its role.
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