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Abstract Starting from the three-dimensional setting, we derive a limit model of a thin magnetoelastic film
by means of Γ -convergence techniques. As magnetization vectors are defined on the elastically deformed
configuration, our model features both Lagrangian and Eulerian terms. This calls for qualifying admissible
three-dimensional deformations of planar domains in terms of injectivity. In addition, a careful treatment of
the Maxwell system in the deformed film is required.

Keywords Magnetoelasticity · Thin-films · Eulerian–Lagrangian · Formulations · Large-strain deformations

1 Introduction

Magnetoelasticity describes the mechanical behavior of solids under magnetic effects. The magnetoelastic
coupling is based on the presence of small magnetic domains in the material [13]. In the absence of an external
magnetic field, these magnetic domains are randomly oriented. When an external magnetic field is applied,
the mesostructure of magnetic domains changes by magnetic-domain wall motion, by magnetization-vector
rotation, and, for some specific alloys, by magnetic-field-driven martensitic-variant transformation. The net
effect is a magnetically induced deformation in the body. Conversely, mechanical deformations modify the
magnetic response of a specimen by influencing the magnetic anisotropy of the domains, so that the magnetic
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and the mechanical behavior of the material are fully coupled. We refer to, e.g., [4,7,8,14] for an exposition
on the foundations of magnetoelasticity and to [17] for some related mathematical considerations.

The mathematical modeling of magnetoelasticity is a lively area of research, triggered by the interest
in the so-called multifunctional materials. Among these, one has to mention rare-earth alloys such as Ter-
FeNOL and GalFeNOL, as well as ferromagnetic shape-memory alloys as Ni2MnGa, NiMnInCo, NiFeGaCo,
FePt, FePd, among others [16]. These materials exhibit a remarkable magnetostrictive behavior, for reversible
strains as large as 10% can be activated by the imposition of relatively moderate magnetic fields. This strong
magnetoelastic coupling makes them relevant in a wealth of innovative applications including sensors and
actuators [2].

The aim of this paper is to present a model of a thin film undergoing large strain deformations in the mem-
brane regime. This will be inferred from a variational dimension-reduction procedure from a corresponding
three-dimensional model at large strains.

Dimension-reduction techniques play an important role in nonlinear analysis and numeric s, for they allow
simpler computational approaches, still preserving the main features of the corresponding bulk model. The last
decades have witnessed remarkable progresses on dimension reduction by variational methods, particularly by
Γ -convergence [3,6], together with quantitative rigidity estimates [9]. Among the many results on the elastic
response of low-dimensional objects, we mention the rigorous justification of membrane theory [22,23],
bending theory [9,27], and von Kármán theory [10,21] for plates as variational limits of nonlinear three-
dimensional elasticity for vanishing thickness. In particular, we refer to [10] for the derivation of a hierarchy
of different plate models and for a thorough literature review.

A rigorous derivation of a model for magnetic thin films has been first obtained in [11]. A rate-independent
evolution of Kirchhoff–Love magnetic plates together with the passage from three-dimensional linearized
magnetoelasticity to the corresponding two-dimensional theory is the subject of [19]. Magnetostriction in thin
films has been considered, also from the numerical viewpoint, in [24–26]. With respect to these results, this
paper presents a fundamental novelty as it represents the first rigorous analytical treatment including also the
large-strain magnetoelastic regime.

In the classical dimension reduction for small-strain elastic thin plates, the analysis is set in cylindrical
domains whose heights depend on a thickness parameter eventually tending to zero. The same setting applies
in magnetoelasticity. Under the small-deformations assumption, the magnetization may be assumed to be
directly defined on the reference configuration. This simplification is, however, not amenable in the large-
strain regime, for the magnetization is defined on the deformed configuration instead. The latter is, however, a
priori not known, as it depends on the deformation itself. In particular, this naturally leads to a mixed Eulerian–
Lagrangian formulation of the problem. Compared with previous small-strain contributions, the mathematical
framework of this work is hence much more involved. A distinctive difficulty arises from the need of ensuring
that admissible deformations are globally injective. In the bulk, this can be achieved by imposing the so-called
Ciarlet–Nečas condition [5]. For films, however, no comparable condition, i.e., allowing for a variational
approach, seems to be available. A further difficulty is represented by theMaxwell system, which is formulated
in actual space. In order to identify the asymptotic behavior of the stray field,we have to characterize the limiting
differential constraints in weak form by keeping track of the deformed configuration.

The main result of the paper is the derivation of a variational model for thin-film specimens as a Γ -
limit of a suitably scaled energies of a bulk model for vanishing thickness. In Theorem 3.2, we prove in
full generality the Γ –lim inf inequality, showing that our limit energy functional always represents a lower
bound for the asymptotic behavior of the three-dimensional energy functionals. If the limit film deformation
is approximately injective in the sense of Definition 3.3, we show that the Γ –lim inf is indeed the largest
lower semicontinuous lower bound for the magnetoelastic-plate functionals as the thickness goes to zero,
i.e., it is the Γ -limit; cf. Theorem 3.4. Here, the approximate injectivity means that there is a sequence of
deformations of the bulk which are globally injective and converge in a suitable sense to the film deformation.
Additionally, in Theorem 3.5 we prove a complete Γ -convergence result under the additional assumption that
the admissible three-dimensional deformations satisfy a suitable injectivity requirement which guarantees that
the limit deformation of the film is globally injective.

