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a b s t r a c t

In this paper, we introduce the notion of separately global solutions for large-
strain rate-independent systems, and we provide an existence result for a model
describing bulk damage. Our analysis covers non-convex energies blowing up for
extreme compressions, yields solutions excluding interpenetration of matter, and
allows to handle nonlinear couplings of the deformation and the internal variable
featuring both Eulerian and Lagrangian terms. In particular, motivated by the
theory developed in Roubíček (2015) in the small strain setting, and for separately
convex energies we provide a solution concept suitable for large strain inelasticity.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Rate independent systems (RIS) are characterized by the lack of any internal time length scale: rescaling
the input of the system in time leads to the very same rescaling of its solution. In continuum mechanics, rate-
independent models represent a reasonable ansatz whenever the external conditions change slowly enough
so that the system can always reach its equilibrium. This applies if inertial, viscous, and thermal effects are
neglected. Rate independent systems have proven to be useful in modeling of hysteresis, phase transitions in
solids, elastoplasticity, damage, or fracture in small and large strain regimes. We refer to [1] for a thorough
overview of various results and applications.

In this paper we propose a new notion of local solutions for RIS describing large-strain inelastic
phenomena, and we present an application to the setting of bulk-damage materials. Before introducing the
definition of separately global solutions, we briefly review the main mathematical features of RIS, as well as
he most widely adopted solution concepts.
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∫

A RIS is described by means of a generalized gradient system, shortly denoted by (Q, E ,R), defined
y the state space Q, the energy functional E : [0, T ] × Q → (−∞,+∞] and a dissipation potential

: T Q → [0,+∞], where [0, T ] is the time interval and T Q denotes the tangent bundle of Q. Solutions to
eneralized gradient systems satisfy the so-called Biot’s inclusion

0 ∈ ∂q̇R(q(t), q̇(t)) + ∂qE(t, q(t)), t ∈ [0, T ], (1.1)

here ∂ denotes a (generalized) subdifferential; see Section 2 for a specific choice of (Q, E ,R). The dissipation
otential R is usually non-negative, convex in its second argument, and satisfies R(q, 0) = 0 for all q ∈ Q.
q. (1.1) represents a force balance where the elastic forces ∂qE are in equilibrium with static-friction forces
q̇R, and where both of them are, in general, multi-valued. The formulation fully relies on the theory of
eneralized standard materials; see [2,3]. The rate-independence is expressed by the positive one-homogeneity
f R(q, ·), leading to a zero homogeneity of the subdifferential ∂q̇R, and to a time-scale invariance of the
ystem.

This property of the dissipation potential causes the system to become somewhat degenerate and
etermines the non-smooth nature of RIS. In particular, when the energy E is not convex, solutions may
evelop jumps, making the strong derivative q̇ ill-defined: a reformulation of Eq. (1.1) is therefore necessary.
bserving that the positive 1-homogeneity of R rewrites as

R(q, q̇) = ⟨η, q̇⟩ whenever η ∈ ∂q̇R(q, q̇), (1.2)

ith ⟨·, ·⟩ denoting the duality pairing between T Q and T ∗Q, and using the definition of the subdifferential
nd the characterization (1.2), we see that the Biot’s equation (1.1) is equivalent to the following two
onditions

local stability: 0 ∈ ∂q̇R(q(t), 0) + ∂qE(t, q(t)), (1.3a)
power balance: 0 = ⟨∂qE(t, q(t)), q̇(t)⟩ + R(q(t), q̇(t)), (1.3b)

e refer to [1] for the detailed derivation. Note that the local stability is a purely static condition, saying that
he static-friction forces have to be strong enough to balance the elastic forces. The second, scalar equation
elates the power of the change of state with the dissipation rate R. It is a remarkable feature of RIS that
ne purely static condition together with a single scalar equation is enough to characterize their evolution.
ntegration of the power balance over [0, T ] then yields the energy equality

E(T, q(T )) +
∫ T

0
R(q(t), q̇(t)) dt = E(0, q(0)) +

∫ T

0
∂tE(t, q(t)) dt, (1.4)

where the total R-variation
∫ T

0 R(q(t), q̇(t)) dt expresses the total amount of dissipated energy, and
T

0 ∂tE(t, q(t)) dt the work of the loading. Note that here ∂t stands for the partial derivative of E with respect
to its first argument. The sought weaker reformulation, completely free of any time derivatives, is then finally
obtained by substituting the total R-variation by the equivalent formula

DissR(q; [0, T ]) := sup

⎧⎨⎩
N∑

j=1
R(q(tj) − q(tj−1));N ∈ N, 0 ≤ t0 ≤ · · · ≤ tN ≤ T

⎫⎬⎭ , (1.5)

representing the R-variation of a BV -function q on the interval [0, T ], which is valid when Q is a vector space,
the tangent bundle simplifies to T Q = Q × Q, and also only for dissipation potentials R not depending on
the state q, i.e. R = R(q̇).

Apart from the non-existence of the strong derivative, the aforementioned non-smoothness of RIS has yet

another, peculiar side effect, that is the existence of a variety of different notions of solutions which differ
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significantly in the occurrence of jumps. As mentioned already in [4], the proper definition of the solution
to the RIS is here a vital part of the modeling.

The most general notion, encompassing all others, is that of local solution, first introduced by R. Toader
nd C. Zanini in [5]. It is defined by the local stability (1.3a) and by an upper energy inequality, i.e. “=” in
1.4) is replaced by “≤”, stating that the energy in the system cannot increase. It is exactly the energy
nequality which makes the existence of local solutions easier to prove, however, at the same time, it
epresents its main drawback. Since the equality in (1.4) is lost, the energetics of the system is not fully
nder control. In other words, the dissipative mechanisms, and hence the underlying physics of the system,
re not specified entirely. From a mathematical point of view the indefiniteness of the dissipative mechanisms
eads to a selectivity gap, as there may exist even an uncountable family of local solutions to a given problem;
ee e.g. [4]. Also from a computational point of view the mere inequality is disadvantageous. Indeed, when
he solution is approximated numerically, it is not known whether the energy decreases due to unspecified
hysical dissipation or rather due to rounding errors and numerical effects.

A generally stronger concept of energetic solutions was first introduced by A. Mielke and F. Theil [6] and
hen advocated by many authors (see [1] and the references therein). The local stability (1.3a) is replaced
y the global stability condition

∀q̃ ∈ Q : E(t, q(t)) ≤ E(t, q̃) + D(q(t), q̃), (1.6)

here D(q1, q2) is the so-called dissipation distance, expressing the amount of dissipated energy when the
tate changes from q1 to q2. In the case in which Q is a vector space coinciding with its tangent space, the
issipation distance is related to the dissipation potential by D(q1, q2) = R(q2 − q1), provided that R is
gain state independent; we refer to [1, Subsec.3.2.2] for a thorough discussion about the relation between
he dissipation potential R and the dissipation distance D.

Energetic solutions are very flexible and applicable to convex as well as nonconvex problems. In nonconvex
roblems, however, they do not necessarily provide proper predictions of the mechanical behavior of the
IS, as jumps of the solution in time appear “too early” when compared to physical experiments in

everal applications, for example in models predicting damage and fracture. In fact, energetic solutions
ump immediately when there is enough energy available, as can be seen directly from (1.6), representing
ence, in a sense, the worst case scenario. For this reason, the global stability condition is sometimes
alled in the literature the energetic criterion, in contrast to the Biot’s equation (1.1) representing a stress
riterion. In other applications, e.g., the modeling of shape memory alloys, the energetic criterion may
rovide a reasonable simplification of the problem that makes its modeling feasible. The global stability
ondition also implies the lower energy inequality (i.e. the opposite to the one in the definition of the local
olution). Energetic solutions therefore satisfy even energy equality (1.4), so that the only dissipation is due
o

∫ T

0 R(q, q̇) dt; in particular, there is no extra energy dissipated on jumps. We again refer to [1] for further
roperties of energetic solutions, and for their applications in materials science.

Completely on the other side of the spectrum with respect to energetic solutions lie the so-called Balanced
iscosity (BV) solutions, introduced by A. Mielke, R. Rossi and G. Savaré in [7], which ‘jump as late as
ossible’. BV solutions also satisfy the energy equality, but with an extra dissipation accounting for time
iscontinuities. This is given by a detailed resolution of the jump during which the viscous dissipative
echanism, not present in the rate-independent system, is again activated. This notion of solution stems

rom models considering also viscous dissipation as a limit for vanishing viscosity. However, as opposed to
he vanishing viscosity solutions, BV solutions are not defined as a pointwise limit of solutions to a viscous
erturbation of the original RIS. Unlike for energetic solutions, the so far developed existence theory for
V solutions requires very strong assumptions on the data that can be barely expected to hold in the
ngineering practice. Apart from the analytical point of view, also the numerical approximation of BV
olutions represents a fairly challenging task.
3
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The list of possible notions of solutions presented here is by no means exhaustive and the reader
is encouraged to consult for example [1,8–10] for a more detailed survey of both the mentioned and
unmentioned solution strategies for RIS, as well as for recent developments.

