
QUASISTATIC EVOLUTION FOR

DISLOCATION-FREE FINITE PLASTICITY
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Abstract. We investigate quasistatic evolution in finite plasticity under the assumption
that the plastic strain is compatible. This assumption is well-suited to describe the special
case of dislocation-free plasticity and entails that the plastic strain is the gradient of a plastic
deformation map. The total deformation can be then seen as the composition of a plastic
and an elastic deformation. This opens the way to an existence theory for the quasistatic
evolution problem featuring both Lagrangian and Eulerian variables. A remarkable trait of
the result is that it does not require second-order gradients.

1. Introduction

The elastoplastic behavior of a crystalline solid under the action of external loads results
from a combination of reversible elastic and irreversible plastic effects [42]. The state of
the body is specified in terms of its deformation y : Ω → R3 from a reference configuration
Ω ⊂ R3. Elastic and plastic effect are classically assumed to combine via the Kröner-Lee-Liu
multiplicative decomposition of the total strain ∇y = FeFp [35,37,38]. Here, the elastic strain
Fe describes the elastic response of the medium, whereas the plastic strain Fp records the
accumulation of plastic distortion [29]. In metals, it is usually assumed that plastic effects
induce no volume change, namely detFp = 1 [56].

Elastoplastic evolution results from the competition of elastic-energy storage and plastic-
dissipation mechanisms. As such, a common and successful approach to the description of
elastoplasticity of crystalline materials is via variational methods [50]. The energy of the
specimen is often assumed to be of the form∫

Ω
We(∇yF−1

p ) dx+

∫
Ω
Wp(Fp) dx, (1.1)

where We is the elastic-energy density, a function of the elastic strain Fe = ∇yF−1
p , and Wp is

a hardening-energy density. In the incremental setting of the elastoplastic evolution problem,
given external loads and boundary conditions, one minimizes the energy, augmented by a
dissipation term D(Fp0, Fp) [44]. The latter measures the distance of the actual plastic strain
Fp from the previous Fp0. This inspires different solution notions on the time-continuous,
quasistatic evolution level [47].

In view of the mathematical treatment of finite plasticity, one is hence confronted with
the necessity of controlling the product ∇yF−1

p . This is indeed a critical point, for weak
topologies are not sufficient in order to identify this product within a corresponding limit
passage. Such observation has sparked the interest for so-called second-order theories, where
a term featuring the gradient ∇Fp is included in the energy. This gradient term models
nonlocal effects caused by short-range interactions among dislocations [14, 27, 28]. From a

Date: December 24, 2019.
2010 Mathematics Subject Classification. 35Q74, 49J40, 74C15.
Key words and phrases. Elasticity, Plasticity, Quasistatic evolution.

1

ar
X

iv
:1

91
2.

10
11

8v
1 

 [
m

at
h.

A
P]

  2
0 

D
ec

 2
01

9
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mathematical standpoint, the presence of the gradient ∇Fp in the energy contributes strong
compactness for Fp, which then allows to pass to the limit in the product ∇yF−1

p .

To date, multidimensional existence results for incremental and quasistatic evolutions are
just a few and all hinge on second-order theories [13, 25, 26, 39, 46, 48]. However, in finite
plasticity these second-order gradient theories are still debated from the modeling standpoint.
In particular, it is not clear which function of the gradient should be used. We refer to [1,34,62]
for attempts to derive it from statistical physics, revealing the complexity of this issue. A
related approach to nonlocal models in damage and plasticity was undertaken in [6], see
also [16,17,20,42].

Our aim is to investigate existence for quasistatic evolutions not relying on second-order
theories, namely in absence of a regularizing gradient term ∇Fp. This follows the analysis
of [57], where the same issue was considered at the incremental level. The price to pay for
allowing such an existence result is that of restricting the analysis to the case of compatible
plastic strains Fp, namely to impose curlFp = 0. This case corresponds to dislocation-free
elastoplastic evolution. Albeit not generic, such situation still includes plastic slips [51] and
may actually occur in ductile metals [32, 41]. This is particularly relevant in case of small
bodies. Indeed, dislocation dynamics is strongly size-dependent [21, 61] so that very small
dislocation-free bodies may plasticize without nucleating dislocations.

In case of compatibility, one can identify the plastic strain Fp with a gradient of a plastic
deformation yp : Ω→ yp(Ω) ⊂ R3, mapping indeed the reference configuration to the so-called
intermediate one. At the same time, this defines an elastic deformation ye : yp(Ω)→ R3 from
the intermediate to the actual configuration such that the decomposition

y = ye ◦ yp (1.2)

holds. The latter of course entails the multiplicative decomposition ∇y = ∇ye∇yp via the
classical chain rule. On the other hand, by assuming yp to be injective, it allows for rewriting
the energy in (1.1), by a change of variables, as∫

yp(Ω)
We(∇ye) dξ +

∫
Ω
Wp(∇yp) dx. (1.3)

This reformulation of the energy is particularly advantageous from the mathematical view-
point, for it does not feature the product term ∇yF−1

p anymore. This in turn allows for an
existence theory via classical variational methods, even in absence of strong compactness for
Fp = ∇yp. Indeed, in two space dimensions, by assuming Fp = ∇yp one would even be able
to directly identify the limit in ∇y(∇yp)−1 via the classical div-curl lemma as ∇y is curl-free
and div (∇yp)−T = 0 if det∇yp = 1, see also [10].

Arguing via reformulation (1.3) calls for the treatment of both Lagrangian and Eulerian
terms, respectively defined on the reference and on the intermediate configuration, which itself
depends on part of the solution. This kind of mixed Lagrangian-Eulerian problems has to
be traced back at least to [11,19] for the case of defective crystals and has recently attracted
attention in connection with nematic elastomers [4, 5], magnetoelasticity [5, 36, 53, 55, 60],
solid-solid phase change [24,59] and, as already mentioned, incremental finite plasticity [57].
A decomposition of type (1.2) has recently also been used as a starting point to model
dissolution-precipitation creep [33].

The main result of this paper is the existence of incrementally approximable quasistatic
evolutions, see Theorem 2.4. This notion of solution features stability and energy balance on
the time-discrete level as well as semistability relation with respect to elastic deformations
and an energy inequality in the time-continuous limit. A similar notion has been considered
in [12] in the quasistatic setting and in [54] for viscoplasticity and is weaker than the concept
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of energetic solutions [47]. Still, it implies the validity of the quasistatic equilibrium system
as well as the dissipative character of the evolution.

The existence proof follows the classical time-discretization strategy. Discrete-in-time so-
lutions are found by solving incremental problems on a given time partition and a quasistatic
evolution is then recovered as the fineness of the partitions tends to zero. In order to check
for the energy inequality, the lower semicontinuity of the energy and dissipation functionals
plays a crucial role. This results from the weak compactness of the minors of ∇ye and ∇yp

(see (1.3)) under the assumption of polyconvex densities [2]. The passage to the limit in the
discrete semistability requires an ad hoc recovery-sequence construction, which in turn hinges
upon the possibility of extending elastic deformations to a neighborhood of the intermediate
configuration. In order to be able to achieve this, intermediate configurations are asked to
have regular boundaries. More precisely, they are restricted to belong to a certain uniform
subclass of Jones domains [31], see Subsection 2.3.

The mechanical model and its variational formulation are introduced in Section 2 and the
main result is stated in Subsection 2.7. The existence proof is then detailed in Section 3.

2. Main result

This section brings us to the formulation of our main result, Theorem 2.4. We start by
introducing our assumptions and basic framework in Subsections 2.1-2.6 and end with our
main statement in Subsection 2.7.