The paper is organized as follows. In Sect. 2, we introduce the mathematical setting of the problem.
Section 3 is devoted to the statements of all results, and Sect. 4 contains all proofs.
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2 Setting of the problem

We use the standard notation for Sobolev and Lebesgue spaces, i.e.,Wk,p and L p [1]. If A ∈ R
3×2 and b ∈ R

3

we write (A|b) ∈ R
3×3 for a matrix whose first two columns are created by the first two columns of A and the

third one by the vector b. The set of proper rotations is denoted by SO(3) := {R ∈ R
3×3 : R�R = RR� =

Id, det R = 1} where Id is the identity matrix.
Let ω ⊂ R

2 be a bounded Lipschitz domain representing the planar reference configuration of the film,
define the reference configuration of a thin magnetoelastic plate as

Ωh := ω ×
(

− h

2
,
h

2

)
,

and set Ω := Ω1. In the expression above, h > 0 represents the thickness of the plate, eventually bound
to go to zero. Correspondingly, we will consider limits as h → 0 of sequences of functionals by means of
Γ -convergence [6]. This is a standard approach to characterize the limiting behavior of a sequence of bulk
energies for specimens of very small thickness.

Assume that X is a subset of a reflexive Banach space. We say that {Ih}h>0 for Ih : X → R ∪ {∞}
Γ -converges to I : X → R ∪ {+∞} if the following conditions hold simultaneously:

ζh
X→ ζ ⇒ lim inf

h→0
Ih(ζh) ≥ I (ζ ), (2.1a)

∀ ζ ∈ X ∃{ζ̂h}h>0 ⊂ X : ζ̂h
X→ ζ and lim sup

h→0
Ih(ζ̂h) = I (ζ ), (2.1b)

where the symbol
X→ indicates the convergence with respect to a properly chosen (weak) topology in X . If

(2.1) holds, we say that I is the Γ -limit of {Ih}h>0 (with respect to that topology).
The state of the magnetoelastic material is defined in terms of its deformation w and its magnetization m.

The deformation w : Ωh → R
3 is required to belong to W 1,p(Ωh; R

3) for some given

p > 3,

to be orientation-preserving, namely, det∇w > 0 almost everywhere, and to satisfy the Ciarlet–Nečas condi-
tion [5] ˆ

Ωh

det∇w dx ≤ L3(w(Ωh)) (2.2)

whereL3 stands for the three-dimensional Lebesguemeasure. In particular,w is identifiedwith the unique con-
tinuous representative in the equivalence class. Themagnetizationm is set on the open deformed configuration,
namely, m : Ωw

h → S
2, where Ωw

h is given by

Ωw
h := w(Ω̄h)\w(∂Ω̄h)

which is well-defined, for w is continuous. The magnetization m is hence required to fulfill the saturation
constraint |m| = 1 on Ωw

h .
In what follows, for every x ∈ R

3 in the referential space we write x = (x ′, x3) where x ′ ∈ R
2 is referred

to as the planar coordinates of x , and we denote by ∇′ the gradient with respect to such planar coordinates.
We use instead the symbol ξ ∈ R

3 to indicate variable s in the actual space.
Following the approach in [15,20,28], we consider the total energy Ih defined as

Ih(w,m) :=
ˆ

Ωh

W (∇w(x),m ◦ w(x))dx + α

ˆ
Ωw

h

|∇m(ξ)|2dξ +
ˆ

Ωh

|∇2w(x)|p dx

+
ˆ

Ωh

Φ(∇w(x))dx + μ0

2

ˆ
R3

|∇um(ξ)|2 dξ. (2.3)

In the formula above, W : M
3×3 × S

2 → [0,+∞) is the elastic energy density associated with the plate,
which is a continuous function satisfying the following assumptions:

(Coercivity) ∃c > 0 such that W (F, λ) ≥ c|F |p − 1

c
, (2.4)
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(Frame indifference) W (RF, Rλ) = W (F, λ), (2.5)

(Magnetic parity) W (F, λ) = W (F, −λ) (2.6)

for every F ∈ M
3×3, R ∈ SO(3), and λ ∈ S

2. In fact, assumptions (2.5)–(2.6) are not strictly needed for the
analysis, but rather required by modeling considerations.

The second term in the expression of Ih in (2.3) is the exchange energy. The constant α is related to the
size of ferromagnetic texture. The material is assumed to be of nonsimple type [18]. This is expressed by
the occurrence of the third term in Ih , providing a higher-order contribution and a further length scale to the
problem. Regarding the fourth term, we will require thatΦ : M

3×3 → [0,+∞) is a continuous map satisfying
the following assumptions

Φ(F) → +∞ as det F → 0+,

Φ(F) = +∞ if det F ≤ 0,

Φ(F) ≥ 1

C
(det F)−q for some C > 0 and for every F ∈ M

3×3 with det F > 0, (2.7)

where q >
3p
p−3 . This last quantification is introduced in [12] and ensures that, for all λ > 0 and w ∈

W 2,p(Ωh; R
3) such that

ˆ
Ωh

|∇2w(x)|p dx +
ˆ

Ωh

Φ(∇w(x))dx < λ (2.8)

there exists c > 0 depending on λ > 0 with the property that

det∇w > c in Ω̄h .