Given the overview above, we regard the concept of local solutions as a compromise between physical
requirements and mathematical restrictions, taking into account the state of the art of contemporary
mathematical and numerical analysis. As they are the most general concept, local solutions do not exclude
solutions jumping ‘late enough’ and represent a well defined object towards which the numerical solutions
may converge, the numerics for local solutions being also more understood today than for BV solutions;
see [11]. An application of local solutions in continuum mechanics, was presented in [4] with a special regard
to damage and delamination. In this setting, the state space is linear and exhibits a product structure
Q = U × Z, where U denotes the vector space of displacements u, also called elastic variables, and Z is
the vector space of general internal variables z, describing, e.g. the damage field. Consequently, we write
q = (u, z). In [4], the author proved the existence of local solutions to the class of problems in which the
energy functional E(t, ·, ·) is not convex on the state space, but is separately convex in the last two variables,
i.e.

E(t, ·, z) : U → (−∞,+∞] is convex and (1.7)
E(t, u, ·) : Z → (−∞,+∞] is convex (1.8)

nd the Biot’s equation (1.1) is replaced by the system

0 ∈ ∂uE(t, u(t), z(t)),
0 ∈ ∂żR(ż(t)) + ∂zE(t, u(t), z(t)).

ote that the dissipation potential is assumed to be state independent. The reason for calling u the elastic
ariable is that the dissipation potential does not depend on its rate, i.e. its change never dissipates energy.
he three convexities of R(·), E(t, ·, z), and E(t, u, ·) make the local stability (1.3a) equivalent to global

tability in u and to the so-called semi-stability in z

∀ũ ∈ U : E(t, u(t), z(t)) ≤ E(t, ũ, z(t)), (1.9)
∀z̃ ∈ Z : E(t, u(t), z(t)) ≤ E(t, u(t), z̃) + R(z̃ − z(t)). (1.10)

he convexity in u is also important for controlling the jump behavior in u. This is not directly encoded by
he dissipation as is instead the case for the internal variable z. The two separately global conditions in (1.9)
re then supplemented by an energy inequality where the total dissipation is given by (1.5). It should be
oted that [4] also deals with one of the main drawbacks of local solutions, i.e their weak selectivity behavior,
nd suggests to impose an additional criterion the solutions have to satisfy, giving rise to maximally-
issipative local solutions. We point out that proving existence in this narrower class of solutions is still
n open problem.

The main goal of this article is to adopt the concept of local solutions also to energies that are not
ecessarily convex in the elastic variable and hence extending significantly its applicability by including
nelastic processes at large strain. As already mentioned, the advantage over energetic solutions is that
too early’ jumps can be avoided. The novelty of our analysis is that the physical requirements typical of
arge-strain mechanics, in particular the local and global invertibility of the deformations, are met within
ur setting. We also stress that our study encompasses energies depending on Eulerian gradients of the
ulerian fields, which after rewriting into Lagrangian coordinates introduce a non-linear coupling between

he deformations and the Lagrangian fields of the internal variables. We refer to Section 2 for a specific

xample.
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In order to describe our contribution, we need to introduce some minimal notation. As in [4], we suppose
that the state space is endowed with a product structure Q = Y ×Z, where Y is the space of elastic variables,
here represented by deformations y, and Z is the vector space of internal variables z. For a time interval
[0, T ] we consider the energy functional E : [0, T ] × Y × Z → (−∞,+∞] and the dissipation functional

: X → [0,+∞], which is for simplicity not state dependent. For analytical reasons we suppose X ⊃ Z,
.e. that the tangent space T Q is larger than the state space of internal variables. Since we work within the
large-deformations framework, we do not impose any convexity assumption on the functional

E(t, ·, z) : Y → (−∞,+∞]. (1.11)

evertheless, we require convexity of the energy with respect to the Hessian of the deformations, i.e., we
ork in the framework of nonsimple hyperelastic materials; cf. [12–14]. Regarding the internal parameter,

nstead, we work under the assumption that

E(t, y, ·) : Z → (−∞,+∞] is convex. (1.12)

Concerning the dissipation potential, we assume that R is a so-called gauge, i.e.

R : X → [0,+∞] is convex, ∀a ≥ 0, ∀z ∈ Dom R : R(az) = aR(z), (1.13)

where Dom R := {z ∈ Z : R(z) < +∞}. The positive degree-1 homogeneity of R also implies R(0) = 0
and, together with convexity, guarantees that the dissipation potential satisfies the triangle inequality
R(a+b) ≤ R(a)+R(b) for every a, b ∈ X. We point out that a broad class of problems (such as delamination
and bulk damage) can be formulated within the framework described by (1.11), (1.12), and (1.13).

A strong formulation for our notion of solution consists in finding (y, z) : [0, T ] → Y × Z satisfying

z(0) = z0, (1.14a)
y(t) ∈ ArgLocMin

y∈Y
E(t, y, z(t)), (1.14b)

0 ∈ ∂R(ż(t)) + ∂zE(t, y(t), z(t)), (1.14c)

here z0 is a given initial condition, ∂ and ∂z denote (partial) sub-differentials, and ArgLocMin is the set
f local minimizers of the energy. The weak formulation of (1.14) relies on the convexity of the dissipation
otential and of the energy with respect to the internal variable. Following [4], we rewrite (1.14c) using the
oncept of semi-stability for the internal parameter z. The requirement for the elastic variable to be a local
inimum is replaced by global minimality, both because of the stability of this condition and to ease its
athematical treatment. Let B([0, T ];U) stand for the space of functions defined everywhere in [0, T ] with

alues in U that are bounded. Recalling (1.5) for a BV -function z on the interval [r, s] ⊂ [0, T ], our notion
f solution to the system (1.14) reads as follows; cf. [4, Def. 2.1].

efinition 1 (a.e.-Separately Global Solution). Setting I = [0, T ], the mapping (y, z) : t ↦→ (y(t), z(t)) ∈ Q
ith y ∈ B(I; Y) and z ∈ B(I;Z)∩BV(I;X) is called an a.e.-separately global solution if t ↦→ ∂tE(t, y(t), z(t))

s integrable, and the following conditions are satisfied:

z(0) = z0, (1.15a)
∀a.e.t ∈ I, ∀ỹ ∈ Y : E(t, y(t), z(t)) ≤ E(t, ỹ, z(t)), (1.15b)
∀a.e.t ∈ I, ∀z̃ ∈ Z : E(t, y(t), z(t)) ≤ E(t, y(t), z̃) + R(z̃ − z(t)), (1.15c)
∀a.e.t1, t2 ∈ I, t1 < t2 : E(t2, y(t2), z(t2)) + DissR(z; [t1, t2]) (1.15d)

≤ E(t1, y(t1), z(t1)) +
∫ t2

t

∂tE(t, y(t), z(t)) dt. (1.15e)

1
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We point out that this concept of solution does not require any time-differentiability of the internal
variable z. As in [4], though, no measurability in time of the deformation and no absolute-continuity in
ime of the internal variable are a-priori guaranteed. Let us also mention that the strong formulation (1.14)
oincides with the concept of a.e.-Separately Global Solutions if E(t, ·, ·) is uniformly convex and Z = X,
ee [6]. For E(t, ·, ·) which is only separately convex, existence of absolutely continuous solutions is not
uaranteed and the conditions (1.15b) and (1.15c) are formally equivalent only to the local stability

0 ∈ ∂yE(t, y(t), z(t)),
0 ∈ ∂żR(0) + ∂zE(t, y(t), z(t)),

here in general ∂żR(ż(t)) ⊊ ∂żR(0). For obtaining the strong formulation, e.g. in the sense of measures,
dditional selection criteria, besides the energy inequality, have to be considered; see e.g [4] advocating
he maximally dissipative solutions.

emark 1.1 (Possible Generalizations). The assumption that E(t, y, ·) is convex and that R does not depend
n the state z ∈ Z were needed only for this formal equivalence mentioned above. As also mentioned in [4],
or proving the existence the convexity of E in z is not needed. Similarly, the dissipation potential R may
e replaced by a general dissipation distance, whose density may be in principle state dependent.

Separate global energy minimization is beneficial from the mathematical point of view and unlike the
ere first optimality conditions guarantees the necessary stability of the solution, which is required by the
nderlying physics. On the other hand, in some situations it inevitably leads to completely flawed predictions;
specially when time-dependent surface loads are considered. In order to avoid the most pathological
ituations we hence treat only time-dependent Dirichlet boundary conditions (sometimes referred to as ‘hard
evices’), or at least their relaxation via a penalty method, sometimes also called ‘soft-devices’.

Leaving the precise assumptions and formulations to Section 3, we provide here a simplified statement of
ur main result, explain the crucial steps of its proof, and highlight the main novelties.

heorem 1.1. Under suitable assumptions on the system (Q, E ,R), and in the setting of bulk damage, the
roblem (1.14) admits a separately global solution in the sense of Definition 1.

The proof strategy relies on a classical procedure: after performing a Rothe-type time discretization, we
dentify time-discrete solutions to the system in Definition 1. We then establish uniform estimates for the
ssociated piecewise-constant interpolants, and we select suitable convergent subsequences as the time-step
tends to zero. Using the convexity of the energy with respect to the hessian of the deformations and the

radients of the internal variables, we then prove that the previously selected subsequences satisfy improved
onvergence properties. This step is instrumental for showing that the obtained limiting maps satisfy the
tability, semi-stability, and energy-inequality conditions in Definition 1.