2.1. Notation. In what follows, we denote by Rd×d the Euclidean space of d×d real matrices
and by SL(d),GL(d), and SO(d) its subspaces of matrices with unit determinant, invertible
matrices, and proper rotations, respectively. Using Ld andHd−1 we refer to the d-dimensional
Lebesgue measure and the (d − 1)-dimensional Hausdorff measure. The norm on a generic
Banach space E is denoted by ‖ · ‖E and we use the standard notation for Sobolev and
Lebesgue spaces. By default, we denote by fn → f strong convergence, whereas fn ⇀ f
means weak convergence.

2.2. Deformations. Let d ≥ 2 and Ω ⊂ Rd be a non-empty, open, simply connected,
bounded domain with Lipschitz boundary. The boundary is essentially split into a Dirichlet
part ΓD and a Neumann part ΓN , namely ∂Ω = ΓD ∪ ΓN with ΓD and ΓN open in ∂Ω and
ΓD ∩ ΓN = ∅ where Hd−1(ΓD) > 0. We indicate by y : Ω→ Rd the deformation of the body
Ω.

The crucial assumption of our theory is that the deformation y can be decomposed into
elastic and plastic deformations ye and yp as in (1.2). As mentioned, this follows from the
standard multiplicative decomposition ∇y = FeFp in case Fp is curl-free. Indeed, if Fp = ∇yp

for some plastic deformation yp one can easily check [57] that Fe = ∇ye for some elastic
deformation ye, so that the multiplicative decomposition ∇y = ∇ye∇yp follows by (1.2) and
the classical chain rule. We now detail our assumptions on yp and ye.

Plastic deformations. We assume that the plastic deformation fulfills

yp ∈W 1,qp(Ω;Rd) for some qp > d(d− 1)

and that it is locally volume preserving, namely, det∇yp = 1 almost everywhere (a.e.) in
Ω [40, 56]. This implies that yp is Hölder continuous with exponent 1 − d/qp and almost
everywhere differentiable [18, Lemma 2.7]. From now on, when writing yp we always mean
its continuous representative.
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The map yp possesses the so-called Lusin’s N -property, namely Ld(E) = 0⇒ Ld(yp(E)) =

0 for all measurable E ⊂ Rd, as well as the corresponding N−1-property, i.e. Ld(E′) = 0 ⇒
Ld(y−1

p (E′)) = 0 for all measurable E′ ⊂ Rd, see [23, p. 296]. Moreover, yp is locally invertible
almost everywhere [18, Thm. 3.1, Cor. 3.3]. This means that for a.e. x ∈ Ω there exists
a ball B ⊂ Rd centered at yp(x), an open neighborhood U ⊂ Ω of x, and a local inverse

y−1
p : B → U with y−1

p ∈ W 1,qp/(d−1)(B;Rd) such that yp|U and y−1
p are onto, y−1

p ◦ yp = id

a.e. in U , yp ◦ y−1
p = id a.e. in B, and ∇y−1

p = (∇yp)−1 ◦ y−1
p a.e. in B.

In view of changing from Lagrangian to Eulerian variables, we require yp to be injective
almost everywhere, namely, that there exists a negligible set N such that yp is injective on
Ω \N . This property is implemented by imposing the classical Ciarlet-Nečas condition [9]

Ld(Ω) =

∫
Ω

det (∇yp(x)) dx ≤ Ld(yp(Ω)). (2.1)

In this setting, (2.1) and injectivity almost everywhere are actually equivalent [22, Prop. 15].
Using injectivity almost everywhere, we get the change of variables formula∫

E
φ(yp(x)) dx =

∫
yp(E)

φ(ξ) dξ (2.2)

for every measurable function φ : Ω→ Rd and all measurable E ⊂ Rd, see [18, Lem. 2.4]. Note
that, here and in the following, we use the shorthand dx for dLd(x) when integrating with
respect to Lagrangian coordinates x ∈ Ω, and dξ for dLd(ξ) in case of Eulerian coordinates,
namely for integration on the intermediate configuration yp(Ω).

If yp ∈ W 1,d(Ω;Rd) with distortion K := |∇yp|d/det∇yp ∈ Lp(Ω;R) for p > d − 1, then
yp is either constant or open, [30, Theorem 3.4]. Since in our setting qp > d(d − 1) and
det∇yp = 1, this integrability requirement is exactly fulfilled. Moreover, by the Ciarlet-
Nečas condition (2.1), yp cannot be constant, which shows that yp is open and injective
almost everywhere. This implies that yp is (globally) injective [24, Lemma 3.3], and that yp

is actually a homeomorphism having inverse y−1
p of regularity

y−1
p ∈W 1,qp/(d−1)(yp(Ω);Rd).

Note that, if the plastic deformation yp at the boundary ∂Ω was coinciding with that of

a homeomorphism on Ω, given the integrability of the distortion one could resort to the
invertibility theory by Ball [3] to deduce that yp is actually a homeomorphism, even without
asking for the Ciarlet-Nečas condition (2.1). In our case however, we cannot assume to be able
to prescribe yp(∂Ω), for yp is an internal variable. In fact, since the problem is formulated in
terms of ∇yp only, we later ask for the normalization condition

∫
Ω yp(x)dx = 0.

Elastic deformations. Given a plastic deformation yp, we assume the elastic deformation
ye, defined on the intermediate configuration yp(Ω), to satisfy

ye ∈W 1,qe(yp(Ω);Rd) for some qe > d.

By using the local invertibility of yp, one checks that the chain rule

∇y(x) = ∇ye(yp(x))∇yp(x) (2.3)

holds for almost every x ∈ Ω, see [57] for details. We can use the change of variables formula
(2.2) together with the chain rule (2.3) and Hölder’s inequality to estimate∫

Ω
|∇y(x)|q dx ≤

(∫
yp(Ω)

|∇ye(ξ)|qe dξ

)q/qe (∫
Ω
|∇yp(x)|qp dx

)q/qp
, (2.4)
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where q is defined by
1

q
=

1

qe
+

1

qp
.

2.3. Domains. In order to carry on our existence proof, some regularity for the intermediate
configurations yp(Ω) is needed. Our goal is to find conditions under which yp(Ω) is a Sobolev

extension domain. These are open subsets of Rd allowing the extension of Sobolev functions
to the whole space. More precisely, ω ⊂ Rd is a W 1,p-extension domain, if and only if one
can define a bounded linear operator

E : W 1,p(ω;Rd)→W 1,p(Rd;Rd)

such that

Eu = u in ω

for every u ∈ W 1,p(ω;Rd). Additionally, we need to ensure that the class of intermediate
domains is closed under Hausdorff convergence of sets, in order to guarantee that the state
space is closed. The Hausdorff distance of two non-empty, compact subsets X,Y of Rd is
defined as

dH(X,Y ) := inf{ν ≥ 0 : X ⊂ Bν(Y ), Y ⊂ Bν(X)},
where Bν(X) := {z ∈ Rd : there exists x ∈ X such that |x − z| < ν} = X + Bν(0) is an
ν-fattening of the set X. It is easy to see that

dH(X,Y ) = max

{
sup
x∈X

dist(x, Y ), sup
y∈Y

dist(y,X)

}
,

where dist(x, Y ) := infy∈Y |x− y|. We remark that, if ynp ⇀ yp in W 1,qp(Ω;Rd), then ynp con-

verges uniformly to yp on Ω by the compact Sobolev embedding W 1,qp(Ω;Rd) ⊂⊂ C0(Ω;Rd).
This implies Hausdorff convergence of the intermediate configurations, namely

dH(ynp (Ω), yp(Ω))→ 0, dH(∂ynp (Ω), ∂yp(Ω))→ 0 (2.5)

as n tends to ∞, see Lemma 3.1 below.

