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Abstract. Discrete tomography (DT) naturally leads to a hierarchy of
models of varying discretization levels. We employ multilevel optimiza-
tion (MLO) to take advantage of this hierarchy: while working at the fine
level we compute the search direction based on a coarse model. Import-
ing concepts from information geometry to the n-orthotope, we propose
a smoothing operator that only uses first-order information and incor-
porates constraints smoothly. We show that the proposed algorithm is
well suited to the ill-posed reconstruction problem in DT, compare it to
a recent MLO method that nonsmoothly incorporates box constraints
and demonstrate its efficiency on several large-scale examples.

1 Introduction

This paper introduces a geometric multilevel optimization approach for solving

min
x∈Rn

f(x), f(x) = KL(Ax, b) + λ‖Dx‖1,τ + δC(x) (1)

to recover a discretized function x on a spatial domain from linear projection
measurements b = Ax by minimizing the Kullback-Leibler (KL) divergence and
a sparsity promoting prior subject to box constraints C = [l, u] ⊂ Rn

+ – see
Fig. 1 for an illustration. We aim at exploiting ‘geometry’ in a twofold way. On
one hand, multiple grid sizes are used for discretizing the domain with different
resolutions, which mitigates the ill-posedness of the inverse recovery problem at
coarser levels. On the other hand, by turning the bounded interior of the convex
feasible set into a Riemannian manifold, the geometry of the space makes first-
order updates of the iterate x more efficient. Our approach combines these design
aspects in a principled manner using problem (1) and discrete tomography [1]
as a scenario that is representative for a range of approaches to inverse problems
using constrained convex optimization.

Related Work. Seminal work on unconstrained smooth multilevel optimization
includes [2–4]. These ideas were elaborated for nonsmooth convex optimization
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in [5,6]. Our approach is applicable to such problems but essentially relies on
smoothness induced by changing the geometry of the feasible set. Regarding
discrete tomography, multiresolution approaches include [7,8] with a focus on
filtered backprojection and heuristics for acceleration, whereas our approach
solves a constrained optimization problem.
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Fig. 1. Scenario and approach. Top row: In discrete tomography, we reconstruct
finite range functions from a finite set of parallel projections. The incidence relation of
projection rays and the discretized domain (pixels in 2D, voxels in 3D) is represented
by a matrix A. All line integrals are collected in a vector b. Bottom row: Comparing
to a standard iterative reconstruction scheme for solving (1), our novel multilevel app-
roach recovers more efficiently the large scale structure and subsequently the fine scale
structure of the unknown function.

Contribution and Organization. Section 2 introduces essential concepts of
multilevel optimization. Our geometric multilevel optimization approach is intro-
duced in Sect. 3, building on [9]. In Sect. 4, we show results of single- and mul-
tilevel optimization and compare them to [5]. Our large scale experiments show
that our approach is on par with the state of the art and holds potential for
further elaboration.

Basic Notation. 〈·, ·〉 denotes the standard inner product on Rn, ∇f the gradi-
ent and ∇2f the Hessian of a sufficiently differentiable function f : Rn → R. We
denote componentwise multiplication of vectors by uv = (u1v1, . . . , unvn)� and,
for strictly positive vectors v ∈ Rn

++, componentwise division by u
v . Likewise, the

functions ex and log x apply componentwise to a vector x. For a smooth Rieman-
nian manifold (M, g) with metric g, TxM denotes the tangent space at x ∈ M
and dxf : TxM → R the differential (aka tangent map) of a smooth function
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f : M → R. The Riemannian gradient ∇Mf(x) ∈ TxM of f is uniquely defined
by dxf [ξ] = gx (∇Mf(x), ξ) , ∀ξ ∈ TxM.

2 Multilevel Optimization in Euclidean Space

Two Level Optimization. We next describe a two grid cycle, that is computing
an update x+ at a fine grid from the current iterate x. This is done either by a
search direction obtained from a model defined on a coarse grid using a much
smaller number of variables (coarse correction) or, whenever coarse correction
is not effective, by a standard local approximation defined on the fine grid (fine
correction). The general approach is summarized in Algorithm 2.1.