Note that the left-hand side of inequality (2.8) is a part of the energy functional (2.3). The last term in (2.3)
represents the magnetostatic energy. In particular, μ0 is the permittivity of void, and um solves the Maxwell
equation

∇ · (−μ0∇um + χΩw
h
m) = 0 in R

3,

where χΩw
h
is the characteristic function of the set Ωw

h . For simplicity, we assume that the deformations w
satisfy the boundary conditions

w = id and ∇w = Id on ∂ω × ( − 1
2 ,

1
2

)
.

To consider alternative boundary conditions would call for solving some additional technicalities which, we
believe, would excessively complicate the argument. We hence leave this extension to some possible further
investigation.

2.1 Change of variables

As customary in dimension reduction, we perform the change of variables

φh : Ω → Ωh, φh(x) := (x1, x2, hx3) for a.e. x ∈ Ω.

Setting y := w ◦ φh , Ω y := y(Ω̄)\y(∂Ω̄), and Eh(y,m) := 1
h I

h(w,m), we obtain

Eh(y,m) :=
ˆ

Ω

W (∇h y(x),m ◦ y(x))dx + α

h

ˆ
Ω y

|∇m(ξ)|2dξ +
ˆ

Ω

|∇2
h y(x)|p dx

+
ˆ

Ω

Φ(∇h y(x)) dx + μ0

2h

ˆ
R3

|∇um(ξ)|2dξ,

where

∇ · (−μ0∇um + χΩ ym) = 0 inR
3.
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Fig. 1 An injective deformation satisfying (2.10)

Fig. 2 Two deformations not satisfying (2.10) in the regions in which a self-contact occurs

Fig. 3 A self-interpenetrating deformation satisfying (2.10)

Above, ∇h and ∇2
h are the differential operators defined as

∇hv :=
(
∂1v

∣∣∂2v
∣∣∂3v
h

)
, and ∇2

hv :=
( ∂211v ∂221v h−1∂231v

∂212v ∂222v h−1∂232v

h−1∂213v h−1∂223v h−2∂233v

)

for every v ∈ W 2,p(Ω). Note that the three-dimensional Ciarlet–Nečas condition becomes

ˆ
Ω

det∇h y dx ≤ L3(Ω y)

h
. (2.9)

Condition (2.9) provides scant information in the thin-film regime, for it leads to the inequality

ˆ
ω

(∂1y × ∂2y) · b dS ≤ lim
h→0

L3(Ω y)

h

where b is a Cosserat vector obtained as b = limh→0 h−1∂3yh in W 1,p(ω; R
3). In particular, if b =

(∂1y × ∂2y)/|∂1y × ∂2y|, i.e., it is the unit normal vector to the film in the deformed configuration, and

if limh→0
L3(Ω y)

h = H2(y(ω)) we get

ˆ
ω

|∂1y × ∂2y| dS ≤ H2(y(ω)). (2.10)

The left-hand side of (2.10) is the area of the deformed film calculated by the change-of-variables formula,
while the right-hand side is themeasured area. Hence, (2.10) is violated by a folding deformation, which should
be admissible among the family of realistic thin-film deformations, while (2.10) is satisfied if the film crosses
itself, which violates non-self-interpenetration of matter and is hence not admissible. On the other hand, if
y : Ω → R

3 is injective then (2.10) is satisfied. The situation is depicted in Figs. 1, 2 and 3.



332 E. Davoli et al.

In what follows, we analyze the asymptotic behavior of sequences (yh,mh) ∈ W 2,p(Ω; R
3) ×

W 1,2(Ω yh ; R
3) satisfying the uniform energy estimate

Eh(y
h,mh) ≤ C, (2.11)

and the boundary conditions

y(x) = (x ′, hx3) and ∇ y(x) =
(1 0 0
0 1 0
0 0 h

)
on ∂ω × ( − h

2 , h
2

)
. (2.12)

A caveat on notation: in (2.11) and in the following the symbol C is used to denote a generic constant that
may possibly change from line to line and that always depends only on model data and not on h.

We point out that, without theΦ term in the energy and the Ciarlet–Nečas condition, constant deformations
y having null gradient, null hessian, and such that the measure of the deformed set is zero (so that the exchange
energy gives no contribution)would be energetically favorable both for the elastic and the exchange energy. The
associated magnetic field would then concentrate in a point. The Φ term in our model prevents this degenerate
situation from happening.

3 Main results

This section is devoted to the statement of our main Γ -convergence results. All proofs are postponed to the
following Sect. 4.