It is well-known that Lipschitz domains are W 1,p-extension domains for every 1 ≤ p ≤ ∞
[8,58]. However, the class of Lipschitz domains is not closed under Hausdorff convergence. We
hence focus here on a larger class of domains, the (ε, δ)-domains introduced by Jones in [31]
and defined below. These possess the extension property [31, Theorem 1] and include Lips-
chitz domains. By restricting to the subclass of uniform (ε, δ)-domains, we obtain uniformly
bounded extension operators as well as closedness with respect to Hausdorff convergence.

Definition 2.1 (Jε,δ domains). We say that a bounded, open set ω ⊂ Rd is an (ε, δ)-
domain, denoted ω ∈ Jε,δ, if for every x, y ∈ ω with |x− y| < δ there exists a Lipschitz curve
γ ∈W 1,∞([0, 1];ω) with γ(0) = x, and γ(1) = y satisfying the following two conditions:

`(γ) :=

∫ 1

0
|γ̇(s)| ds ≤ 1

ε
|x− y| (2.6)

and

dist(γ(t), ∂ω) ≥ ε |x− γ(t)||γ(t)− y|
|x− y|

∀t ∈ [0, 1]. (2.7)

One can immediately see that these classes of domains are nicely ordered in the sense that
if ω is an (ε′, δ′)-domain for some ε′ ≥ ε and δ′ ≥ δ, then ω is also an (ε, δ)-domain. More
precisely,

Jε,δ =
⋃

ε′≥ε,δ′≥δ
Jε′,δ′ .
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2.4. States. Let ε, δ > 0. We define the set of admissible states as

Q :=

{
(ye, yp) ∈W 1,qe(yp(Ω);Rd)×W 1,qp(Ω;Rd) :

yp(Ω) ∈ Jε,δ,
∫

Ω
yp dx = 0, det∇yp = 1 a.e. in Ω, Ld(Ω) ≤ Ld(yp(Ω))

}
.

The state space Q is equipped with the weak topology of W 1,qe
loc (yp(Ω);Rd) ×W 1,qp(Ω;Rd).

More precisely, we write that (yne , y
n
p )n∈N ⊂ Q converges to (ye, yp) in Q, if

ynp ⇀ yp in W 1,qp(Ω;Rd),

yne ⇀ ye in W 1,qe(K;Rd) for every K ⊂⊂ yp(Ω).

Note that, since W 1,qp(Ω;Rd) ⊂⊂ C0(Ω;Rd), for every K ⊂⊂ yp(Ω) there exists nK ∈ N
such that K ⊂ ynp (Ω) for all n ≥ nK . In Section 3.1 below, we prove (sequential) closedness
of Q under this convergence. The constraint yp(Ω) ∈ Jε,δ is global in nature and is expected
to be not restrictive in most practical cases.

2.5. Energy. The stored energy corresponding to the state (ye, yp) ∈ Q consists of three
parts: an elastic energy, which is defined on the intermediate configuration yp(Ω) and depends
on the elastic strain ∇ye, a kinematic hardening energy, depending solely on the plastic strain
∇yp, and a soft elastic boundary condition defined on the Dirichlet boundary ΓD. More
precisely, the stored energy of the system reads

W(ye, yp) =

∫
yp(Ω)

We(∇ye(ξ)) dξ +

∫
Ω
Wp(∇yp(x)) dx+

∫
ΓD

|ye(yp(x))− x| dHd−1(x).

The system is driven by a time-dependent body force f : [0, T ] × Ω → Rd and a boundary
traction g : [0, T ]× ΓN → Rd (provided ΓN 6= ∅) which result in an external loading `, and
loading energy defined as

〈`(t), y〉 =

∫
Ω
f(t, x) · y(x) dx+

∫
ΓN

g(t, x) · y(x) dHd−1(x).

The total energy of the system is then given by

E(t, ye, yp) =W(ye, yp)− 〈`(t), ye ◦ yp〉.

We assume the elastic energy to have qe-growth and the plastic energy density to be coercive,
i.e.

c|Fe|qe −
1

c
≤We(Fe) ≤

1

c
(1 + |Fe|qe), (2.8a)

c|Fp|qp −
1

c
≤Wp(Fp) (2.8b)

for some constant c > 0 and every Fe ∈ Rd×d, Fp ∈ SL(d). This is combined with the
structural assumption of polyconvexity, namely

We(Fe) = Ŵe(Fe, cof Fe,detFe), (2.9a)

Wp(Fp) = Ŵp(Fp, cof Fp) (2.9b)

where Ŵe : Rd×d × Rd×d × R → R and Ŵp : Rd×d × Rd×d → R are convex. We remark that
the notation corresponds to space dimension d = 3, as the minors of a matrix are then given
by determinant, cofactor, and the matrix itself. For d = 2 the dependence on the cofactor
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matrix could be dropped and in dimensions d > 3 the definition of polyconvexity could be
generalized by including further minors. Although not directly needed for the analysis, we
may assume the energy to be frame-indifferent. This corresponds to asking the elastic energy
density to satisfy the assumption We(RFe) = We(Fe) for all R ∈ SO(d), Fe ∈ Rd×d. We
further assume

f ∈W 1,1(0, T ;L(q∗)′(Ω;Rd)), g ∈W 1,1(0, T ;L(q#)′(ΓN ;Rd)),

where q∗ and q# denote the Sobolev exponent and the trace exponent, respectively, and prime
stands for conjugation [52]. Let us remark that the assumptions on qe and qp contribute the
following lower bounds on the mentioned exponents:

q > d− 1, q∗ > d(d− 1), q# > (d− 1)2.

These assumptions ensure that the loading is absolutely continuous in time, namely,

` ∈W 1,1(0, T ; (W 1,q(Ω;Rd))∗) (2.10)

where ∗ denotes the dual space.

Remark 2.2. Locking materials may also be considered. These materials are characterized
by a tolerance M > 0 and internal energy defined as above if ‖∇yp‖L∞(Ω;Rd) ≤ M , and

W(ye, yp) = ∞ otherwise. This would force the plastic deformations to be (uniformly)
Lipschitz continuous.

2.6. Dissipation. Following Mielke [43–45], we define the (local) dissipation distance ∆ :
(SL(d))2 → [0,∞] as

∆(Fp0, Fp1) = inf

{∫ 1

0
R(P (t), Ṗ (t)) dt : P ∈ C1([0, 1]; SL(d)), P (i) = Fpi, for i = 0, 1

}
,

where the dissipation potential

R : SL(d)× Rd×d → [0,∞],

is convex and positively 1-homogeneous in the rate, namely,

R(P, λṖ ) = λR(P, Ṗ ) for all λ ≥ 0,

and satisfies the plastic indifference assumption [44]

R(PQ, ṖQ) = R(P, Ṗ ) for all Q ∈ SL(d).

These properties imply that there exists a convex, positively 1-homogeneous function R̂ :
Rd×d → [0,∞] such that

R(P, Ṗ ) = R̂(ṖP−1),

see [44] or [47, Section 4.2.1.1] and that ∆ satisfies the triangle inequality

∆(Fp0, Fp2) ≤ ∆(Fp0, Fp1) + ∆(Fp1, Fp2),

as well as

∆(Fp0, Fp1) = ∆(I, Fp1F
−1
p0 )

for all Fpi ∈ SL(d), i = 0, 1, 2, where I is the identity matrix.