Algorithm 2.1: Two Level Optimization
1 initialization: Set i = 0 and choose initial point x, two grids, transfer

operators R and P and a coarse representation f of the objective.
2 repeat
3 if condition to use coarse model is satisfied at x then

4 Define coarse model ψ(y; x, f, R∇f(x)). /* coarse model */

5 Find a descent direction d w.r.t. the fine objective f at x using ψ.

6 Set d = Pd.
7 Find α > 0 such that f(x + αd) < f(x). /* line search */

8 x ← x + αd.

9 else
10 Apply one iteration of the monotone fine level algorithm to find x+ with

f(x+) < f(x) and update x ← x+.

11 Increment i ← i + 1.

12 until a stopping rule is met.

The key question is how to represent the problem on a coarser grid. The
starting point is the coarse discretization of the fine grid objective f : Rn → R,
denoted by f : Rn → R, that represents f on the coarse grid in a meaningful way.
We use the following notation

y ∈ Rn : fine grid variable, y ∈ Rn : coarse grid variable,

d ∈ Rn : search direction on fine grid, d ∈ Rn : search direction on coarse grid.

We assume linear maps R : Rn → Rn and P : Rn → Rn, called restriction and
prolongation to be given, for translating various quantities between the coarse
and fine grid level. Typically, information transfer between levels is done via
linear interpolation or simple injection as in classical multigrid techniques [10].
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Coarse Model. The central principle is defining the coarse grid model, first
proposed in [2], given by

φx(y) := f(y) − 〈vx, y〉, (2a)

vx := ∇f(x) − R∇f(x), x := Rx, (2b)

which is based on a linear modification of the coarse grid objective f . In the fol-
lowing, we drop the explicit dependence of φ and v on x for simplifying notation.
The objective of the coarse grid model is to determine a gradient-like descent
direction in an efficient way using a much smaller number of coarse grid variables.
For the initial iterate of the coarse grid x defined in (2b), we have

∇φ(x) = R∇f(x). (3)

This property, also known as the first order coherence condition, ensures that a
critical point of the objective function on the fine grid is also a critical point of
the coarse model when transferred to the coarse grid. Note, that at this stage
we have not imposed a relation between the intergrid transfer operators P and
R. The update is defined as

x+ = x + αd, (4a)

d = P (y∗ − x), y∗ = arg min
y

φ(y). (4b)

Remark 1. We should underline that y∗ in (4b) is typically replaced by an inexact
solution of the coarse model (2) obtained by some iterative method.

Relation to the FAS. The coarse model φ is closely related to the coarse
grid correction equation of the FAS (full approximation scheme) in the context
of multigrid methods for nonlinear equation [10, Chap. 5.3]. Applying FAS for
solving the nonlinear critical point equation ∇f(y) = 0 at the approximation x
gives the coarse grid correction, see [10, Eq. 5.3.13]

∇f(x + y) − ∇f(x) = r, r := 0 − R∇f(x), (5)

that needs to be solved for y. In FAS both the current approximation x and the
residual, here r := 0 − ∇f(x), are transferred to the coarse grid. The coarse
grid correction is defined in terms of x, r and the coarse representation of the
nonlinear equation. A solution of the coarse grid correction Eq. (5) is a critical
point of y 
→ φ(x + y) in (2).

Bregman Gap, Coarse Model-Based Descent Direction. The following
notion will be used for evaluating the coarse grid model.

Definition 1 (Coarse model, Bregman gap). Given a differentiable func-
tion f : Rn → R and x ∈ Rn define the coarse model by

ψx,x(y) := Bf (x + y, x) + 〈∇f(x), Py〉, (6a)
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with Bregman gap

Bf (x + y, x) := f(x + y) − f(x) − 〈∇f(x), y〉. (6b)

Again we drop the explicit dependence of ψ on x and x for simplifying notation.
The rational behind this definition is that it allows to efficiently obtain a descent
direction, as the gap function is always nonnegative for any convex function f .