The most important novelty of our contribution consists in extending the notion of local solutions to the
arge-strain setting for RIS, as well as to energies E which are not convex with respect to the deformations,
nd which depend on the Eulerian gradient of the internal variable, namely on the quantity (rewritten in
agrangian coordinates) ∇y−⊤∇z. One difficulty caused by the fact that the gradient of the internal variable
nly appears in this latter coupled term is the low exponent with which ∇z is integrable. This, in turn, makes
he study of compactness properties for the sequence of piecewise-constant interpolants of time-discrete
olutions extremely delicate.

As a result, although an explicit dependence of the energy on the hessian of deformations is not needed

or proving the existence of the time-discrete solutions, thus allowing to include classical polyconvex energies

6
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a

without higher-order terms in the analysis at the discrete level, a control on the second derivatives of the
deformations is necessary for the passage from time-discrete to time-continuous solutions.

An additional complication in the passage from time-discrete to time-continuous solutions is due to
the fact that in the time-discrete stability condition a right-continuous interpolant of the internal variable
ppears, whereas in the time-discrete semi-stability a left-continuous interpolant is present (see (4.8) and

(4.9) below for the precise definitions). The standard estimates for the error between the two interpolants are
not sufficient for establishing compactness, thus calling for suitable refined techniques, which are presented
in Lemma 4.5 below. A crucial idea is to regularize the energy on the time-discrete level by an additional
term (see (4.1)), which improves the integrability of the internal variable, but disappears as the discretization
parameter tends to zero.

Apart from the problems arising from geometric non-linearities due to large strains, we also have to
face the non-uniqueness of solutions caused by the lack of (strict) convexity in the elastic variable. As
in [15], this leads to solutions where the elastic variable may be non-measurable in time. A further difficulty
lies in the fact that local solutions are characterized by an energy inequality comparing the energetics at
two time instants, which makes the compactness analysis even more complicated. This issue is addressed
in Sections 4.6 and 4.7 by extracting suitable time-dependent sequences exhibiting enhanced convergence
properties.

We finally observe that, although our study is focused on bulk-damage materials, more general ansatz for
the energies, in which the contributions of the highest order terms of the elastic and internal variable are
decoupled, could also be considered and will be the subject of forthcoming works.

The paper is organized as follows: in Section 2 we present our concrete case study. The full statement of the
main result is postponed to Theorem 3.4 in Section 3, where we describe the precise mathematical setting.
Section 4 is devoted to the proof of Theorem 3.4. Eventually, in Section 5 we summarize our contributions
and discuss their main implications.

2. A specific case study

Before proceeding further, we specify the abstract framework of RIS to a concrete example from
continuum mechanics, postponing the full mathematical details to Section 3; see also [1] for a rich list of
applications to the modeling of solids. In the problem of bulk gradient damage the state space Q = Y × Z

consists of deformations y : Ω → R3, for Ω ⊂ R3 denoting the body in the reference configuration, and of
damage fields z : Ω → [0, 1], where z(x) = 1 means that the material at the point x ∈ Ω is flawless, while
z(x) = 0 corresponds to a fully damaged material, completely unable to sustain any stress (perhaps with
the exception of a pure compression).

The energy functional then takes the form

E(t, y, z) =
∫
Ω

V (z,∇y,∇2y) + ϕ
(
(∇y)−⊤∇z

)
dx− ℓ(t, y, z), (2.1)

where V : R×R3×3×R3×3×3 → [0,+∞) is the stored energy density of a nonsimple material (see e.g. [16,17],
ϕ : R3 → (0,+∞) prevents formation of microstructures by penalizing the ‘crack length’ (in gradient damage
relaxed by a smooth interface), and ℓ : [0, T ]×Y×Z → R denotes a time-dependent loading. All the functions
can be in principle x-dependent, including also materials not homogeneous in the reference configuration.

For bulk damage, in the homogeneous setting the stored energy density has usually the form

V (∇y,∇2y, z) = γ(z)W (∇y,∇2y),

where W : R3×3 ×R3×3 → [0,+∞) is the stored energy density of the undamaged material, and the function

γ : R → (0,+∞) models incomplete bulk damage, meaning that its values are bounded away from zero by

7
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some small positive constant and hence preserving the coercivity of the stored energy density. A particular
choice of W is

W (∇y,∇2y) = ψ(∇y) + Φ(∇2y)

= a|∇y|p + b| Cof ∇y|q + c(det ∇y)r − d ln(det ∇y)2 + ϵ

p
|∇2y|p.

he positive coefficients a, b, c, d yield arbitrary Lamé constants; see [18] for p = 2. The last term serves
as a mathematical regularization, the coefficient ϵ > 0 being small enough not to influence the material
response considerably. Thanks to the enhanced regularity provided by Φ, the ψ-term can in principle be
on-convex, including for example St. Venant–Kirchhoff materials

ψ(F ) = 1
8C

(
F⊤F − I

)
:
(
F⊤F − I

)
.

In the expression above, C is a fourth order elastic tensor, which is easy to use in an engineering practice
thanks to its direct connection to small-strain mechanics. Additionally, I is the identity matrix. A very
common choice of γ is

γ(z) =
{
z2 + ϵ, for z ≥ 0,
ϵ, for z < 0.

The function ϕ depends on the Eulerian gradient of the Eulerian field ζ(y(x)) = z(x), x ∈ Ω , denoted by
yζ. An example is given by∫

Ω

ϕ
(Cof ∇y

det ∇y
∇z

)
dx =

∫
Ω

ϕ
(
(∇y)−⊤∇z

)
dx =

∫
Ω

ρ0

α

⏐⏐(∇y)−⊤∇z
⏐⏐α dx =

∫
Ωy

ρ

α
|∇yζ|α dxy,

here α > 0, and ρ0(x) = ρ(y(x)) det ∇y(x) encodes the relation between the Lagrangian and Eulerian fields
of density with respect to the volume in the reference and deformed configuration, respectively. This choice
favors the onset of damage at points where the density ρ is smaller.

An example of the loading functional ℓ, typically non-linear for large deformations, would be

ℓ(t, y, z) =
∫
Ω

B(t) · y dx+
∫
ΓN

S(t) · y dH2(x) (2.2)

− 1
2ε

∫
Γd

|y − yD(t)|2 dH2 −
∫
Ω

π(t, y) det ∇y dx,

where B and S stand for bulk and surface loads, respectively, the third term penalizes the mismatch between
the deformation value and the prescribed Dirichlet boundary condition yD for ε → 0, and the last term is
a potential for a surface pressure load, π being the pressure field in the deformed configuration.

Remark 2.1 (Hyper-loading). Second grade materials, whose stored energy density depends also on ∇2y,
ay model various physical phenomena, for example the flow of Korteweg fluids [19] (depending on the
ulerian gradient of the Eulerian density field), the deformation of woven fabrics [20], phase transitions

21–23], and general multisymplectic field theory [24]; see also [12–14,25–31] for further works on non-simple
ontinua, the list definitely not being exhaustive. We point out that for the applications described in this
aper it is not necessary to incorporate the hyper-loading, an additional term representing conservative
orces, typically in a form of an edge traction or the so-called couple-stress or double force acting on the
oundary (see [32–37]), for no such physical phenomena are expected to arise in our intended applications.

The second constitutive quantity in the gradient system is the dissipation potential, for applications to
he unidirectional bulk damage being

R(ż) =

⎧⎨⎩
∫
Ω

Gρ0|ż(x)| dx =
∫
Ωy

Gρ(xy)|ζ̇(xy)| dxy, for ż ≤ 0 a.e. in Ω ,
(2.3)
+∞, otherwise,
8
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where G is the so-called fracture toughness and z(x) = ζ(y(x)) are respectively the Lagrangian and Eulerian
amage fields, and, for xy = y(x), we denote ρ(xy) = ρ0/det ∇y(x), x ∈ Ω the actual density. In this model,
he material cannot heal, as ż > 0 is prohibited. The unidirectionality can be relaxed by allowing small
ealing, which may be useful from the analytical point of view; see [4].

Let us calculate the first Piola–Kirchhoff stress tensor T corresponding to the stored energy density in
2.1)

T = γ(z)∂Fψ(∇y) + ∂Fϕ((∇y)−⊤∇z) − div(H) ,

here
H = ∂HV (z,∇y,∇2y) = γ(z)∂HW (∇y,∇2y) = γ(z)∂HΦ(∇2y)

enotes the hyperstress. Then the strong formulation of the problem defined by (2.1)–(2.3) reads as follows:
ind (y, z) : [0, T ] → Y × Z such that for every t ∈ [0, T ]

− divT = B in Ω , (2.4a)
Tn = S − π(t, y)(Cof ∇y)n on ΓN , (2.4b)
Tn = ε−1(y − yD) − π(t, y)(Cof ∇y)n on ΓD, (2.4c)

H : (n⊗ n) = 0 on ∂Ω , (2.4d)
γ′(z)W (∇y,∇2y) −Gρ0 + ∂I(−∞,0](ż) ∋ divϕ′((∇y)−⊤∇z) in Ω , (2.4e)

ϕ′((∇y)−⊤∇z) · n = 0 on ∂Ω , (2.4f)
z(0) = z0 in Ω . (2.4g)

Here I(−∞;0] denotes the indicator function of the set of nonpositive reals, ϕ′ and γ′ stands for the gradient
of ϕ and γ, respectively, and n is the outer unit normal to ∂Ω . The existence of a strong solution is
generically unexpected in our mechanical setting. Even for purely elastostatic problems, the existence of weak
solutions to the corresponding equilibrium equations and its relation to local minimizers is largely open, see
[38, Problems 5 and 9]. We also refer to [9] for a discussion on strong solutions for problems where the stored
energy density depends on a vector variable.