For notational convenience, for every open set U ⊂ R
2 we denote by W̊ k,p(U ; R

n) the set of Wk,p-maps
having zero mean on U , i.e., y ∈ W̊ k,p(U ; R

n) if y ∈ Wk,p(U ; R
n) and

´
U y(x ′) dx ′ = 0. As it is standard,

we write W̊ k,p(U ) if n = 1.
Wefirst introduce the setA of admissible limiting deformations y : ω → R

3,Cosserat vectors b : ω → R
3,

and magnetizations M : ω → S
2, defined as

A := {(y, b,M ) : y ∈ W̊ 2,p(ω; R
3), b ∈ W 1,p(ω; R

3),M ∈ W 1,2(ω; S
2),

y = id and
(∇′y|b) = Id on ∂ω,

(∇′y|b)−1 ∈ C0(ω̄; M
3×3), det(∇′y|b) ∈ C0(Ω̄), and det(∇′y|b) > ε for some ε > 0}.

Let us first state the following lemma, which will be instrumental in characterizing the limiting stray fields
and formulating the limiting functional. As mentioned, the lemma is proved in Sect. 4 below.

Lemma 3.1 Let (y, b,M ) ∈ A. Denote by ˜(∇′y|b) and M̄ the quantities

˜(∇′y|b)(x ′) :=
{

(∇′y|b)(x ′) if x ′ ∈ ω

Id if x ′ ∈ R
2\ω.

(3.1)

and

M̄ (x ′) :=
{
M (x ′) if x ′ ∈ ω

0 if x ′ ∈ R
2\ω.

(3.2)

Then, the system
{
cof ˜(∇′y|b)�

[
μ0 ˜(∇′y|b)−T (

∇′U |V
)T − M̄

]}
3

= 0 in R
2, (3.3)

divx ′

⎧⎪⎨
⎪⎩

[
cof ˜(∇′y|b)�

(
μ0 ˜(∇′y|b)−T (

∇′U |V
)T − M̄

)]
1[

cof ˜(∇′y|b)�
(
μ0 ˜(∇′y|b)−T (

∇′U |V
)T − M̄

)]
2

⎫⎪⎬
⎪⎭

= 0 in R
2, (3.4)

has a unique solution (U ,V ) ∈ W 1,2(R2) × L2(R2) satisfying
´
ω
U dx ′ = 0.
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The limiting energy is given by the functional F : A → [0,+∞) defined as

F(y, b,M) :=
ˆ

ω

W
(
(∇′y|b), M )

dx ′ + α

ˆ
Ω

|(∇′y|b)−T (∇′M |0)|2det (∇′y|b) dx

+
ˆ

ω

(|(∇′)2y|2 + 2|∇′b|2)p/2 dx ′ +
ˆ

ω

Φ(∇′y|b) dx ′

+ μ0

2

ˆ
ω

cof (∇′y|b)M ·
(
∇′Uy,b,M |Vy,b,M

)T
dx ′

for every (y, b,M ) ∈ A, where the pair
(
Uy,b,M |Vy,b,M

)
∈ W̊ 1,2(ω) × L2(ω) is the restriction to ω of the

unique solution to (3.3)–(3.4) in the sense of Lemma 3.1.
We start by providing a lower bound for the asymptotic behavior of the functionals {Eh}h along sequences

of deformations and magnetizations with equibounded energies. Again, the proof is postponed to Sect. 4.

Theorem 3.2 (Compactness and Γ –lim inf inequality) Let {(yh,mh)} ⊂ W 2,p(Ω; R
3)×W 1,2(Ω yh ; R

3) be
such that (2.11) holds true. Then, there exist (y, b,M ) ∈ A and d ∈ L p(Ω; R

3) such that up to the extraction
of a (not relabeled) subsequence there holds

yh ⇀ y weakly in W 2,p(Ω; R
3), (3.5)

∇h y
h ⇀ (∇′y|b) weakly in W 1,p(Ω; M

3×3), (3.6)

∂233y
h

h2
⇀ d weakly in L p(Ω; R

3). (3.7)

Additionally, there exist η ∈ L2(Ω; R
3) and V ∈ L2(Ω) such that

´ 1
2

− 1
2

V dx3 = Vy,b,M , and up to subse-

quences we have

mh ◦ yh ⇀ M weakly in W 1,2(Ω; R
3), (3.8)

∇h(m
h ◦ yh) ⇀ (∇′M |η) weakly in L2(Ω; M

3×3), (3.9)

umh ◦ yh −
 

Ω

umh ◦ yh dx ⇀ Uy,b,M weakly in W 1,2(ω), (3.10)

∇h(umh ◦ yh) ⇀ (∇′Uy,b,M |V )T weakly in L2(Ω; R
3). (3.11)

Eventually, the following liminf inequality for the energy holds true:

lim inf
h→0

Eh(y
h,mh) ≥ F(y, b,M ). (3.12)

The statement of our second main result requires the specification of the class of admissible deformations.
This is given through the following definition.

Definition 3.3 (Approximately injective deformations) We define the set Y of approximately injective defor-
mations as

Y :=
{
y ∈ W 2,p(ω; R

3) : there exist b ∈ W 1,p(ω; R
3) and M ∈ W 1,2(ω; S

2) such that (y, b,M ) ∈ A,

and there exists a sequence { fh}h ⊂ W 2,p(ω; R
3) for which

yh(x) := y(x ′) + hx3b(x
′) + f h(x ′) satisfy (2.2) and h−2 f h → 0 strongly in W 2,p(ω; R

3) as h → 0
}
.