Lemma 1. Assume that f is convex and ψ(d) < 0 holds. Then d := Pd is a
descent direction satisfying 〈∇f(x), d〉 < 0.

Proof. Since f is convex, the statement follows from Bf (x + y, x) ≥ 0 for all y.

Remark 2. Whenever R = P� holds (a standard assumption1 in multigrid lit-
erature [10]), the coarse model ψ and the ‘shifted’ coarse model y 
→ φ(x + y)
only differ by a constant that depends on x and x = Rx. Indeed, using vx from
(2b) we rewrite

φ(x + y) = f(x + y) − 〈∇f(x) − R∇f(x), x + y〉 (7a)
= Bf (x + y, x) + 〈R∇f(x), y〉 + const (7b)

R=P �
= ψ(y) + const. (7c)

In the following we disregard constant terms in (7) and consider (the simplified)
coarse model ψ from (6a).

Remark 3. The first-order coherence applied to ψ now reads ∇ψ(0) = P�∇f(x).

Remark 4. The coarse model ψ incorporates both first order information of the
fine objective and second order information of the coarse objective. Indeed, for
f ∈ C2 we can write

ψ(y) = 〈∇f(x), Py〉 + Bf (x + y, x) = 〈∇f(x), Py〉 +
1
2
〈y,∇2f(z), y〉

for some z ∈ {(1 − t)(x + y) + tx}t∈[0,1]. We interpret the first term in ψ as the
first-order Taylor expansion of f(x + Py) at the current iterate x on the fine
grid and ignore f(x) as it is a constant with respect to y. Hence, coarse model
ψ resembles the quadratic approximation model in single level optimization

qx(y) := f(x) + 〈∇f(x), y〉 +
1
2
〈y,Hxy〉, (8)

where Hx is a symmetric positive definite approximation of ∇2f(x).

Coarse Correction Condition. We adopt the following criteria from [4]

‖P�∇f(x)‖ ≥ κ‖∇f(x)‖ and ‖P�∇f(x)‖ > ε, (9)
1 Our model does not require this assumption.



196 J. Plier et al.

where κ ∈ (0,min(1, ‖P‖)) and ε ∈ (0, 1). The above criteria prevent us from
using the coarse model for computing a descent direction when x ≈ x + d, i.e.
the coarse correction direction d is close to 0.

Box Constrained Coarse Model. We now extend the coarse model ψ to box
constraints in order to approach (1) by MLO. We introduce

min
y

ψ(y) subject to lx,x,P ≤ y ≤ ux,x,P , (10)

where the bounds at the coarse level are defined as

(lx,x,P )j = xj +
1

‖P‖∞
max

i=1,...,n

{
(l − x)i, if Pij > 0,

(x − u)i, if Pij < 0,
(11a)

(ux,x,P )j = xj +
1

‖P‖∞
min

i=1,...,n

{
(u − x)i, if Pij > 0,

(x − l)i, if Pij < 0,
(11b)

and adopted from [11]. A closely related coarse model was considered in [5]. In
our notation, we drop the dependency of these bounds on x, x and P . The above
definitions also handle negative elements in P (as in e.g. cubic interpolation).
The next result states that box constraints are preserved by prolongation.

Lemma 2 ([11, Lemma 4.3]) Let x, l, u ∈ Rn with l < u, P : Rn → Rn and l
and u be defined as in (11). Consider any d ∈ [l, u]. Then l ≤ x + Pd ≤ u holds.