We assume the function D : SL(d)→ [0,∞] defined as

D(Fp) := ∆(I, Fp)

to be polyconvex. Namely, we suppose that there exists a convex function D̂ : Rd×d×Rd×d →
[0,∞] such that

D(Fp) = D̂(Fp, cof Fp). (2.11)
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We refer to [46, Sec. 4] for a discussion about such polyconvex dissipation potentials. Let us
however mention that this is a delicate point, for a complete characterization of polyconvex
functions D is presently available in the case of 2d isotropic hardening only.

Eventually, we define the (global) dissipation distance between plastic strain states Fp0, Fp1 :
Ω→ SL(d) as

D(Fp0, Fp1) =

∫
Ω
D(Fp1(x)(Fp0(x))−1) dx

and the total dissipation of a plastic evolution yp : [0, T ]→ Q from s to t as

DissD(∇yp; s, t) = sup


N∑
j=1

D(∇yp(ti−1),∇yp(ti)) : s = t0 < · · · < tN = t, N ∈ N

 .

2.7. Main results. Let a partition Π = {0 = t0 < t1 < · · · < tN = T}, N ∈ N and an initial
condition (ye0, yp0) ∈ Q be given and let (yei, ypi) ∈ Q, i = 1, . . . , N solve the incremental
minimization problem

(yei, ypi) ∈ argmin
(ye,yp)∈Q

(
E(ti, ye, yp) +D(∇yp(i−1),∇yp)

)
. (2.12)

Define the right-continuous, piecewise-constant interpolant

(ye, yp)(t) = (ye(i−1), yp(i−1)) for t ∈ [ti−1, ti), i = 1, . . . , N,

(ye, yp)(T ) = (yeN , ypN ) (2.13)

and set
y(t) = ye(t) ◦ yp(t).

We refer to any such interpolation (ye, yp) : [0, T ] → Q as to an incremental solution. This
solution depends on the choice of minimizers in (2.12) and on the partition Π. The following
definition is inspired by [12, Def. 2.12].

Definition 2.3 (Incrementally approximable solutions). We call (ye, yp) : [0, T ]→ Q an in-
crementally approximable quasistatic evolution if the following conditions are satisfied: There
a sequence of partitions (Πn)n∈N with fineness maxi=1,...,N(n)(t

n
i − tni−1) tending to 0 as n

goes to∞ and a corresponding sequence of incremental solutions (yne , y
n
p )n∈N ⊂ Q, such that,

along not relabeled subsequences,

ynp (t) ⇀ yp(t) in W 1,qp(Ω), (2.14a)

DissD(∇ynp ; 0, t)→ δ(t), (2.14b)

DissD(∇yp; s, t) ≤ δ(t)− δ(s) (2.14c)

for some nondecreasing function δ : [0, T ] → [0,∞) and for every s, t ∈ [0, T ], and for every

t ∈ [0, T ] there exists a t-dependent subsequence ntk and ye(t) such that (y
nt
k

e (t), y
nt
k

p (t))
converges to (ye(t), yp(t)) in Q. Moreover, for all t ∈ [0, T ],

E(t, yne (t), ynp (t)) ≤ E(t, ŷe, ŷp) +D(∇ynp (t),∇ŷp) for all (ŷe, ŷp) ∈ Q, (Sdiscr)

and for every s, t ∈ Πn, s ≤ t,

E(t, yne (t), ynp (t)−E(s, yne (s), ynp (s)) + DissD(∇ynk
p ; s, t) ≤ −

∫ t

s
〈 ˙̀(r), (ye ◦ yp)(r)〉dr. (Ediscr)

Theorem 2.4 (Existence of incrementally approximable solutions). Let Ω ⊂ Rd be as in
Section 2.2. Let qe > d, qp ≥ d(d − 1) and define Q as in Section 2.4, E as in Section 2.5,

and D as in Section 2.6. Assume We : Rd×d → R,Wp : SL(d)→ R and D : SL(d)→ [0,∞] to
be polyconvex, see (2.9) and (2.11). Moreover, let We satisfy the growth condition (2.8a) and
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Wp satisfy the coercivity bound (2.8b). Further, assume that ` fulfills regularity assumption
(2.10). Let (ye0, yp0) ∈ Q be initial data satisfying the semistability condition at time 0,
namely

E(0, ye0, yp0) ≤ E(0, ŷe, ŷp) +D(∇yp0,∇ŷp) for all (ŷe, ŷp) ∈ Q.
Then, there exists an incrementally approximable quasistatic evolution (ye, yp) : [0, T ] → Q
with (ye(0), yp(0)) = (ye0, yp0) satisfying the following properties

E(t, ye(t), yp(t)) ≤ E(t, ŷe, yp(t)) for all ŷe such that (ŷe, yp(t)) ∈ Q, (Ssemi)

E(t, ye(t), yp(t)) + δ(t) ≤ E(0, ye(0), yp(0))−
∫ t

0
〈 ˙̀(s), (ye ◦ yp)(s)〉 ds (E)

Incrementally approximable quasistatic evolutions fulfill the semistability condition (Ssemi)
with respect to elastic deformations, as well as an energy inequality (E). These properties are
close to the solution concept discussed in [54] in the context of viscoplasticity but considerably
weaker than the classical notion of energetic solutions [47]. There, the trajectory is required
to be stable with respect to both plastic and elastic deformation and energy equality holds.
We refer to [47, Chapter 3] for a detailed discussion about different solution concepts for
rate-independent systems.

Despite the weakness of the solution concept, the fact that incrementally approximable
solutions are indeed limits of incremental solutions guarantees that plasticity actually occurs,
whenever necessary. In particular, the purely elastic evolution ∇yp(t) = I, which fulfills
(Ssemi)-(E) for compatible initial data, may fail to be incrementally approximable for loadings
exceeding the plastic-activation threshold.

In order to give an elementary example of this fact, we present a simplified argument, by
reducing to one space dimension and to a single material point. In this frame, by choosing
energy densities to be quadratic and setting all constants to 1, the incremental problem (2.12)
can be recast in terms of the deformation strain f ∈ R and the plastic strain p > 0 (we neglect
the isochoric constraint, as necessary in one space dimension) as

(fi, pi) ∈ argmin
f∈R, p>0

(
1

2
|fp−1|2 +

1

2
p2 − `(ti)f + | log p− log pi−1|

)
for i = 1, . . . , N

where the initial values (f0, p0) with p0 = 1 and the loading `(ti) = λti for λ > 0 are given.
One can prove that pi = 1 as long as |λti| ≤ 1. In particular, all incrementally approximable
solutions will be such that p(t) 6= 1 for |`(t)| > 1. In this case, the purely elastic solution
p(t) = 1 is not incrementally approximable.

3. Proofs

The proof of Theorem 2.4 is detailed along the whole section and consist of several parts.
In Subsection 3.1 we discuss the closure of the state space Q. In Subsection 3.2 we show
the existence of incrementally approximable solutions. In Subsections 3.3-3.4 the validity
of energy inequality (E) and semistability (Ssemi) is checked by passing the corresponding
approximate properties of the incremental scheme to the limit.