The deformations in Fig. 1 and on the right of Fig. 2 fulfill the requirements of Definition 3.3, whereas those
depicted on the left of Fig. 2 and in Fig. 3 are not included in the above setting. Let us note that, although still
not covering all realistic thin-film deformations, the set of approximately injective deformations encompasses
a wider range of scenarios compared to those allowed by (2.10).

We provide below a construction of a recovery sequence for triples (y, b,M ) ∈ A under the assumption
that y ∈ Y .
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Theorem 3.4 (Optimality of the lower bound for approximately injective deformations) Let y ∈ Y and b and
M given by the definition of Y so that (y, b,M ) ∈ A. Then, there exists a recovery sequence {(yh,mh)}h ⊂
W 2,p(Ω; R

3) × W 1,2(Ω yh ; R
3) such that, setting uh as the solution to the Maxwell system equation

div (−μ0∇umh + χ
Ω yh m

h) = 0

with zero mean, there holds

yh −
 

Ω

yh dx → y strongly in W 2,p(Ω; R
3),

∇h y
h → (∇′y|b) strongly in W 1,p(Ω; M

3×3),

∂33yh

h
→ 0 strongly in L p(Ω; R

3).

Additionally,

mh ◦ yh = M for every h > 0,

∇h(m
h ◦ yh) = (∇′M |0) for every h > 0,

umh ◦ yh −
 

Ω

umh ◦ yh dx ⇀ Uy,b,M weakly in W 1,2(ω; ),

∇h(umh ◦ yh) ⇀ (∇′Uy,b,M |Vy,b,M )T weakly in L2(Ω; R
3),

and the following limsup inequality for the energy holds true:

lim sup
h→0

Eh(y
h,mh) ≤ F(y, b,M ).

In order to give a full Γ -convergence result, in the remainder of the section we restrict our analysis to
deformations satisfying the following uniform averaged invertibility constraint: there exists a constant C > 0
such that

∣∣∣
ˆ 1

2

− 1
2

yh(x ′, x3) dx3 −
ˆ 1

2

− 1
2

yh(z′, x3) dx3
∣∣∣ ≥ C |x ′ − z′| for every h > 0, (3.13)

for every x ′, z′ ∈ ω. Note that the condition above has a pointwise meaning because maps with uniformly
bounded energies are at least C1-regular.

The key idea of (3.13) is that deformed vertical fibers might intersect, but are, in average, distant enough,
compared to the distance of the original points in the cross section.

Let us start by remarking that, under the same assumptions of Proposition 3.2, and assuming addition-
ally (3.13), the limiting deformations y ∈ W 2,p(ω; R

3) have the additional property:

There exists a constantC > 0 such that |y(x ′) − y(z′)| ≥ C |x ′ − z′| for every x ′, z′ ∈ ω. (3.14)

In fact, property (3.14) follows from (3.5) and (3.13). In view of (3.14), we are in the position of obtaining the
following Γ -convergence result.

Theorem 3.5 (Γ -convergence under uniform averaged invertibility) Let {(yh,mh)} ⊂ W 2,p(Ω; R
3) ×

W 1,2(Ω yh ; R
3) be such that (2.11) and (3.13) hold true. Then, there exist (y, b,M ) ∈ A, d ∈ L p(Ω; R

3),
and ε > 0 satisfying (3.14), such that, up to the extraction of a (not relabeled) subsequence, there holds

yh ⇀ y weakly in W 2,p(Ω; R
3),

∇h y
h ⇀ (∇′y|b) weakly in W 1,p(Ω; M

3×3),

∂233y
h

h2
⇀ d weakly in L p(Ω; R

3).
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Additionally, there exist η ∈ L2(Ω; R
3), and V ∈ L2(Ω) such that

´ 1
2

− 1
2

V dx3 = Vy,b,M , and up to subse-

quences we have

mh ◦ yh ⇀ M weakly in W 1,2(Ω; R
3),

∇h(m
h ◦ yh) ⇀ (∇′M |η) weakly in L2(Ω; M

3×3),

umh ◦ yh −
 

Ω

umh ◦ yh dx ⇀ Uy,b,M weakly in W 1,2(ω),

∇h(umh ◦ yh) ⇀ (∇′Uy,b,M |V )T weakly in L2(Ω; R
3).

Eventually, the following liminf inequality for the energy holds true:

lim inf
h→0

Eh(y
h,mh) ≥ F(y, b,M ).

Conversely, for every (y, b,M ) ∈ A with y satisfying (3.14) there exist {(ȳh, m̄h)}h ⊂ W 2,p(Ω; R
3) ×

W 1,2(Ω yh ; R
3) such that, setting um̄h as the solution to the Maxwell’s equation

div (−μ0∇um̄h + χ
Ω ȳh m̄

h) = 0

with zero mean, there holds

ȳh −
 

Ω

ȳh dx → y strongly in W 2,p(Ω; R
3),

∇h ȳ
h → (∇′y|b) strongly in W 1,p(Ω; M

3×3),

∂33 ȳh

h
→ 0 strongly in L p(Ω; R

3).