Remark 2.2 (Delamination). A particular instance of a loading functional ℓ depending also on the internal
variable z is provided by delamination, where the ‘elastic constants’ in the boundary term in (2.2) may
depend on z, simulating then a damageable adhesive. The dissipation potential in (2.3) would include then
the corresponding surface term. We refer to [4] for a specific example in the small-strain regime.

3. Mathematical setup

In this section, we introduce the precise setting of our work and present the key mathematical ingredients
for our proof. In the whole paper we suppose that the body’s reference configuration Ω ⊂ R3 is a bounded
Lipschitz domain. With a slight abuse of notation, we will sometime denote the Wm,p and Lp-norms simply
by ∥ · ∥m,p and ∥ · ∥p without specifying the domain and target space, whenever this will be clear from the
context.

3.1. State space

The state space Q is assumed to be endowed with the product structure

Q := Y × Z, (3.1)

9
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consisting of admissible deformations and internal variables, given by

Y := {y ∈ W 2,p(Ω ,R3) : (det ∇y)−1 ∈ Ls(Ω), (3.2)
det ∇y > 0 a.e. in Ω , (3.5) holds}, (3.3)

here (3.5) is the Ciarlet–Nečas condition defined below, and

Z := {z ∈ W 1,α(Ω) : 0 ≤ z ≤ 1 a.e. in Ω}, (3.4)

or some p ≥ 1, s ≥ 0, and α ≥ 1. Note that instead of time-dependent Dirichlet data, representing a
oad by a hard device, we consider their relaxation via a penalty method, called soft-device. While the
elaxation is still sufficient for Poincaré-type inequalities on Y, it does not require any statement about
xtension theorems for locally invertible mappings, which are up to now not available; see [16] for a
horough discussion. In what follows, we will say that a sequence {yn} is uniformly bounded in Y whenever
upn∈N{∥yn∥2,p + ∥(det ∇yn)−1∥s} < +∞.

.2. Injectivity

As outlined in the introduction, the utmost physical requirement in large deformations is that the material
oes not interpenetrate. Our analysis hinges upon the classical Ciarlet–Nečas condition∫

Ω

det ∇y dx ≤ L3(y(Ω)), (3.5)

here L3 denote the Lebesgue measure in R3. For other conditions ensuring injectivity we refer to [39, Sec. 6,
hm.2] and to [40]; however, these require the Dirichlet boundary datum to be prescribed on the whole ∂Ω

see also [41]). The original statement from [42] states that whenever p > 3, (3.5) holds, and y ∈ W 1,p(Ω ;R3)
s such that det ∇y > 0 almost everywhere in Ω , then the deformation y is injective almost-everywhere in
. Apart from the Ciarlet–Nečas condition we use also the result from [43, Theorem 3.4] by which under

he additional condition
|∇y|3

det ∇y
∈ Lδ(Ω), (3.6)

or some δ > 2, deformations satisfying (3.5) are also invertible everywhere in Ω . The crucial observation is
hat (3.6) then implies that y is an open map. Although the Ciarlet–Nečas condition (3.5) is well suited for
roving the existence of minimizers by the direct method, it is by no means trivial to incorporate this non-
ocal constraint numerically. We refer e.g. to [44] for some relaxations which are more feasible for numerical
omputations, as well as for further generalizations.

.3. Boundedness of det ∇y away from zero

Another important ingredient for our proof, helping to overcome the difficulties arising from the Eulerian
radient of the damage field, is the following corollary of the result from [45]. For convenience of the reader
e provide an alternative proof in the Appendix.

orollary 3.1 (Healey–Krömer [45]). Let p > 3, s ≥ 3p
p−3 , Then for every y ∈ Y there exists εy > 0 s.t.

det ∇y ≥ εy > 0 in Ω . (3.7)

oreover, if a sequence {yτ } ⊂ Y is uniformly bounded in W 2,p(Ω ;R3), and the sequence {(det ∇yτ )−1} is
uniformly bounded in Ls(Ω), then the bound on the determinant in (3.7) is uniform.
10
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The corollary implies that for the class Z of internal variables, the Lagrangian gradient with respect to
he variable parametrizing the deformed configuration is integrable if and only if the Eulerian gradient has
he same property. In other words, we have

∇yζ := (∇y)−⊤∇z = (Cof ∇y)
det ∇y

∇z ∈ L1(Ω) iff ∇z ∈ L1(Ω ; R3).

(∇z)ij = (∇yζ)k(∇y)kj = (∇y)⊤
jk(∇yζ)k

ence,
(∇y)−⊤∇z = ∇yζ .

his observation is crucial for proving the stability condition for the deformation y.
Apart from the integrability of the Eulerian gradient, the Healey–Krömer lemma also allows us to prove

ontinuity of elastic energies that blow-up as the determinant of their argument converges to zero.

orollary 3.2 (Continuity of W on Y). Let {yk}k∈N ⊂ Y be such that {(det ∇yk)−1} is uniformly bounded
n Ls(Ω) and yk → y in W 2,p(Ω) as k → ∞, where p > 3 and s ≥ 3p

p−3 . If the stored energy density
: R3×3 × R3×3×3 → [0,+∞) is continuous and there exists a constant C > 0 such that

|W (F,G)| ≤ C(|F |p + (detF )−s + |G|p + 1),

for every (F.G) ∈ R3×3 × R3×3×3, then (for k → ∞)

W (∇yk,∇2yk) → W (∇y,∇2y) in L1(Ω).

roof. Thanks to Corollary 3.1 the function W has p-growth on the sequence {yτ }. The thesis follows then
rom the standard argument for the continuity of the Nemytskii operator. □

.4. Strong convergence implied by strict convexity

The well-known result for uniformly convex Banach spaces, that weak convergence together with conver-
ence of the norms implies strong convergence (see e.g. [46]), has been generalized in [47], where, roughly
peaking, convergence of the norms is replaced by convergence of a strictly convex functional. Since the case
f multiple variables is not treated there, we introduce here its slight generalization for integrands which are
trictly convex in the last variable. The reader interested in the proof is referred to the Appendix.

emma 3.3 (Strong Convergence Implied by the Weak One). Let Ω ⊂ R3 be a bounded Lipschitz domain.
ssume that C, c > 0 and h : Ω × R × R3×3 × R3×3×3 → R is a Carathéodory integrand such that for all
x, z, F,G) ∈ Ω × R × R3×3 × R3×3×3 and some p, q ∈ (1,+∞)

c(|z|q + |F |p∗ + |G|p) − C ≤ h(x, z, F,G) ≤ C(1 + |z|q + |F |p
∗

+ |G|p) , (3.8)

where h(x, z, F, ·) is strictly convex and

p∗ :=
{
pn/(n− p) if 1 < p < n,

any number in [1,+∞) otherwise.

If yk ⇀ y in W 2,p(Ω ;Rn), zk → z in Lq(Ω), and∫
Ω

h(x, zk,∇yk,∇2yk) dx →
∫
Ω

h(x, z,∇y,∇2y) dx, (3.9)

hen yk → y in W 2,p(Ω ;Rn).
11
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3.5. Free-energy assumptions

We consider the following ansatz for the energy functional E : [0, T ] × Y × Z → R

E(t, y, z) =
∫
Ω

γ(z)W (∇y,∇2y) + ϕ
(
(∇y)−⊤∇z

)
dx− ℓ(t, y, z), (3.10)

We will assume that the functions γ, W , ϕ and the loading ℓ satisfy the following coercivity and growth
conditions. The function γ : R → (0,+∞) satisfies

γ ∈ C1(R) is positive and convex, and it is constant on (−∞, 0]. (3.11)

The function ϕ is required to be strictly convex and satisfy polynomial growth assumptions from above
and below, whereas W is assumed to be convex in ∇2y and its growth conditions are compatible with the
modeling of impenetrability and blow-up of the elastic energy under strong compression. Namely

c|u|α − C ≤ ϕ(u) ≤ C(|u|α + 1), (3.12)

for every u ∈ R3, and

c(|F |p + (detF )−s + |G|p) ≤ W (F,G) ≤ C(|F |p + (detF )−s + |G|p + 1), (3.13)

for every F ∈ R3×3 and G ∈ R3×3×3, for some p > 1 and s ≥ 0. Finally, we assume the nonlinear loading to
fulfill the following coercivity assumption:

− ℓ(t, y, z) ≥ c

(⏐⏐⏐⏐∫
ΓD

y dH2
⏐⏐⏐⏐ − ∥∇y∥p̃

p − ∥∇2y∥p̃
p − ∥(det ∇y)−1∥s̃

s − ∥(∇y)−⊤∇z∥α̃
α

)
− C, (3.14)

for every (y, z) ∈ Q, for some 0 ≤ p̃ < p, 0 ≤ s̃ < s, and 0 ≤ α̃ < α.
In addition, for the loading ℓ we consider a slightly modified version of an assumption in [4]. We assume

that the loading functional ℓ : R × Y × Z → R is such that for each ỹ ∈ Y the map

(t, y, z) ↦→ ℓ(t, ỹ, z) − ℓ(t, y, z) (3.15)

has suitable (lower semi-)continuity properties, and the same holds for the map

R × Y × Z × Z ∋ (t, y, z, z̃) ↦→ ℓ(t, y, z̃) − ℓ(t, y, z); (3.16)

see the hypotheses of Lemmas 4.5, 4.7, 4.8, and 4.9. Finally, we assume that the loading enjoys the
following structural properties

Dom ℓ = [0, T ] × Dom ℓ(0, ·, ·), (3.17)
∀(y, z) ∈ Q : ℓ(·, y, z) ∈ W 1,1(0, T ), (3.18)

∀a.e.t ∈ (0, T ), ∀(y, z) ∈ Q : ∂tℓ(·, y, z) exists. (3.19)

Conditions (3.11)–(3.19) imply the energetic control of power, described by the equations below

Dom E = [0, T ] × Dom E(0, ·, ·),
∀(y, z) ∈ Q : E(·, y, z) ∈ W 1,1(0, T ),
∀a.e.t ∈ (0, T ), ∀(y, z) ∈ Q : ∂tE(·, y, z) exists,
∃C0 ∈ R and λ ∈ L1(0, T ) such that ∀a.e.t ∈ (0, T ) and ∀(y, z) ∈ Q :

0

(3.20)
|∂tE(t, y, z)| ≤ λ(t)(E(t, y, z) + C ).
12
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The above properties, together with Gronwall’s inequality, imply

E(t, y, z) + C0 ≤ (E(s, y, z) + C0)e|Λ(t)−Λ(s)|, where Λ(t) :=
∫ t

0
λ(r) dr, (3.21)

which finally yields, when combined again with (3.20),

|∂tE(t, y, z)| ≤ λ(t)(E(s, y, z) + C0)e|Λ(t)−Λ(s)|, (3.22)

for every s, t ∈ [0, T ]. In particular, t ↦→ E(t, y, z) is absolutely continuous for every (y, z) ∈ Q.

3.6. Assumptions on the dissipation potential

We consider R : L1(Ω) → [0,+∞) satisfying

inf
v ̸=0

R(v)
∥v∥1

> 0, (3.23)

nd being lower-semicontinuous with respect to the strong L1-topology.
Note that the convexity and positive 1-homogeneity together with R(0) = 0 imply that

∀z1, z2, z3 ∈ Z : R(z3 − z1) ≤ R(z3 − z2) + R(z2 − z1), (3.24)
∀v ∈ Z : R(v) = 0 ⇐⇒ v = 0, (3.25)

.e. R defines a norm.

emark 3.1 (Unidirectional Damage). Although in our assumptions the dissipation potential R is finite
verywhere, the setting of unidirectional damage can also be included in our analysis, see Remark 4.1.

.7. Statement of the main result

With the setting described in the previous subsections, our main result reads as follows.

heorem 3.4 (Existence Result). Let Ω ⊂ R3 be a bounded Lipschitz domain. Let ∂Ω = ΓD ∪ ΓN be
measurable partition, with ΓD having a positive two dimensional Hausdorff measure. Assume that the

amage function γ : R → (0,+∞) is continuous and satisfies (3.11), and that the stored energy density
: R3×3 × R3×3×3 → [0,+∞) is continuous in its first argument, is convex in its second argument,

nd satisfies the coercivity condition (3.13) with s ≥ 3p
p−3 and p > 3. Assume also that ϕ : R3×3 → R is

strictly convex and fulfills the polynomial growth conditions in (3.12) with α > 3. Let the dissipation potential
: L1(Ω) → [0,+∞] be convex, positively 1-homogeneous, lower semi-continuous with respect to the strong

L1(Ω) topology, and satisfy (3.23), (3.24), and (3.25). Assume that the coercivity condition (3.14) is satisfied,
that (3.15)–(3.18) hold true, and that both the reduced power −∂tℓ and the loading ℓ are strongly continuous
on uniformly bounded sequences in R×Y ×W 1,α(Ω) (see Section 3.1). Then, problem (1.14) has a separately
lobal solution in the sense of Definition 1, where in addition the deformation y(t) is injective everywhere in

for all times t ∈ [0, T ].

emark 3.2 (On the Regularity of Separately Global Solutions). The solution provided by Theorem 3.4
bove enjoys the following regularity properties: y ∈ B(I; Y), whereas z ∈ B(I; Z) ∩ BV (I;L1(Ω)), where
13
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we recall that

Y = {y ∈ W 2,p(Ω ,R3) : (det ∇y)−1 ∈ Ls(Ω),
det ∇y > 0 a.e. in Ω , (3.5) holds},

nd
Z = {z ∈ W 1,α(Ω) : 0 ≤ z ≤ 1 a.e. in Ω},

or p ≥ 1, s ≥ 0, and α ≥ 1.

. Proof of the existence theorem

This section is devoted to the proof of Theorem 3.4. The argument follows a classical strategy, namely
erforming a Rothe time discretization, proving existence of discrete solutions, showing compactness of
iecewise-constant time-interpolants, improving the convergence, passing to limit in the (semi-)stability
ondition, and proving the energy inequality. Since we regularize the problem on the discrete level, we have
o modify the initial condition and hence the last step consists in proving the convergence of the modified
ata to the original value z0. For convenience of the reader, the different steps of the proof are carried out
nto corresponding subsections. To be precise, in Section 4.2, we describe the main properties of time-discrete
olutions. Their existence is proved (under slightly more general assumptions) in Section 4.3. In Section 4.4
e establish some first compactness properties for piecewise-constant time interpolants. These are then

mproved in Sections 4.5–4.7. Eventually, Section 4.8 is devoted to the study of limiting time-continuous
olutions and is concluded by the proof of Theorem 3.4.

.1. Discrete space regularization

As we will see later in the Section 4.7, the integrability of the time-discrete solution needs to be improved.
e hence introduce the following energy regularization on the time-discrete level

Hτ (z) := τκ

∫
Ω

|∇z|β dx, (4.1)

here κ > 0 and β > α+κ, where α > 3 is the parameter in (3.12). The role of this additional regularization
s to improve weak convergence of gradients for the time interpolants associated to the damage field z.

On the other hand, the space regularization prevents us from using z ∈ Z as a competitor in the discrete
emi-stability, for elements of Z have a priori only W 1,α-regularity. We hence use its Lipschitz truncation
nstead; see Lemma A.2. In our application, we do not rely on the smallness of the set where the functions
re truncated, but only on the quantification of the Lipschitz constant.

.2. Rothe time discretization

Let z0 ∈ Z be the initial condition and let y0 ∈ Y be a minimizer of the functional y ↦→ E(0, y, z0). Due to
he regularization (4.1) we need to construct our discrete solutions for a slightly modified initial condition.
e thus replace z0 by its Lipschitz truncation (z0)λ(τ) (see Lemma A.2), where the truncation parameter

(τ) depends on the time step τ in such a way that

Hτ ((z0)λ(τ)) = τκ

∫
|∇(z0)λ(τ)|

β dx ≤ C(α,Ω)L3(Ω)τκλβ(τ) → 0, (4.2)

Ω

14
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where C(α,Ω) is the constant from the bound on ∥(z0)λ(τ)∥1,∞. In other words, λ(τ) blows-up sufficiently
low. After performing a time discretization of [0, T ], where k ∈ {1, . . . , N}, N ∈ N and τ = T/N , the

regularized time-discrete problem reads as follows.

z0
τ = (z0)λ(τ), (4.3a)
y0

τ minimizes y ↦→ E(0, y, z0
τ ) + Hτ (z0

τ ) (4.3b)
yk

τ minimizes y ↦→ E(kτ, y, zk−1
τ ) + Hτ (zk−1

τ ) (4.3c)
zk

τ minimizes z ↦→ E(kτ, yk
τ , z) + Hτ (z) + R(z − zk−1

τ ). (4.3d)

We postpone the study of the existence of solutions to (4.3) to the next subsection and proceed by
showing the properties of time-discrete solutions. Recall (3.21). The next lemma show that, provided these
time-discrete solutions exist, then they satisfy standard uniform energy estimates.