In the unconstrained case, it suffices to test whether ‖P�∇f(x)‖ is large
enough compared to ‖∇f(x)‖, see (9). However, this criterion is inadequate for
the box-constrained problem. Instead, we use the scaled gradient [12],

G(x) = S(x)∇f(x), S(x) = diag(s1(x), . . . , sn(x)), (12a)

si(x) =

⎧⎪⎨
⎪⎩

min{1, xi − li}, if (∇f(x))i > 0,

min{1, ui − xi}, if (∇f(x))i < 0,

min{1, xi − li, ui − xi}, if (∇f(x))i = 0,

(12b)

and replace ∇f(x) by G(x) in (9). This gives

‖P�G(x)‖ ≥ κ‖G(x)‖ and ‖P�G(x)‖ > ε, (13)

where κ ∈ (0,min(1, ‖P‖)) and ε ∈ (0, 1). One can show that

si(x)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

= 0, if xi = li and (∇f(x))i > 0,

= 0, if xi = ui and (∇f(x))i < 0,

≥ 0, if xi ∈ {li, ui} and (∇f(x))i = 0,

> 0, otherwise.

Thus any x with G(x) = 0 is a stationary point of the box-constrained fine level
problem.
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Application to Discrete Tomography. We now represent problem (1) on a
coarser grid and evaluate the coarse grid model ψ from (6a). We assume that
images are discretized on n = N × N grid points in a two dimensional domain
in R2. Using the one-dimensional discrete derivative operator ∂d : Rd → Rd,
(∂d)ij = −1, if i = j < d, (∂d)ij = +1 if j = i + 1 ≤ d and (∂d)ij = 0 otherwise,
along each spatial direction, we define the discrete gradient matrix of an N × N
discrete image by D :=

(
D1
D2

)
=

(
∂N⊗IN
IN⊗∂N

)
, where ⊗ stands for the Kronecker

product and IN is the identity matrix of dimension N . Analogously, we define
the discrete gradient on a coarse n = N × N grid and denote it by D.

We denote the projection matrix at the coarser level by A. Next, we show
that the specific ray geometry corresponding to the coarse grid can be selected
independently of the ray geometry at the fine grid, as we do not need to transfer
the projection information between levels. To this end, we evaluate the Bregman
gap in (6b), as only this term involves the coarse objective f .

Lemma 3. Denote the data term in f from (1) by p(y) := KL(Ay, b) and the
regularizer with q(y) := ‖Dy‖1,τ := 〈ρτ (Dy),1〉, where ρτ is the Huber function
applied component-wise. Assume A and D are given on the coarse grid. Then

Bf (y, x) = KL(Ay,Ax) + λBq(y, x). (14)

Proof. A simple calculation shows Bp(y, x) = KL(Ay,Ax). Then the result fol-
lows from linearity of the Bregman gap Bp+λq(y, x) = Bp(y, x) + λBq(y, x).

Remark 5. One can show that the observation above applies to all variational
models that involve a data term formulated by means of a Bregman divergence.

Final Algorithm. We now particularize the steps of the general framework in
Algorithm 2.1.

– Line 3: We choose the coarse correction condition as in (13).
– Line 4: We use the box constrained coarse model in (10).
– Line 5: We obtain d with a few iterations of the projected gradient method

with inexact line search [13] until ψ(d) < 0 holds.
– Line 6: We employ a full weighting operator [10].
– Line 7: This line search may be omitted due to our choice of the restricted

box (11), see Lemma 2.
– Line 10: As f is not gradient Lipschitz continuous, we do fine corrections via

the projected gradient with inexact (rather than fixed) line search.

The algorithm can be implemented also recursively using multiple levels.

3 Geometric Approach

We focus on the minimization of f subject to box constraints in a smooth setting.
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Riemannian Geometry of the Box. Following [14] we turn the open box into
a manifold

(M, g), M := (l, u), l, u ∈ Rn, l < u (15)

with the Hessian Riemannian metric gx(v, w) = 〈v,Hxw〉, v, w ∈ TxM = Rn,
induced by h(x) = 〈1, (x − l) log(x − l) + (u − x) log(u − x)〉 (a convex Leg-
endre function [15, Chapter 26]) and its Hessian given by Hx := ∇2h(x) =
Diag

(
u−l

(x−l)(u−x)

)
. The Riemannian gradient is now given by

∇Mf(x) = H−1
x ∇f(x) =

(x − l)(u − x)
u − l

∇f(x). (16)

Though the choice of h may appear arbitrary at this point, it will prove beneficial
in connection with the constructed retraction below.