Additionally,

m̄h ◦ ȳh = M for every h > 0,

∇h(m̄
h ◦ ȳh) = (∇′M |0) for every h > 0,

um̄h ◦ ȳh −
 

Ω

um̄h ◦ ȳh dx ⇀ Uy,b,M weakly in W 1,2(ω; ),

∇h(um̄h ◦ ȳh) ⇀ (∇′Uy,b,M |Vy,b,M )T weakly in L2(Ω; R
3),

and the following limsup inequality for the energy holds true:

lim sup
h→0

Eh(ȳ
h, m̄h) ≤ F(y, b,M ).

A proof of the statement is in Sect. 4 below.

4 Proofs

We collect in this section the proofs of the statements from Sect. 3. Within each subsection, notations are taken
from the corresponding statement.
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4.1 Proof of Lemma 3.1

We first observe that by the definition of the set of admissible states A there holds

det ˜(∇′y|b) ≥ ε on R
2. (4.1)

Additionally, for every x ′ ∈ R
2 the matrix ( ˜(∇′y|b)(x ′))−1( ˜(∇′y|b)(x ′))−T is symmetric. By (4.1), denot-

ing by λi (x ′), i = 1, 2, 3 the three eigenvalues of ( ˜(∇′y|b)(x ′))−1( ˜(∇′y|b)(x ′))−T in increasing order,
it follows that each of them is different from zero for every x ′ ∈ R

2. By the continuous dependence
of the eigenvalues of a matrix on the entries of the matrix itself, and by the continuity of the map

x ′ �→ ( ˜(∇′y|b)(x ′))−1( ˜(∇′y|b)(x ′))−T (see again the definition of A), we deduce that for every i = 1, 2, 3
there exists a point xi ∈ ω̄ such that

min
x∈ω̄

λi (x) = λi (x
i ) > 0.

Thus, recalling (3.1), we obtain

min
i=1,2,3

min
x∈R2

λi (x) = min
i=1,2,3

min{1, λi (xi )}=:λeigen > 0. (4.2)

As a consequence of (4.2), the quadratic form

Q(x, v) := ( ˜(∇′y|b)(x ′))−1( ˜(∇′y|b)(x ′))−T v · v for every x ′ ∈ R
2, v ∈ R

3

satisfies

Q(x, v) ≥ λeigen|v|2 for every x ′ ∈ R
2, v ∈ R

3.

The thesis is thus a direct consequence of the uniform ellipticity of Q. ��

4.2 Proof of Theorem 3.2

We subdivide the proof into three steps: in Step 1 we prove the compactness of sequences of deformations and
magnetizations with equibounded energies. Step 2 is devoted to a characterization of the limiting stray field.
Step 3 contains the proof of the liminf inequality.
Step 1: Compactness. In view of (2.4), (2.7), and (2.11), we infer the existence of a constant C such that

‖∇h y
h‖W 1,p(Ω;M3×3) ≤ C,

∥∥∥ 1

det∇h yh

∥∥∥
Lq (Ω)

≤ C, (4.3)

for every h > 0. By (4.3), and by the observation that

‖∇ yh‖L p(Ω;M3×3) ≤ ‖∇h y
h‖L p(Ω;M3×3),

we deduce that there exists y ∈ W 2,p(Ω; R
3) such that (3.5) is satisfied. In particular, by (4.3) we have

∂3y = 0, thus y can be identified with a map in W 2,p(ω; R
3). As a further consequence of (4.3), we also find

b ∈ W 1,p(ω; R
3) and d ∈ L p(Ω; R

3) such that (3.6) and (3.7) hold true. By (3.6), the continuity of Φ, and
Fatou’s lemma we obtain

lim inf
h→0

ˆ
Ω

Φ(∇h y
h) dx ≥

ˆ
ω

Φ(∇′y|b) dx ′, (4.4)

which implies that det (∇′y|b) > 0 almost everywhere in Ω . Since (∇′y|b) ∈ W 1,p(ω; M
3×3) ⊂

C0,α(ω̄; M
3×3) for α = (p − 2)/p, the argument in [12, Theorem 3.1] yields (∇′y|b)−1 ∈ C0(ω̄; M

3×3),
det(∇′y|b) ∈ C0(Ω̄), and det(∇′y|b) > ε for some ε > 0.
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From convergences (3.5)–(3.6), it follows in particular that

det∇h y
h → det (∇′y|b) strongly in C0(Ω̄), (4.5)

and hence

det∇h y
h ≥ ε

2
on Ω̄ (4.6)

for h small. Properties (2.11) and (4.6) imply thatˆ
Ω

|(∇mh) ◦ yh |2 dx ≤ 2

ε

ˆ
Ω

|(∇mh) ◦ yh |2det∇h y
h dx

= 2

hε

ˆ
Ω

|(∇mh) ◦ yh |2det∇ yh dx = 2

hε

ˆ
Ω yh

|∇mh |2 dξ ≤ C. (4.7)