3.1. Closedness of the state space. Consider a sequence (yne , y
n
p ) ∈ Q converging to

(ye, yp) in Q in the sense of Subsection 2.4. Then ynp ⇀ yp in W 1,qp(Ω;Rd) implies the weak

convergence of det∇ynp to det∇yp in Lqp/d(Ω;R). Hence det∇yp = 1 almost everywhere and

Ld(Ω) ≤ Ld(yp(Ω)) by [9]. Moreover, strong convergence in Lqp(Ω) implies
∫

Ω yp(x) dx = 0.
The fact that yp(Ω) ∈ Jε,δ follows from Lemmas 3.1-3.2 below. In Lemma 3.1 we show the set
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convergence (2.5) by exploiting the fact that the plastic deformations are homeomorphisms,
see Subsection 2.2. In Lemma 3.2 we show that Jε,δ is closed under this convergence.

Lemma 3.1 (Hausdorff convergence of intermediate configurations). Let Ω ⊂ Rd be open
and bounded. Let y, yn ∈ C0(Ω;Rd), n ∈ N, be such that yn converges to y uniformly on Ω
and y|Ω : Ω→ y(Ω), yn|Ω : Ω→ yn(Ω) are homeomorphisms for every n ∈ N. Then

dH(yn(Ω), y(Ω))→ 0, dH(∂yn(Ω), ∂y(Ω))→ 0

as n tends to ∞.

Proof of Lemma 3.1. By uniform convergence, we get that dH(yn(Ω), y(Ω)) and

dH(yn(∂Ω), y(∂Ω)) tend to 0. One is left to show that y(Ω) = y(Ω) and y(∂Ω) = ∂y(Ω).

Ad y(Ω) = y(Ω): we observe that, by continuity of y and compactness of Ω, the set y(Ω)

is closed. Therefore y(Ω) ⊂ y(Ω). In order to check the opposite inclusion, let z ∈ y(Ω)
and choose x ∈ y−1(z) ⊂ Ω and xn ∈ Ω converging to x. Then, y(xn) ∈ y(Ω) and by the

continuity of y up to the boundary, y(xn) converges to y(x), showing that z = y(x) ∈ y(Ω).

Ad y(∂Ω) = ∂y(Ω): we use the fact that, as y is a homeomorphism, the set y(Ω) is open.
Thus, ∂y(Ω) = y(Ω) \ y(Ω). We claim that y(Ω) \ y(Ω) = y(∂Ω). Indeed, if z ∈ y(Ω), then
there exists an open neighborhood U of z such that U ⊂ y(Ω). Since y is a homeomorphism,
V = y−1(U) is an open neighborhood of y−1(z) such that V ⊂ Ω, implying that y−1(z) /∈ ∂Ω,
i.e. z /∈ y(∂Ω). This shows y(Ω)\y(Ω) ⊃ y(∂Ω). On the other hand, y(Ω)\y(Ω) ⊂ y(Ω\Ω) =
y(∂Ω). This concludes the proof. �

Lemma 3.2 (Closedness of Jε,δ under Hausdorff convergence). Let ωn ∈ Jε,δ converge to ω
in the sense that

dH(ω, ωn)→ 0 (3.1)

and

dH(∂ω, ∂ωn)→ 0 (3.2)

as n tends to ∞. Then ω ∈ Jε,δ.

Proof of Lemma 3.2. Let x, y ∈ ω with |x − y| < δ. By convergence (3.1), for every ν > 0
there exists Nν ∈ N such that for all n ≥ Nν we have ω ⊂ ω ⊂ Bν(ωn) = Bν(ωn). Therefore,
we can choose a (not relabeled) subsequence and xn, yn ∈ ωn such that xn and yn converge
to x and y, respectively, and |xn− yn| < δ for every n ∈ N. We now use the assumption that
ωn ∈ Jε,δ and find γn ∈W 1,∞([0, 1];ωn) such that γn(0) = xn, γn(1) = yn,

`(γn) ≤ 1

ε
|xn − yn| <

δ

ε
, (3.3)

and

dist(γn(t), ∂ωn) ≥ ε |xn − γn(t)||γn(t)− yn|
|xn − yn|

∀t ∈ [0, 1]. (3.4)

Set L := δ/ε. From condition (3.3) we see that supn∈N `(γn) ≤ L. Now consider the
parametrizations by arclength with constant extension at the endpoint denoted by γ̃n :
[0, L]→ ωn. By definition, these satisfy

| ˙̃γn(s)| =

{
1, if s ∈ [0, `(γn)],

0, if s ∈ (`(γn), L].
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We use the Arzelà-Ascoli Theorem to extract a (not relabeled) subsequence and find γ̃ ∈
W 1,∞([0, L];ω) such that

˙̃γn
∗
⇀ ˙̃γ in L∞(0, L), (3.5)

γ̃n → γ̃ in C0([0, L]). (3.6)

Define now γ(t) := γ̃(t/L). Then γ ∈ W 1,∞([0, 1];ω) and by weak lower-semicontinuity we
get

`(γ) =

∫ L

0
| ˙̃γ(s)|ds

(3.5)

≤ lim inf
n→∞

∫ L

0
| ˙̃γn(s)| ds = lim inf

n→∞
`(γn)

(3.3)

≤ 1

ε
lim
n→∞

|xn − yn| =
1

ε
|x− y|.

Notice that, as soon as we prove condition (2.7), γ([0, 1]) ⊂ ω follows. In order to show (2.7),
we fix s ∈ [0, L]. By compactness of the boundary ∂ω we can choose z ∈ ∂ω such that

dist(γ̃(s), ∂ω) = |γ̃(s)− z|. (3.7)

We further choose zn ∈ ∂ωn such that

|zn − z| ≤ dH(∂ω, ∂ωn)

for every n ∈ N. Then, by the triangle inequality

|γ̃(s)− z| ≥ |γ̃n(s)− zn| − |γ̃(s)− γ̃n(s)| − |zn − z|
≥ dist(γ̃n(s), ∂ωn)− ‖γ̃ − γ̃n‖C0([0,1]) − dH(∂ω, ∂ωn).

Using assumption (3.2), condition (3.4), and convergence (3.6), we deduce that

|γ̃(s)− z| ≥ ε |xn − γ̃n(s)||γ̃n(s)− yn|
|xn − yn|

.

Passage to the limit on the right-hand side concludes the proof of (2.7). �

3.2. Existence of incremental solutions. In the following C > 0 denotes a positive real
constant which may change from line to line, whereas c > 0 denotes the constant used
in assumptions (2.8a)-(2.8b). For the purpose of readability, we abbreviate ‖f‖Lp(Ω;Rd) by

‖f‖Lp(Ω) and ‖g‖Lp(ΓD;Rd) by ‖g‖Lp(ΓD).

Let Π = {0 = t0 < t1 < · · · < tN = T} be a partition of [0, T ]. Given i ∈ {1, . . . , N} and
(ye(i−1), yp(i−1)) ∈ Q we aim at proving that minimizers of the incremental problem

(yei, ypi) ∈ argmin
(ye,yp)∈Q

(
E(ti, ye, yp) +D(∇yp(i−1),∇yp)

)
(3.8)

exist.