Retraction. Conceptually, any reasonable numerical first-order update for the
minimization of f has to map the Riemannian gradient ∇Mf(x) from the tan-
gent space TxM at a current point x ∈ M onto the manifold in a meaningful
way in order to produce an update x+ ∈ M. On a Riemannian manifold, the
natural candidate for this purpose is given by the exponential map with respect
to the Levi-Civita connection. However, in our case it can be shown that this
map is only defined around a small neighborhood of 0 ∈ TxM and does not
extend onto all of TxM. To overcome this limitation, we consider a retraction
map Rx : TxM → M, smoothly varying in x ∈ M, which is required to fulfill

(i) Rx(0) = x, 0 ∈ TxM and (ii) dRx(0) = idTxM, ∀x ∈ M. (17)

These conditions ensure that the curve γ(t) := Rx(tv) realizes the tangent vector
v ∈ TxM at x ∈ M by satisfying γ(0) = x and γ̇(0) = v. See [16, Section 4] for
more background and details of retraction maps.

Fig. 2. Behavior of the retraction ẽxpx from (18) on M = (0, 1)2 in terms of the curve
γ(t) = ẽxpx(tv) for various choices of v ∈ TxM = R2. This illustrates that γ(t) realizes
the tangent vector v near t = 0 and never leaves the manifold M.

Proposition 1. Let (M, g) be given by (15). Then the map

ẽxp: TM → M, ẽxpx(v) := l +
(u − l)(x − l)e

u−l
(x−l)(u−x)v

u − x + (x − l)e
u−l

(x−l)(u−x)v
(18)

is a proper retraction map.



First-Order Geometric Multilevel Optimization for Discrete Tomography 199

Proof. The relative interior of the probability 2-simplex is given by relint(Δ2) =
{p ∈ R2|p > 0 and p1 + p2 = 1} =: S2. For any index i ∈ [n] we can identify
the interval (li, ui) with S2 via Fi : (li, ui) → S2, by sending a point xi ∈ (li, ui)
to Fi(xi) := 1

ui−li

(
ui−xi

xi−li

)
. The manifold S2 possesses an exponential map with

respect to the so called e-connection from information geometry [17,18], which
is defined on all of TpS2 and given by expp(v) = 〈p, e

v
p 〉−1pe

v
p at any p ∈ S2 and

v ∈ TpS2. Since exponential maps always fulfill condition (ii) of (17), the map
expp : TpS2 → S2 and therefore also the pullback onto (li, ui) under Fi

F−1
i

(
expFi(xi)(dFi,x(v))

)
=

(
ẽxpx(v)

)
i

are both proper retractions. Applying this argument to each coordinate i ∈ [n]
proves the statement. ��
The retraction in (18) allows us to compute updates on the manifold based on
numerical operation in the tangent space (Fig. 2). Due to the simple structure of
the constraints, this can be done separately for each coordinate. Furthermore, as
a consequence of the choice for h, the corresponding Hessian Hx defined before
Eq. (16) exactly matches the exponent in the expression for ẽxpx in (18). Thus,
applying ẽxpx to the Riemannian gradient (16) simplifies to

ẽxpx

( − α∇Mf(x)
)

= l +
(u − l)(x − l)e−α∇f(x)

u − x + (x − l)e−α∇f(x)
. (19)

Coarse Grid Model, Coarse Grid Correction. For x ∈ M and x = Rx
define M := (l, u) ⊂ Rn endowed with the Riemannian geometry from (15). We
consider ψ(y) = Bf (y, x) + gx(∇Mf(x), P (y − x)). To find a y ∈ M such that
ψ(y) < 0 we employ the Riemannian gradient method, see [16, Alg. 1].

Final Algorithm. Algorithm 3.1 summarizes a multilevel implementation of the
two grid general framework of Algorithm 2.1 specified to our geometric setting.
Note that in Algorithm 3.1, just as f represents f on the first coarse level, f
represents f on the second coarse level.