In view of convergences (3.6) and (4.5), there holds

(∇h y
h)−1 → (∇′y|b)−1 strongly in C0(Ω̄; M

3×3), (4.8)

as well as

∇h y
h → (∇′y|b) strongly in C0(Ω̄; M

3×3). (4.9)

By combining bound (4.7) with convergence (4.9), we conclude thatˆ
Ω

|∇h(m
h ◦ yh)|2 dx ≤

ˆ
Ω

|(∇mh) ◦ yh |2|∇h y
h |2 dx ≤ C

ˆ
Ω

|(∇mh) ◦ yh |2 dx ≤ C. (4.10)

In addition, by (2.11) and by the saturation constraint |m| = 1, we deduce thatˆ
Ω

|mh ◦ yh |2 dx ≤ C. (4.11)

Estimates (4.10) and (4.11) yield the existence of maps M ∈ W 1,2(ω; S
2) and η ∈ L2(Ω; R

3) such that
convergences (3.8) and (3.9) hold, up to not relabeled subsequences. In particular, there holds

(∇mh) ◦ yh = (∇h y
h)−T∇h(m

h ◦ yh) ⇀ (∇′y|b)−T (∇′M |η) weakly in L2(Ω; M
3×3),

and thus, by lower semicontinuity

α

ˆ
Ω

|(∇′y|b)−T (∇′M |η)|2det (∇′y|b) dx ≤ lim inf
h→0

{α

h

ˆ
Ω y

|∇m|2
}
. (4.12)

The boundary conditions in the definition of A are a direct consequence of (3.6). Thus, we conclude that
(y, b,M ) ∈ A.

Regarding the compactness of the stray field, we observe that by (2.11), (4.6), and (4.9) there holdsˆ
Ω

|∇h(umh ◦ yh)|2 dx ≤ C

h

ˆ
Ω yh

|∇umh |2 dξ ≤ C

h

ˆ
R3

|∇umh |2 dξ ≤ C. (4.13)

Therefore, by the Poincaré inequality we find U ∈ W 1,2(ω; R
3) and V ∈ L2(ω; R

3) satisfying

umh ◦ yh −
 

Ω

umh ◦ yh dx ⇀ U weakly in W 1,2(ω),

∇h(umh ◦ yh) ⇀ (∇′U |V )T weakly in L2(Ω; R
3).

Step 2: the Maxwell system. In order to show that U = Uy,b,M ,
´ 1

2

− 1
2

V dx3 = Vy,b,M , and to pass to the

limit in the magnetostatic energy, we observe that, since umh solves

div (−μ0∇umh + χ
Ω yh m

h) = 0 in R
3, (4.14)
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there holds

μ0

h

ˆ
R3

|∇umh |2 dξ = μ0

h

ˆ
Ω yh

mh · ∇umh dξ

= μ0

h

ˆ
Ω

(mh ◦ yh) · (∇umh ) ◦ yh det∇ yh dx = μ0

ˆ
Ω

(mh ◦ yh) · (∇h y
h)−T∇h(umh ◦ yh) det∇h y

h dx .

Therefore, by (3.8), (4.5), (3.11), and (4.8) we conclude that

lim
h→0

μ0

h

ˆ
R3

|∇umh |2 dξ = μ0

ˆ
Ω

M · (∇′y|b)−T (∇′U |V )T det(∇′y|b) dx . (4.15)

We proceed now by passing to the limit into Maxwell’s system. Denote by Ω̃ the set

Ω̃ := R
2 × ( − 1

2 ,
1
2

)
,

and consider the deformations

ỹh(x) :=
{
yh(x) if x ∈ Ω

(x ′, hx3) if x ∈ Ω̃\Ω.
(4.16)

In view of (2.12), it follows that {ỹh}h ⊂ W 2,p
loc (Ω̃; R

3). Let now ϕ ∈ C∞
c (Ω̃). Choosing ϕ ◦ (ỹh)−1 as a test

function in (4.14), we obtain that

1

h

ˆ
Ω̃ ỹh

(μ0∇umh − mh) · ∇(ϕ ◦ (ỹh)−1) dξ = 0

for every h > 0. By performing a change of variables, the previous equation rewrites as
ˆ

Ω̃

(∇h ỹ
h)−1[μ0(∇h ỹ

h)−T∇h(umh ◦ ỹh) − m̄h ◦ ỹh] · ∇hϕ det (∇h ỹ
h) dx = 0 (4.17)

for every h > 0 and ϕ ∈ C∞
c (Ω̃), where

m̄(ξ) :=
{
mh(ξ) if ξ ∈ Ω yh

0 otherwise in Ω̃ ỹh .

By the boundary conditions in A, convergences (4.8) and (4.5), and by definition (4.16), we deduce that

(∇h ỹ
h)−1 → ˜(∇′y|b) strongly in C0(Ω̃; M

3×3),

det(∇h ỹ
h)−1 → det ˜(∇′y|b) strongly in C0(Ω̃),

where ˜(∇′y|b) is the map defined in (3.1). Property (3.8) yields

m̄h ◦ ỹh → M̄ strongly in L2(R2),

with M̄ as in (3.2). Eventually, the same computations as in (4.13) yield
ˆ

Ω̃

|∇h(umh◦ỹh )|2dx ≤ C

h

ˆ
R3

|∇umh |2dξ ≤ C.