Lemma 4.1 (Properties of Discrete Solutions). Let Dom E = [0, T ] × Y × Z, assume that (3.20) holds,
and let z0 ∈ Z. Then any solution of the problem (4.3) satisfies for all k ∈ {1, . . . , N} the discrete stability,
(semi)-stability, and energy inequality

∀ỹ : E(kτ, yk
τ , z

k−1
τ ) + Hτ (zk−1

τ ) ≤ E(kτ, ỹ, zk−1
τ ) + Hτ (zk−1

τ ), (4.4)
∀z̃ : E(kτ, yk

τ , z
k
τ ) + Hτ (zk

τ ) ≤ E(kτ, yk
τ , z̃) + Hτ (z̃) + R(z̃ − zk

τ ), (4.5)
E(kτ, yk

τ , z
k
τ ) + Hτ (zk

τ ) + R(zk
τ − zk−1

τ )

≤ E((k − 1)τ, yk−1
τ , zk−1

τ ) + Hτ (zk−1
τ ) +

∫ kτ

(k−1)τ

∂tE(t, yk−1
τ , zk−1

τ ) dt. (4.6)

n addition, we have the uniform estimate

E(kτ, yk
τ , z

k
τ ) + Hτ (zk

τ ) + C0 +
k∑

j=1
R(zj

τ − zj−1
τ )

≤ (E(0, y0
τ , z

0
τ ) + Hτ (z0

τ ) + C0)eΛ(kτ). (4.7)

roof. The discrete stability (4.4) and semi-stability (4.5) are direct consequences of the problem
ormulation (4.3c) and (4.3d) together with the triangular inequality (3.24) giving R(z̃ − zk−1

τ ) ≤ R(zk
τ −

k−1
τ ) + R(z̃ − zk

τ ) < +∞.
Further, testing (4.3d) by zk−1

τ , then (4.3c) by yk−1
τ , and finally integrating in time (thanks to the absolute

ontinuity of E(·, y, z) implied by (3.20)) yield

E(kτ, yk
τ , z

k
τ ) + Hτ (zk

τ ) + R(zk
τ − zk−1

τ )
≤ E(kτ, yk

τ , z
k−1
τ ) + Hτ (zk−1

τ ) ≤ E(kτ, yk−1
τ , zk−1

τ ) + Hτ (zk−1
τ )

= E((k − 1)τ, yk−1
τ , zk−1

τ ) + Hτ (zk−1
τ ) +

∫ kτ

(k−1)τ

∂tE(t, yk−1
τ , zk−1

τ ) dt.

he former estimate combined with (3.21) implies (note that Hτ does not depend on t and hence we may
pply the inequality also for (E + Hτ ))

E(kτ, yk
τ , z

k
τ ) + Hτ (zk

τ ) + C0 + R(zk
τ − zk−1

τ )
≤ E(kτ, yk

τ , z
k−1
τ ) + Hτ (zk−1

τ ) + C0

≤ (E((k − 1)τ, yk−1
τ , zk−1

τ ) + Hτ (zk−1
τ ) + C0)eΛ(kτ)−Λ((k−1)τ).

ince R(zk
τ − zk−1

τ ) ≥ 0 and for k ∈ {0, . . . , N} we have E(kτ, yk
τ , z

k
τ ) + Hτ (zk

τ ) < +∞, the discrete energy

nequality follows arguing by induction; see e.g. [15] or [1, Thm 2.1.5] for details. □

15



E. Davoli, M. Kružík and P. Pelech Nonlinear Analysis 215 (2022) 112668

i

w

N

t

a

w

d

I
e

L
h

M

F

a

The discrete stability for arbitrary time t ∈ [0, T ] will be proven in terms of piecewise-constant time
nterpolants. We collect the main definitions below.

For (k − 1)τ ≤ t < kτ we define the right-continuous piecewise-constant interpolants

zτ (t) := zk−1
τ , y

τ
(t) := yk−1

τ , (4.8)

hile the left-continuous piecewise-constant interpolants are defined for (k − 1)τ < t ≤ kτ as

z̄τ (t) := zk
τ , ȳτ (t) := yk

τ Ēτ (t, y, z) := E(kτ, y, z). (4.9)

ote that the interpolants are related by

y
τ
(t+ τ) = ȳτ (t), for every t ∈ I, t ̸= kτ for k ∈ N, (4.10)

hey coincide at the nodes, i.e.

y
τ
(t) = ȳτ (t) for every t = kτ ∈ I, k ∈ N,

nd they differ there only by their left/right continuity. The same holds for zτ and z̄τ . For every t ∈ [0, T ],
for notational convenience, we introduce the quantity

θτ (t) := ∂tE(t, y
τ
(t), zτ (t)),

hich will arise in the energy inequality, and its analogue

θ̄τ (t) := ∂tE(t, ȳτ (t), z̄τ (t)),

epending on the left-continuous interpolants. Eventually, we define the pointwise limit

θ̄sup(t) := lim sup
τ→0

θ̄τ (t).

n the next lemma we show that these interpolants satisfy the standard discrete stability, semi-stability,
nergy inequality and uniform estimates.

emma 4.2 (Properties of Piecewise-constant Interpolants). Let the hypotheses of Lemma 4.1 and (3.24)
old. Then the interpolants satisfy for all t ∈ [0, T ] and all 0 ≤ t1 < t2 ≤ T of the form t1 = k1τ and t2 = k2τ

with k1, k2 ∈ N

z̄τ (0) = zτ (0) = (z0)λ(τ), (4.11)
∀ỹ ∈ Y : Ēτ (t, ȳτ (t), zτ (t)) ≤ Ēτ (t, ỹ, zτ (t)), (4.12)
∀z̃ ∈ Z : Ēτ (t, ȳτ (t), z̄τ (t)) + Hτ (z̄τ (t)) ≤ Ēτ (t, ȳτ (t), z̃) + Hτ (z̃) + R(z̃ − z̄τ (t)), (4.13)

Ēτ (t2, ȳτ (t2), z̄τ (t2)) + Hτ (z̄τ (t2)) + DissR(z̄τ ; [t1, t2]) (4.14)

≤ Ēτ (t1, ȳτ (t1), z̄τ (t1)) + Hτ (z̄τ (t1)) +
∫ t2

t1

∂tE(t, y
τ
(t), zτ (t)) dt.

oreover, for every t ∈ [0, T ] both interpolants, denoted here by (ŷτ , ẑτ ), satisfy the uniform estimates

E(t, ŷτ (t), ẑτ (t)) + Hτ (ẑτ (t)) + C0 + DissR(ẑτ ; [0, t])
≤ eΛ(t)(E(0, y0, z0

τ ) + Hτ (z0
τ ) + C0).

inally, if for every y ∈ Y the energy E(0, y, ·) is strongly continuous on Z, then

E(0, y0, z0
τ ) + Hτ (z0

τ ) → E(0, y0, z0) < +∞ (4.15)
s τ → 0, for every t ∈ [0, T ].
16
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Proof. The stability follows directly by Lemma 4.1 and by the definition of the interpolants, the regularizing
term Hτ (zτ (t)) is finite and cancels. For the semi-stability we further use the triangular inequality for R.

Further, for the uniform estimate for arbitrary t ∈ [0, T ] we need to exploit (3.22) once more; see [15].
Finally, the convergence of the energies associated to the initial conditions follows by the strong convergence
of the truncated initial conditions, with respect to which the energy is continuous, and by the choice of the
truncation parameter (4.2). □

4.3. Existence of discrete solutions

We proceed by proving the existence of the discrete solutions defined in Section 4.2. We first show that
existence of solutions is guaranteed in the setting described in Section 3. We refer to the Appendix for a
proof of existence of discrete solutions under relaxed assumptions that do not require coercivity of the energy
with respect to the hessian of the deformations.

Lemma 4.3 (Existence of Discrete Solutions — Non-simple Materials). Let Ω ⊂ R3 be a bounded Lipschitz
omain. Further, let ∂Ω = ΓD ∪ ΓN be a measurable partition, with ΓD having a positive two dimensional
ausdorff measure. Assume that the damage function γ : R → (0,+∞) is continuous, and that the stored

nergy density W : R3×3 × R3×3×3 → [0,+∞) is continuous in its first argument, is convex in its second
rgument, and satisfies the coercivity condition (3.13), with p > 3. Assume also that ϕ : R3×3 → R is convex,

and that the dissipation potential R : L1(Ω) → [0,+∞] is lower semi-continuous with respect to the strong
L1 topology. Finally, let kτ ∈ [0, T ], yk

τ ∈ Y, and zk−1
τ ∈ Z, and assume that the coercivity condition (3.14)

is satisfied. Under the further assumption that the loading y ↦→ −ℓ(kτ, y, zk−1
τ ) is lower semi-continuous with

respect to the weak topology on W 2,p(Ω), and that z ↦→ −ℓ(kτ, yk
τ , z) is lower semi-continuous with respect to

the weak topology on W 1,α(Ω), then, the functional

F(y) := E(kτ, y, zk−1
τ ) + Hτ (zk−1

τ )

=
∫
Ω

(
γ(zk−1

τ )W (∇y,∇2y) + ϕ
(
(∇y)−⊤∇zk−1

τ

)
+ τκ|∇zk−1|β

)
dx− ℓ(kτ, y, zk−1

τ )

has a minimizer yk
τ ∈ Y which is injective almost everywhere in Ω , and the functional

G(z) := E(kτ, yk
τ , z) + Hτ (z) + R(z − zk−1

τ )

=
∫
Ω

(
γ(z)W (∇yk

τ ,∇2yk
τ ) + ϕ

(
(∇yk

τ )−⊤∇z
)

+ τκ|∇z|β
)

dx− ℓ(kτ, yk
τ , z)

+ R(z − zk−1
τ )

has a minimizer zk
τ ∈ Z.