Remark 6. Strictly speaking, tangent vectors from different vector spaces TxM
and Tx′M are incompatible unless parallel transport is used. This issue arises in
Algorithm 3.1, line 5, when the tangent vector field ∇Mf is evaluated at a fine
grid point x, as part of the coarse grid model. Since M is an open subset of an
ambient Euclidean space with a trivial tangent bundle, however, this problem is
merely a formal one, and we deliberately ignore it throughout this paper.
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Algorithm 3.1: Multilevel Optimization (ML RG)

1 Function MLO(f, f, x, P)

2 i ← 0
3 while x is not optimal and i < imax do

4 if ‖RG(x)‖ ≥ κ‖G(x)‖ and ‖RG(x)‖ ≥ ε and f defined then

5 ψ(y) = Df (y, x) + gx(∇Mf(x), P (y − x)) /* coarse model */

6 if f defined then

7 y ← MLO(ψ, f, x, P) /* recursive call */

8 else

9 find y with ψ(y) < 0

10 d ← Pd, d = y − x /* descent direction */

11 x ← ẽxpx(αd) /* α > 0 such that f(ẽxpx(αd)) < f(x) */

12 x ← RiemannianGradientDescent(f, x)
13 i ← i + 1

14 return x

Fig. 3. Phantoms that exhibit both fine and large scale structures.

4 Experiments

To illustrate our approach, we compare it to a state-of-the-art first-order multi-
level approach [5] (capable of handling box constraints in a Euclidean setting)
which we adapt as described in Sect. 2 and denote it as multilevel projected gradi-
ent (ML PG). We denote its single-level counterpart as projected gradient (PG).
Similarly, we denote our proposed geometric multilevel approach in Sect. 3 with
multilevel Riemmanian gradient (ML RG) and its single-level version as Rie-
mannian gradient (RG). We summarize our results in Fig. 4.

Data Setup. We consider the phantoms (n = 1024 × 1024) in Fig. 3. We gener-
ated the projection matrices using the ASTRA-toolbox2. We used parallel beam
projections along equidistant angles between 0 and π. The undersampling rate
at the fine grid is 20%. Entry aij of projection matrix A holds the length of
the line segment of the i-th projection ray passing through the j-th pixel. At
every level the width of the sensor-array was set to the grid size, so that at each
scale every pixel intersects with at least one projection ray. For the information

2 https://www.astra-toolbox.com/.

https://www.astra-toolbox.com/
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Fig. 4. Comparison of decreasing objective function values (left column) and
runtime (right column) for single-level resp. multilevel (ML) versions of projected
gradient descent (PG, ML PG) and Riemannian gradient descent (RG, ML RG). The
i-th row corresponds to the i-th image in Fig. 3. Black dots indicate when descent direc-
tions were computed on coarser grids. The multilevel schemes aggressively minimize
the objective. The computational overhead (checking feasibility of coarse grid descent
directions, grid transfer) takes some computation time. Yet, in view of the objective
function decrease, multilevel iterations can be terminated earlier than the single-level
schemes.
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transfer between levels we used as restriction the full weighting operator [10, Eq.
(2.3.3.)] and set P = R�.

Implementation Details. We consider 5 levels with the coarsest grid 64 × 64. In
each coarse level, we limit the number of iterations to 10. At the finest level, we
set λ = 10−3 and increase it at coarser levels to λ = λ · 22. Parameter τ of the
Huber function is 10−4. The parameters in the coarse correction condition are
κ = 0.49 and ε = 10−3.

5 Conclusion

This work is a first glimpse at ongoing research that aims at a systematic analysis
and evaluation of a geometric approach to multilevel optimization. Using only
first-order concepts enabled us to achieve state of the art performance. In fur-
ther work, we will elaborate various ingredients of the approach like, e.g., using
differential geometry for deriving optimal restriction and prolongation mappings.

Acknowledgments. Dr. Jan Plier gratefully acknowledges the generous and invalu-
able support of the Klaus Tschira Foundation.
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