We follow the Direct Method of the Calculus of Variations: Let (yne , y
n
p )n∈N ⊂ Q be an

infimizing sequence for (3.8). Here, we use that Q is non-empty, since (T−1, T ) ∈ Q, where
T (x) = x − x̄ is a translation and x̄ is the barycenter of Ω. As D is nonnegative, we can
assume without loss of generality that E(ti, y

n
e , y

n
p ) ≤ C. We aim at showing the following

compactness result:

E(ti, y
n
e , y

n
p ) ≤ C =⇒ (yne , y

n
p )→ (ye, yp) in Q (3.9)

along a not relabeled subsequence. Indeed, the energy bound E(ti, y
n
e , y

n
p ) ≤ C together with

the growth assumption (2.8a) and the coercivity (2.8b) entails

c‖∇yne ‖
qe
Lqe (ynp (Ω)) + ‖∇ynp‖

qp
Lqp (Ω) + c‖yne ◦ ynp − id‖L1(ΓD) ≤ C + 〈`(t), yne ◦ ynp 〉.
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By the regularity assumption (2.10) and the chain rule estimate (2.4), we can bound

|〈`(t), yne ◦ ynp 〉| ≤ ‖`(t)‖(W 1,q(Ω))∗‖yne ◦ ynp‖W 1,q(Ω)

≤ C‖∇yne ‖Lqe (ynp (Ω))‖∇ynp‖Lqp (Ω)

≤ c

2
‖∇yne ‖

qe
Lqe (ynp (Ω)) +

c

2
‖∇ynp‖

qp
Lqp (Ω) + C

and conclude that

‖∇yne ‖
qe
Lqe (ynp (Ω)) + ‖∇ynp‖

qp
Lqp (Ω) + ‖yne ◦ ynp − id‖L1(ΓD) ≤ C. (3.10)

Since ynp has zero mean, the Poincaré-Wirtinger inequality implies that ynp is bounded in

W 1,qp(Ω;Rd). On the other hand yn := yne ◦ ynp is subject to the elastic Dirichlet boundary
condition on ΓD and we have the following result.

Lemma 3.3 (Generalized Poincaré inequality). Let Ω ⊂ Rd be as in Section 2.2 and q ≥ 1.
Then, there exists a constant CPoincaré > 0 such that

‖y‖W 1,q(Ω) ≤ CPoincaré

(
‖∇y‖Lq(Ω) + ‖y − id‖L1(ΓD)

)
for every y ∈W 1,q(Ω;Rd).

Proof of Lemma 3.3. We argue by contradiction. Let the sequence (yk)k∈N ⊂ W 1,q(Ω;Rd)
be such that

‖∇yk‖Lq(Ω) + ‖yk − id‖L1(ΓD) <
1

k
‖yk‖Lq(Ω). (3.11)

We claim that ‖yk‖Lq(Ω) →∞. If this would not be the case, we would have ‖yk‖W 1,q(Ω) ≤ C
and can pick a (not relabeled) subsequence yk converging to y weakly in W 1,q(Ω). By the
trace theorem, the traces would also converge strongly in L1(∂Ω). Moreover, by (3.11),

‖∇y‖Lq(Ω) + ‖y − id‖L1(ΓD) ≤ lim inf
k→∞

(
‖∇yk‖Lq(Ω) + ‖yk − id‖L1(ΓD)

)
= 0.

This would imply ∇y = 0 in Ω and y = id on ΓD. A contradiction. Hence ‖yk‖Lq(Ω) →∞.
We now rescale the sequence by setting

wk :=
yk

‖yk‖Lq(Ω)

and note that

‖wk‖Lq(Ω) = 1 and ‖∇wk‖Lq(Ω) + ‖wk − λkid‖L1(ΓD) <
1

k

where λk = ‖yk‖−1
Lq(Ω) tends to 0. Then, we choose a (not relabeled) subsequence wk con-

verging to some w weakly in W 1,q(Ω), strongly in Lq(Ω), and such that the traces converge
strongly in L1(∂Ω). This leads to ∇w = 0 in Ω and w = 0 on ΓD. Since Ω is connected, this
forces w = 0 in Ω and contradicts the fact that ‖w‖Lq(Ω) = limk→∞ ‖wk‖Lq(Ω) = 1. �

We use Lemma 3.3 in combination with the chain rule (2.3) and Hölder’s inequality to
estimate

‖yn‖q
W 1,q(Ω)

≤ C
(
‖∇yne ‖

qe
Lqe (ynp (Ω)) + ‖∇ynp‖

qp
Lqp (Ω) + ‖yne ◦ ynp − id‖q

L1(ΓD)

) (3.10)

≤ C. (3.12)

We further remark that W 1,q(Ω;Rd) embeds into Lq
∗
(Ω;Rd) with q∗ > qe. This leads to

‖yne ‖Lqe (ynp (Ω)) = ‖yn‖Lqe (Ω) ≤ C‖yn‖W 1,q(Ω) ≤ C.

Altogether, we conclude that

‖yn‖W 1,q(Ω) + ‖yne ‖W 1,qe (ynp (Ω)) + ‖ynp‖W 1,qp (Ω) ≤ C.
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This bound implies that there exists a (not relabeled) subsequence such that (yne , y
n
p ) con-

verges to (ye, yp) in Q which concludes the proof of (3.9).

In Section 3.1 we have seen that Q is closed under this convergence, consequently (ye, yp) ∈
Q. Furthermore, by the continuity of the trace operator, we have yn → y strongly in Lq

#
(∂Ω),

where q# > (d− 1)2 ≥ 1. This yields∫
ΓD

|y(x)− x|dHd−1(x) = lim
n→∞

∫
ΓD

|yn(x)− x| dHd−1(x). (3.13)

By the weak continuity of the loading term, we have that 〈`(ti), yn〉 converges to 〈`(ti), y〉.
The weak continuity of the minors entails that cof∇ynp ⇀ cof∇yp in Lqp/(d−1)(Ω;Rd). In
combination with polyconvexity (2.9b), we deduce∫

Ω
Wp(∇yp(x)) dx ≤ lim inf

n→∞

∫
Ω
Wp(∇ynp (x)) dx. (3.14)

For every fixed K ⊂⊂ yp(Ω), again by weak continuity of the minors (recall that qe > d) and
polyconvexity (2.9a), we have∫

K
Wel(∇ye(ξ)) dξ ≤ lim inf

n→∞

∫
ynp (Ω)

Wel(∇yne (ξ)) dξ. (3.15)

Letting K tend to yp(Ω) in (3.15), together with (3.13) and (3.14) we have shown lower
semi-continuity of the energy, namely

E(ti, ye, yp) ≤ lim inf
n→∞

E(ti, y
n
e , y

n
p ). (3.16)

In a similar way, using polyconvexity of D (2.11), we get

D(∇yp(i−1),∇yp) =

∫
Ω
D(∇yp(∇yp(i−1))

−1) dx

=

∫
Ω
D̂(∇yp(∇yp(i−1))

−1, cof (∇yp(∇yp(i−1))
−1)) dx

=

∫
Ω
D̂(∇yp(∇yp(i−1))

−1, cof (∇yp) cof (∇yp(i−1))
−1) dx

≤ lim inf
n→∞

∫
Ω
D̂(∇ynp (∇yp(i−1))

−1, cof (∇ynp )cof (∇yp(i−1))
−1) dx

= lim inf
n→∞

D(∇yp(i−1),∇ynp ),

where we also used the fact that

cof (∇ynp )cof (∇yp(i−1))
−1 = cof (∇ynp )∇yTp(i−1)

⇀ cof (∇yp)∇yTp(i−1) = cof (∇yp)cof (∇yp(i−1))
−1

in Lqp/d(Ω;Rd×d). This shows that (ye, yp) is a minimizer of (3.8).

The discrete stability condition (Sdiscr) can be deduced easily by testing (3.8) with a
competitor (ŷe, ŷp) ∈ Q and using the triangle inequality for D. The discrete energy inequality
(Ediscr) is shown below in (3.17).