If moreover p > 6 and s > 2p/(p− 6), then the minimizer is injective everywhere in Ω .

roof. Note that for p > 3 we have (∇yk
τ )−⊤ ∈ L∞. The existence of a global minimizer follows thus by

Fatou’s lemma and by the direct method, while the injectivity is assured by (3.5) and (3.6). □

4.4. Selection of subsequences

In this subsection we analyze compactness properties of the sequences of time-interpolants (4.8) and
(4.9) as the time-step τ converges to zero. We recall that although the weak* limits of the left- and right-
continuous interpolants coincide in the appropriate Bochner product space (see [48, proof of Thm. 8.9] which
works also for piecewise-constant interpolants), the pointwise-in-time limits y(t) and ȳ(t) of the t-dependent
ubsequences may differ in general.
17
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Lemma 4.4 (Compactness I). Let the hypotheses of Lemmas 4.2 and 4.3 be satisfied. Let ϕ : R3×3 → R
satisfy the coercivity and growth condition (3.12) with α > 1.

Finally, assume that (3.24) and (3.25) hold. Then, we have the following uniform bounds

∥ȳτ ∥L∞((0,T ),W 2,p(Ω)) ≤ C, ∥(det ∇ȳτ )−1∥L∞((0,T ),Ls(Ω)) ≤ C, (4.16)
∥z̄τ ∥L∞((0,T ),L∞(Ω)) ≤ C, ∥(∇ȳτ )−⊤∇z̄τ ∥L∞((0,T ),Lα(Ω)) ≤ C, (4.17)

VarL1(z̄τ ; [0, T ]) ≤ C ∥∇z̄τ ∥L∞((0,T ),Lα(Ω)) ≤ C, (4.18)
∥θ̄τ ∥L1(0,T ) ≤ C, ∥θτ ∥L1(0,T ) ≤ C, (4.19)

here {|θ̄τ |} and {|θτ |} are equiintegrable. Up to a (not relabeled) subsequence, the following convergences of
the piecewise-constant interpolants associated to the internal variable hold true

∀t ∈ [0, T ] : z̄τ (t) ⇀∗ z(t) and zτ (t) ⇀∗ z(t) in L∞(Ω), (4.20)
∇z̄τ (t) ⇀ ∇z(t) and ∇zτ (t) ⇀ ∇z(t) in Lα(Ω). (4.21)

he limiting maps satisfy z, z ∈ BV([0, T ];L1(Ω)) ∩ B([0, T ];Z), and there exists an at most countable set
⊂ [0, T ] such that

∀t ∈ [0, T ] \ J : z(t) = z(t). (4.22)

he dissipations associated to the left-continuous piecewise-constant interpolants of the internal variable fulfill

∀t ∈ [0, T ] : DissR(z̄τ , [0, t]) → δ(t), (4.23)

here δ ∈ BV[0, T ], and

∀0 ≤ t1 < t2 ≤ T : DissR(z, [t1, t2]) ≤ δ(t2) − δ(t1). (4.24)

he norms of the gradients of the interpolants of the internal variable satisfy

∥∇z̄τ ∥Lα(Ω ;R3×3) ⇀
∗ f̄ and ∥∇zτ ∥Lα(Ω ;R3×3) ⇀

∗ f in L∞(0, T ), (4.25)

or some f̄ , f ∈ L∞(0, T ) such that for almost every t ∈ (0, T )

f ≥ f inf(t) := lim inf
τ→0

∥∇zτ (t)∥Lα(Ω ;R3×3). (4.26)

There exist θ̄, θ ∈ L1(0, T ) such that, up to a (not relabeled) subsequence,

θτ ⇀ θ and θ̄τ ⇀ θ̄ in L1(0, T ). (4.27)

ventually, for the regularizing term we have the uniform bounds

Hτ (z̄τ (t)) ≤ C, i.e.
∫
Ω

|∇zτ (t, x)|β dx ≤ C

τκ
(4.28)

or almost every t ∈ (0, T ).

roof. For convenience of the reader, we subdivide the proof into three steps.

tep I: Uniform estimates. Since γ is positive and continuous, (4.16), (4.17), and the first estimate in (4.18)
re direct consequences of (4.15), the coercivity of ϕ (3.12), W (3.13), ℓ (3.14), and R, and the definition of
he space Z; see (3.4). Note that

|∇z̄ | ≤ C|∇ȳ⊤||(∇ȳ )−⊤∇z̄ |,
τ τ τ τ

18
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and that thanks to (4.17) and the embedding of W 2,p(Ω) into C(Ω̄) for p > 3, we have that {∇ȳ⊤
τ } is

uniformly bounded in L∞((0, T ), L∞(Ω)). Using again the coercivity of ϕ (3.12), we thus obtain the second
estimate in (4.18).

Finally, the equi-integrability of θ̄τ and θτ , as well as the corresponding uniform bounds (4.19), follow by
3.20), (3.21) and (4.15). Indeed, for either of the interpolants, denoted by the superscript “ˆ”, we have

|θ̂τ (t)| = |∂tE(t, ŷτ (t), ẑτ (t))| ≤ λ(t)(E(t, ŷτ (t), ẑτ (t)) + C0)
≤ λ(t)eΛ(t)(E(0, y0, z0) + C0 + 1),

rovided τ > 0 is sufficiently small.
Step II: Selection of sub-sequences. By the convexity and lower semicontinuity of R with respect to the

trong L1-convergence, we deduce that R is lower semi-continuous also in the weak L1- topology. We observe
hat {z̄τ (0)} is uniformly bounded in L1(Ω), thus by the first bound in (4.18) we can apply [49, Lemma 7.2]
o deduce that

z̄τ (t) ⇀∗ z(t) weakly* in Mb(Ω)

or every t ∈ [0, T ].
Finally, functions z : Ω → [0, 1] form a compact subset of L∞(Ω) in the weak∗ topology and thanks to the

niform bounds proven in Step I, the sequence {z̄τ } is also weakly compact in W 1,α for almost every t. We
ence apply the generalized Helly’s selection principle from [1] to obtain a subsequence {z̄τ }, not relabeled,
atisfying (4.20), (4.21), (4.23), and (4.24).

Further, the convergence properties of {zτ }, as well as the equality of z and z almost everywhere in [0, T ]
ollow from the fact that z̄τ − zτ → 0 in L1((0, T ), L1(Ω)); see [4]. As both z and z are in BV([0, T ];L1(Ω))
hey may differ only at discontinuity points which form an at most countable subset of [0, T ].

Eventually, (4.25) and (4.27) are direct consequences of (4.18) and (4.19), while the inequality (4.26)
follows by Fatou’s lemma. Indeed, for every test function φ ∈ L1(0, T ) with φ ≥ 0 on (0, T ), from (4.25) and
rom the definition of f inf , we have∫ T

0
f inf (t)φ(t) dt ≤

∫ T

0
f(t)φ(t) dt.

he thesis follows then by considering a sequence of test functions localizing around a point.
Step III: Boundedness of the regularizing term. The bounds (4.28) follows directly from (4.1) and the

niform estimate (4.15). □

.5. Improving the convergence of the internal variables

In this subsection, we improve the convergence (4.21) and show that for (almost) every t ∈ [0, T ] the
iecewise-constant interpolants of the internal variables converge in the strong W 1,α-topology. We point out
hat this property will be instrumental both for passing to the limit in the right-hand side of the energy
nequality, and for identifying the reduced power.

emma 4.5 (Improved Convergence in z). Let the hypotheses of Lemma 4.4 hold. Further, let W : R3×3 ×
3×3×3 → [0,+∞) satisfy the coercivity condition (3.13), with s ≥ 3p

p−3 . Let ϕ : R3×3 → R be strictly convex
nd satisfy the coercivity and growth condition (3.12), with α > 3. Moreover, let the dissipation potential R
e continuous with respect to the strong L1-topology. Finally, let the loading functional ℓ : R× Y ×Z → R be
uch that for almost every t ∈ [0, T ]

∀z̃τ → z(t) in W 1,α(Ω) : lim inf (ℓ(kτ, ȳτ (t), z̃τ ) − ℓ(kτ, ȳτ (t), z̄τ (t))) ≥ 0.