Thus, by (3.10) and (3.11) we deduce that there exist Ũ ∈ W 1,2(R2) and Ṽ ∈ L2(Ω̃) such that

umh ◦ ỹh −
 

Ω

umh ◦ ỹh dx ⇀ Ũ weakly in W 1,2(R2),

∇h(umh ◦ ỹh) ⇀ (∇′Ũ |Ṽ )T weakly in L2(Ω̃; R
3),

with Ũ = U and Ṽ = V almost everywhere in Ω .
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Let now φ ∈ C∞
c (− 1

2 ,
1
2 ) and ψ ∈ C∞

c (R2), and for every h > 0 consider the function ϕh(x) :=
φ(hx3)ψ(x ′) for every x ∈ R

2. Choosing ϕh as a test function in (4.17) for every h > 0, and passing to the
limit as h → 0, we conclude that

ˆ
R2

˜(∇′y|b)−1[μ0 ˜(∇′y|b)−T (
∇′Ũ |

ˆ 1
2

− 1
2

Ṽ dx3
)T − M̄ ] · (∇′ψ |0)T det ˜(∇′y|b)φ(0) dx

+
ˆ
R2

˜(∇′y|b)−1[μ0 ˜(∇′y|b)−T (
∇′Ũ |

ˆ 1
2

− 1
2

Ṽ dx3
)T − M̄ ] · (0|ψ)T det ˜(∇′y|b)φ′(0) dx = 0.

By the arbitrariness of φ ∈ C∞
c (− 1

2 ,
1
2 ) and ψ ∈ C∞

c (R2) and by a density argument, we conclude that

ˆ
R2

˜(∇′y|b)−1[μ0 ˜(∇′y|b)−T (
∇′Ũ |

ˆ 1
2

− 1
2

Ṽ dx3
)T − M̄ ] · (∇′ψ |0)T det ˜(∇′y|b) dx = 0

for every ψ ∈ W 1,2(R2), and

ˆ
R2

˜(∇′y|b)−1[μ0 ˜(∇′y|b)−T (
∇′Ũ |

ˆ 1
2

− 1
2

Ṽ dx3
)T − M̄ ] · (0|ψ)T det ˜(∇′y|b) dx = 0

for everyψ ∈ L2(R2). The identificationU = Uy,b,M and
´ 1

2

− 1
2

V dx3 = Vy,b,M follows then by Lemma 3.1.

Step 3: Liminf inequality. By convergences (3.5)–(3.7), the liminf inequalities (4.4) and (4.12), and the
continuity of W , we deduce that

lim inf
h→0

{ˆ
Ω

W (∇h y(x),m ◦ y(x))dx + α

h

ˆ
Ω y

|∇m(ξ)|2dξ +
ˆ

Ω

|∇2
h y(x)|p dx +

ˆ
Ω

Φ(∇h y(x)) dx

}

≥
ˆ

ω

W
(
(∇′y|b), M )

dx ′ + α

ˆ
Ω

|(∇′y|b)−T (∇′M |η)|2det (∇′y|b) dx

+
ˆ

ω

∣∣∣∣
(

(∇′)2y ∇′b
(∇′b)T d

)∣∣∣∣
p

dx ′ +
ˆ

ω

Φ(∇′y|b) dx

≥
ˆ

ω

W
(
(∇′y|b), M )

dx ′ + α

ˆ
Ω

|(∇′y|b)−T (∇′M |0)|2det (∇′y|b) dx

+
ˆ

ω

(|(∇′)2y|2 + 2|∇′b|2)p/2 dx ′ +
ˆ

ω

Φ(∇′y|b) dx ′. (4.18)

The liminf inequality (3.12) follows by combining (4.15) with (4.18), and by recalling the characterization of
the limiting stray field in Step 2. ��

4.3 Proof of Theorem 3.4

The statement follows by considering the following recovery sequences

yh(x ′, x3) := y(x ′) + hx3b(x
′) + f h(x ′) −

 
ω

f h(x ′) dx ′

for almost every x ∈ Ω , and

mh(ξ) := M ◦ (yh)−1(ξ),

for almost every ξ ∈ Ω yh , where M has been identified with a function defined on the infinite cylinder of
basis ω and then has been extended to the whole R

3. The convergence of the energies and the identification of
the limiting stray field follow arguing as in the compactness argument. ��
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4.4 Proof of Theorem 3.5

The compactness and liminf inequality follow byTheorem3.2 and by checking that property (3.14) is preserved
in the limit. The limsup inequality is obtained by observing that for y satisfying (3.14), the maps ȳh(x) :=
y(x ′) + hx3b(x ′) for every x ∈ R

3 satisfy both (3.13) and (2.2). The thesis follows by setting

m̄h(ξ) := M ◦ (ȳh)−1(ξ),

for almost every ξ ∈ Ω ȳh , where M has been identified with a function defined on the infinite cylinder of
basis ω and then has been extended to the whole R

3, and by arguing as in Proposition 3.4. ��
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