3.3. Energy inequality. Take a sequence of partitions Πn = {0 = tn0 < tn1 < · · · < tnN(n) =

T}, n ∈ N, with fineness maxi=1,...,N(n)(t
n
i − tni−1) tending to 0 as n goes to ∞. For fixed

n we iteratively choose (ynei, y
n
pi) ∈ Q, i = 1, . . . , N(n), solving the incremental minimization

problem (3.8), consider the right-continuous, piecewise constant approximation as in (2.13),
and set

yn(t) = yne (t) ◦ ynp (t).
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Testing (3.8) against (yne(i−1), y
n
p(i−1)), we get

E(tni , y
n
ei, y

n
pi)− E(tni−1, y

n
e(i−1), y

n
p(i−1)) +D(∇ynp(i−1),∇y

n
pi) ≤ −

∫ tni

tni−1

∂tE(s, yne(i−1), y
n
p(i−1)) ds.

Summing over i, we arrive at

E(tnk , yek, ypk)− E(tnj , yej , ypj) + DissD(∇ynp ; tnj , t
n
k) ≤ −

∫ tnk

tnj

∂tE(s, yn(s)) ds (3.17)

for every 0 ≤ j ≤ k ≤ N(n). We estimate the right-hand side by

|∂tE(s, yn(s))| ≤ ζ(s)‖yn(s)‖W 1,q(Ω),

where ζ(s) := ‖ ˙̀(s)‖W 1,q(Ω)∗ , by assumption (2.10), is integrable. By estimate (3.12) and
assumptions (2.8a)-(2.8b), we have

‖yn(s)‖W 1,q(Ω) ≤ C(1 + E(s, yne (s), ynp (s))).

Therefore, altogether

E(t, yne (t), ynp (t))− E(s, yne (s), ynp (s)) + DissD(∇ynp ; s, t) ≤ C
∫ t

s
ζ(r)(1 + E(r, yn(r))) dr

for every s, t ∈ Πn, s ≤ t. By virtue of Gronwall’s inequality, using the integrability of ρ, we
find

sup
t∈Πn

E(t, yne (t), ynp (t)) ≤ C.

Since E is absolutely continuous in time and the approximate solution (yne , y
n
p ) is piecewise

constant, we deduce

sup
t∈[0,T ]

E(t, yne (t), ynp (t)) + DissD(∇ynp ; 0, T ) ≤ C. (3.18)

We now prepare an intermediate result.

Lemma 3.4 (Lower-semicontinuity of D in both arguments). Let ynp ⇀ yp and ynp0 ⇀ yp0 in

W 1,qp(Ω) with qp > d(d− 1) such that det∇ynp0 = 1 a.e. and |Ω| ≤ |ynp0(Ω)| for every n ∈ N.
Then,

D(∇yp0,∇yp) ≤ lim inf
n→∞

D(∇ynp0,∇ynp ).

Proof of Lemma 3.4. We rely on the assumption qp ≥ d(d− 1) and define

vn = ynp ◦ (ynp0)−1,

where the global inverse (ynp0)−1 is bounded in W 1,qp/(d−1)(ynp0(Ω)), since we have that

(∇ynp0)−1 = (cof∇ynp0)T . We rewrite

D(∇ynp0,∇ynp ) =

∫
ynp0(Ω)

D(∇vn(ξ)) dξ

and estimate

‖vn‖Lqp/d(ynp0(Ω)) = ‖ynp‖Lqp/d(Ω) ≤ |Ω|
(d−1)/qp‖ynp‖Lqp (Ω) ≤ C, (3.19a)

‖∇vn‖Lqp/d(ynp0(Ω)) = ‖∇ynp (∇ynp0)−1‖Lqp/d(Ω)

≤ ‖∇ynp‖Lqp (Ω)‖cof∇ynp0‖Lqp/(d−1)(Ω) ≤ C. (3.19b)
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Let K be a compact subset of yp0(Ω). Since ynp0 → yp0 uniformly in Ω, there exists nK ∈ N
such that for all n ≥ nK , we have K ⊂ ynp0(Ω). Using estimates (3.19), we choose a (not

relabeled) subsequence such that

vn ⇀ v in W 1,qp/d(K),

where v = yp ◦ y−1
p0 on K. As qp/d > d − 1, we conclude, by using the polyconvexity (2.11)

and the weak continuity of the minors of ∇v, that∫
K
D(∇v(ξ)) dξ ≤ lim inf

n→∞

∫
K
D(∇vn(ξ)) dξ ≤ lim inf

n→∞

∫
ynp0(Ω)

D(∇vn(ξ)) dξ.

Now it suffices to consider an increasing sequence of compact subsets exhausting yp0(Ω). By
further extracting a diagonal sequence, we get that yp = v ◦ yp0 on Ω and the statement
follows. �

We proceed with the proof of the energy inequality by noting that (3.18) together with
Lemma 3.4 allows us to use Helly’s Selection Principle [47, Thm. B.5.13]. Namely, there
exists a subsequence (nk)k∈N, a function yp : [0, T ]→W 1,qp(Ω), and a nondecreasing function
δ : [0, T ]→ [0,∞) such that

ynk
p (t) ⇀ yp(t) in W 1,qp(Ω), (3.20a)

DissD(∇ynk
p ; 0, t)→ δ(t), (3.20b)

DissD(∇yp; s, t) ≤ δ(t)− δ(s) (3.20c)

for every s, t ∈ [0, T ]. By defining θn(s) := −〈 ˙̀(s), yn(s)〉 and observing that θn is equiinte-
grable, we can use the Dunford-Pettis Theorem (see [15] or [47, Theorem B.3.8]) to extract
a further (not relabeled) subsequence satisfying

θnk
⇀ θ in L1(0, T ). (3.21)

Fix now some t ∈ [0, T ] and define

τn := min{τ ∈ Πn : τ ≥ t}

such that τn ≥ t, τn → t. We can directly pass to the lim inf in the dissipation

δ(t)
(3.20b)

= lim
k→∞

DissD(∇ynk
p ; 0, t) ≤ lim inf

k→∞
DissD(∇ynk

p ; 0, τnk).

Moreover, by the energy bound (3.18), we can follow the argument leading to (3.9) and

choose a t-dependent subsequence (N t
k)k∈N of (nk)k∈N such that (y

Nt
k

e (t), y
Nt

k
p (t)) converges to

(ye(t), yp(t)) in Q and yn(t) ⇀ ye(t)◦yp(t) =: y(t) in W 1,q(Ω;Rd). Additionally, by extracting
a further subsequence, we guarantee that

θN
t
k(t)→ lim sup

k→∞
θnk(t) := θsup(t).

Since yN
t
k(t) ⇀ y(t) in W 1,q(Ω), it easily follows that

θsup(t) = lim
k→∞

θN
t
k(t) = lim

k→∞
〈 ˙̀(t), yNt

k(t)〉 = 〈 ˙̀(t), y(t)〉.

Furthermore,

E(t, ye(t), yp(t)) ≤ lim inf
n→∞

E(τN
t
k , y

Nt
k

e (t), y
Nt

k
p (t)),
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see the discussion in Section 3.2 leading to (3.16) and notice that (yne , y
n
p )(t) = (yne , y

n
p )(τn).

At this point, we can pass to the lim sup on the right-hand side of inequality (3.17), using
convergence (3.21) and θ ≤ θsup. As the energy is continuous in t, we conclude that

E(t, ye(t), yp(t))− E(0, ye0, yp0) + δ(t) ≤ −
∫ t

0
〈 ˙̀(s), y(s)〉 ds

as desired.

3.4. Semistability. In this section, we prove the semistability condition (Ssemi). Fix t ∈
[0, T ] and define τn as above. Let (yne (t), ynp (t)) be the right-continuous approximation defined
in (2.13) and note that (yne , y

n
p )(t) = (yne , y

n
p )(τn). By testing the minimum in (3.8) at time

τn against competitors (ŷne , y
n
p (t)) having the same plastic component, we get the following

discrete semistability:

E(τn, y
n
e (t), ynp (t)) ≤ E(τn, ŷ

n
e , y

n
p (t)) (3.22)

for every ŷne satisfying (ŷne , y
n
p (t)) ∈ Q. By following the discussion of Subsections 3.2-3.3,

we can choose a (not relabeled) subsequence such that (yne (t), ynp (t)) → (ye(t), yp(t)) in Q.
Note that this subsequence may be t-dependent as in Section 3.3. We aim at showing the
corresponding limit semistability:

E(t, ye(t), yp(t)) ≤ E(t, ŷe, yp(t)) (3.23)

for every ŷe satisfying (ŷe, yp(t)) ∈ Q. This is done by passing to the limit in (3.22) with a
suitable recovery sequence in the spirit of [49].

Lemma 3.5 (Existence of recovery sequences). Let (yne , y
n
p )n∈N ⊂ Q converge to (ye, yp) in

Q. Then, for every ŷe with (ŷe, yp) ∈ Q there exists a sequence ŷne with (ŷne , y
n
p ) ∈ Q satisfying

lim sup
n→∞

(
E(τn, ŷ

n
e , y

n
p )− E(τn, y

n
e , y

n
p )
)
≤ E(t, ŷe, yp)− E(t, ye, yp). (3.24)

Proof of Lemma 3.5. Let ŷe be such that (ŷe, yp) ∈ Q. As the energy E is absolutely continu-
ous with respect to time (2.10), relation (3.24) follows as soon as we find ŷne with (ŷne , y

n
p ) ∈ Q

satisfying

lim sup
n→∞

(
E(t, ŷne , y

n
p )− E(t, yne , y

n
p )
)
≤ E(t, ŷe, yp)− E(t, ye, yp) (3.25)

where now time is fixed.

In order to check for (3.25), due to the cancellation of the kinematic hardening energy
Wp and the weak lower-semicontinuity (3.16), it suffices to show that there exists a sequence
(ŷne , y

n
p ) ∈ Q such that

lim sup
n→∞

∫
ynp (Ω)

We(∇ŷne (ξ)) dξ ≤
∫
yp(Ω)

We(∇ŷe(ξ)) dξ (3.26)

and

lim
n→∞

∫
ΓD

|ŷne (ynp (x))− x|dHd−1(x) =

∫
ΓD

|ŷe(yp(x))− x|dHd−1(x). (3.27)

We may assume without loss of generality that∫
yp(Ω)

We(∇ŷe(ξ)) dξ <∞.
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In particular, ŷe ∈W 1,qe(yp(Ω);Rd) by the growth assumption (2.8a). To define the recovery
sequence ŷne we use the fact that yp(Ω) ∈ Jε,δ. By the extension property of (ε, δ)-domains,
there exists a bounded linear operator

E : W 1,qe(yp(Ω);Rd)→W 1,qe(Rd;Rd) (3.28)

such that Eu = u in yp(Ω), and a constant C solely depending on ε, δ, qe, and d such that

‖Eu‖W 1,qe (Rd) ≤ C‖u‖W 1,qe (yp(Ω)) (3.29)

for every u ∈W 1,qe(yp(Ω);Rd) [31, Theorem 1].
Set now

ŷne := Eŷe

∣∣
ynp (Ω)

and note that this test is admissible, namely (ŷne , y
n
p ) ∈ Q. Then, we split∫

ynp (Ω)
We(∇ŷne (ξ)) dξ =

∫
ynp (Ω)∩yp(Ω)

We(∇ŷe(ξ)) dξ +

∫
ynp (Ω)\yp(Ω)

We(∇(Eŷe)(ξ)) dξ.

We use the growth condition (2.8a) to control∣∣∣∣∣
∫
ynp (Ω)\yp(Ω)

We(∇(Eŷe)(ξ)) dξ

∣∣∣∣∣ ≤ 1

c

∫
ynp (Ω)\yp(Ω)

(1 + |∇(Eŷe)(ξ)|qe) dξ (3.30)

and use the convergence Ld(ynp (Ω) \ yp(Ω)) → 0 as well as Eŷe ∈ W 1,qe(Rd;Rd), by bound
(3.29), to deduce the convergence to 0 of the right-hand side of (3.30). Since ynp → yp

uniformly in Ω, we have Ld(ynp (Ω)4yp(Ω)) → 0 as n →∞, where 4 denotes the symmetric
difference. Thus,

lim
n→∞

∫
ynp (Ω)∩yp(Ω)

We(∇ŷe(ξ)) dξ =

∫
yp(Ω)

We(∇ŷe(ξ)) dξ.

This proves inequality (3.26) and we are left with checking the convergence (3.27). Observe
that by the chain rule (2.3)-(2.4) and the boundedness of the extension (3.29), we have

‖ŷne ◦ ynp‖Lq(Ω) = ‖Eŷe‖Lq(ynp (Ω)) ≤ |ynp (Ω)|1/qp‖Eŷe‖Lqe (Rd) ≤ C,
‖∇(ŷne ◦ ynp )‖Lq(Ω) ≤ ‖∇Eŷe‖Lqe (ynp (Ω))‖∇ynp‖Lqp (Ω) ≤ C.

The latter shows that ŷne ◦ynp is bounded in W 1,q(Ω;Rd). Moreover, we know that ynp converges

uniformly to yp on Ω. Hence we can choose a (not relabeled) subsequence such that Eŷe◦ynp ⇀
ŷe◦yp in W 1,q(Ω;Rd). This implies that Eŷe◦ynp → ŷe◦yp in Lq

#
(∂Ω) with q# > (d−1)2 ≥ 1,

so that the convergence∫
ΓD

|Eŷe(y
n
p (x))− x| dHd−1(x)→

∫
ΓD

|ŷe(yp(x))− x| dHd−1(x)

holds. �

By using Lemma 3.5, starting from the discrete semistability (3.22), we readily check its
time-continuous counterpart (3.23) for all times. This concludes the proof of Theorem 2.4.

Remark 3.6. We wish to point out that, to our best knowledge, necessary and (nontrivial)
sufficient conditions allowing for an extension of a deformation mapping (as in (3.28)) but
respecting additionally the orientation-preservation of the map are not known in general. We
refer to [7] for some discussion on this issue.
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[40] J. Mandel, Plasticité classique et viscoplasticité, CISM Courses and Lectures, Vol. 97, Springer-Verlag,

Berlin, 1972.
[41] Y. Matsukawa et al., Dynamic observation of dislocation-free plastic deformation in gold thin foils, Mat.

Sci. Engrg. A350 (2003), 8–16.
[42] G.A. Maugin, The Thermomechanics of Plasticity and Fracture, Cambridge University Press, Cambridge,

1992.
[43] A. Mielke, Finite elastoplasticity, Lie groups and geodesics on SL(d), In P. Newton, A. Weinstein, and

P. J. Holmes, editors, Geometry, Mechanics, and Dynamics, Springer-Verlag, New York, (2002), 61–90.
[44] A. Mielke, Energetic formulation of multiplicative elastoplasticity using dissipation distances, Contin.

Mech. Thermodyn. 15 (2003), 351–382.
[45] A. Mielke, Existence of minimizers in incremental elastoplasticity with finite strains, SIAM J. Math. Anal.

36 (2004), 384–404.
[46] A. Mielke, S. Müller, Lower semicontinuity and existence of minimizers in incremental finite-strain elasto-

plasticity, ZAMM Z. Angew. Math. Mech. 86 (2006), 233–250.
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