τ→0

19
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Then,
∀t ∈ [0, T ] : z̄τ (t) → z(t) in W 1,α(Ω), (4.29)

nd there exists a (not relabeled) subsequence such that

∀a.e.t ∈ (0, T ) : zτ (t) → z(t) in W 1,α(Ω). (4.30)

Moreover, for the regularizing term we have

∀t ∈ [0, T ] : Hτ (z̄τ (t)) → 0. (4.31)

roof. We first prove the strong convergence (4.29). Let t ∈ [0, T ] be given. Recall the definition of β below
4.25). We observe that we cannot use the limit z(t) ∈ Z as a competitor in the discrete semi-stability (4.13),
ecause it may not lie in W 1,β(Ω) and hence the right-hand side of (4.13) would be infinite. We hence argue
ith its Lipschitz truncation z̃τ := (z(t))λ(τ) instead (see Lemma A.2). We recall that the dependence of the

runcation parameter λ on the time step τ is chosen to blow up sufficiently slow, i.e.

lim
τ→0

τκλβ(τ) = 0. (4.32)

his gives

Ēτ (t, ȳτ (t), z̄τ (t)) + Hτ (z̄τ (t)) ≤ Ēτ (t, ȳτ (t), z̃τ (t)) + Hτ (z̃τ (t)) + R(z̃τ (t) − z̄τ (t)). (4.33)

Thanks to this uniform bound, and to the coercivity assumptions in the statement of the lemma, we
xtract a t-dependent subsequence τ ′(t) → 0 (for ease of notation henceforth denoted by τ ′) for which

ȳτ ′(t) ⇀ ξ(t) in W 2,p(Ω), (4.34)
(∇ȳτ ′)−⊤(t)∇z̄τ ′(t) ⇀ (∇ξ)−⊤(t)∇z(t) in Lα(Ω), (4.35)

Hτ ′(z̄τ ′(t)) → E(t) ≥ 0, (4.36)

or some ξ(t) ∈ Y and E(t) ∈ R. By (3.12) and by the regularity of z̃τ ′ , the term
∫
Ω
ϕ((∇ξ)−⊤(t)∇z̃τ ′) dx

s finite for every τ ′. Subtracting it from both sides of (4.33), we obtain after a rearrangement∫
Ω

ϕ
(
(∇ȳτ ′(t))−⊤∇z̄τ ′(t)

)
− ϕ

(
∇ξ(t)−⊤∇z̃τ ′

)
dx+ Hτ ′(z̄τ ′(t)) (4.37)

≤
∫
Ω

(γ(z̃τ ′) − γ(z̄τ ′(t)))W (∇ȳτ ′(t),∇2ȳτ ′(t)) dx

+ R(z̃τ ′ − z̄τ ′(t))

+
∫
Ω

ϕ
(
(∇ȳτ ′(t))−⊤∇z̃τ ′

)
− ϕ

(
(∇ξ(t))−⊤∇z̃τ ′

)
dx

− ℓ(kτ ′, ȳτ ′(t), z̃τ ′) + ℓ(kτ ′, ȳτ ′(t), z̄τ ′(t)) + Hτ ′(z̃τ ′),

here kτ ′ ↘ t as τ ′ → 0.
Since ϕ is convex and finite, the first term on the left-hand side of (4.37) is lower semi-continuous with

espect to the convergence (4.35). Recalling that

z̃τ → z(t) strongly in W 1,α(Ω) (4.38)

see Lemma A.2), by (3.12) and the convergence of Hτ ′(z̄τ ′(t)) in (4.36) we have

0 ≤ E(t) ≤ lim inf
∫

ϕ
(
(∇ȳτ ′)−⊤(t)∇z̄τ ′(t)

)
− ϕ

(
(∇ξ)−⊤(t)∇z̃τ ′

)
dx+ Hτ ′(z̄τ ′(t)).
τ ′→0 Ω

20
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Concerning the right-hand side of (4.37), from (4.34) and the growth assumptions on W (see (3.13)), we
educe ∫

Ω

(γ(z̃τ ′) − γ(z̄τ ′(t)))W (∇ȳτ ′(t),∇2ȳτ ′(t)) dx

≤ ∥γ(z̃τ ′) − γ(z̄τ ′(t))∥∞

∫
Ω

W (∇ȳτ ′(t),∇2ȳτ ′(t)) dx

≤ C∥γ(z̃τ ′) − γ(z̄τ ′(t))∥∞ → 0.

The latter convergence follows from the uniform continuity of γ on the compact interval [0, 1] and the uniform
convergence of z̃τ ′ − z̄τ ′(t) to zero. This, in turn, is achieved by the strong convergence of the Lipschitz
truncations and the weak convergence (4.21) of z̄τ ′(t) in W 1,α(Ω), both combined with the (compact)
Sobolev embedding of W 1,α(Ω) into C(Ω̄) for α > 3.

Concerning the third term on the right-hand side of (4.37), the growth condition (3.12) for ϕ implies
ontinuity with respect to the following convergences

(∇ȳτ ′)−⊤(t)∇z̃τ ′ → (∇ξ)−⊤(t)∇z(t) in Lα(Ω),
(∇ξ)−⊤(t)∇z̃τ ′ → (∇ξ)−⊤(t)∇z(t) in Lα(Ω),

hich in turn hold thanks to (4.34) and (4.38). By the Cramer’s rule,

(∇ȳτ ′)−⊤ = Cof ∇ȳτ ′

det ∇ȳτ ′
.

On the other hand, by (4.34), Corollary 3.1, and by the growth condition (3.13), we deduce

sup
τ>0

 1
det ∇ȳτ ′


∞

≤ C.

hus, by the compact embedding of W 2,p(Ω) into C(Ω̄) for p > 3, we obtain

(∇ȳτ ′)−⊤(t) → (∇ξ)−⊤(t) in L∞(Ω). (4.39)

y (4.38) and by the assumptions on the loading we infer that

lim sup
τ ′→0

(−ℓ(kτ ′, ȳτ ′(t), z̃τ ′) + ℓ(kτ ′, ȳτ ′(t), z̄τ ′(t))) ≤ 0.

Finally, the regularization term on the right-hand side satisfies

Hτ ′(z̃τ ′) = (τ ′)κ

∫
Ω

|∇z̃τ ′ |β dx ≤ CL3(Ω)(τ ′)κ∥z̃τ ′∥β
1,∞ ≤ CL3(Ω)(τ ′)κλβ(τ ′) → 0, (4.40)

wing to (4.32).
Altogether we have

lim sup
τ ′→0

∫
Ω

ϕ
(
(∇ȳτ ′)−⊤(t)∇z̄τ ′(t)

)
− ϕ

(
(∇ξ)−⊤(t)∇z(t)

)
dx ≤ 0,

s well as E(t) = 0. Consequently, we deduce∫
Ω

ϕ
(
(∇ȳτ ′)−⊤(t)∇z̄τ ′(t)

)
dx →

∫
Ω

ϕ
(
(∇ξ)−⊤(t)∇z(t)

)
dx.

y the strict convexity of ϕ it even holds (cf. [47])

(∇ȳ ′)−⊤(t)∇z̄ ′(t) → (∇ξ)−⊤(t)∇z(t) in Lα(Ω).
τ τ
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By (4.34), and by the compact embedding of W 1,p(Ω) into C(Ω̄), we find (∇ȳτ ′)⊤(t) → (∇ξ)⊤(t) in L∞(Ω).
hus, we conclude that

∇z̄τ ′(t) → ∇z(t) in Lα(Ω). (4.41)

ince the same procedure applies to any subsequence τ ′ → 0, we deduce that the convergence holds for the
ull sequence {z̄τ }.

We proceed by showing the strong convergence of {zτ (t)} in W 1,α(Ω). Since for 1 < α < +∞ the space
α(Ω) is uniformly elliptic, it suffices to show the convergence of the norms of the gradients. Using the
lready proven strong convergence (4.29) and Lebesgue’s Theorem we infer that for almost every t ∈ [0, T ]
here holds f̄(t) = ∥∇z(t)∥α, where f̄ is the map introduced in (4.25). The weak convergence (4.21) implies

∀t ∈ [0, T ] \ J : ∥∇z(t)∥α ≤ lim inf
τ→0

∥∇zτ (t)∥α = f inf(t),

here we used (4.22). Recalling (4.26) we have for almost every t ∈ (0, T )

f̄(t) = ∥∇z(t)∥α ≤ f inf(t) ≤ f(t). (4.42)

o conclude the proof, we need to show the equality of f̄ and f in L∞(0, T ). This is based on the relation
4.10) between the left- and right-continuous interpolants, holding almost everywhere in (0, T ). For every
∈ L1(0, T ) we use the substitution t = s+ τ and obtain∫ T

0
∥∇zτ (t)∥αφ(t) dt =

∫ τ

0
∥∇zτ (t)∥αφ(t) dt+

∫ T

0
∥∇z̄τ (s)∥αχ(0,T −τ)(s)φ(s+ τ) ds

→
∫ T

0
f̄φ(s) ds,

where the convergence follows by the absolute continuity of the Lebesgue integral and the strong continuity
of translations in L1(0, T ). Hence the inequalities in (4.42) are in fact equalities and we apply [15, Lemma
3.5] to conclude that

∥∇zτ ∥α → ∥∇z∥α in L1(0, T ).

n particular, there is a subsequence such that for almost every t ∈ (0, T ) we have ∥∇zτ (t)∥α →
∇z(t)∥α. □

emark 4.1 (Unidirectional Damage). In the setting of unidirectional damage, for which Dom R = {v ∈
1(Ω) : v ≤ 0 a.e. in Ω}, instead of arguing with the Lipschitz truncations provided by Lemma A.2, we can
se a slight modification of a construction in [50] and set

z̃τ :=
(
z(t)λ(τ) − ∥zτ (t) − (z(t))λ(τ)∥∞

)+ → z(t) in W 1,α(Ω).

ince in our proof we need to have α > 3, we cannot profit from the construction in [51] which works even
or lower values of α.

.6. Selection of t-dependent subsequences

Starting from the subsequence τ → 0 identified in Lemma 4.5, and for which in particular (4.30) holds,
we now select further t-dependent subsequences whose limits will define the solution y ∈ B([0, T ]; Y). As
in [15], this procedure allows to work only with subsequences which in the limit ‘maximize the work of the
loading’ .
22
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Lemma 4.6 (Compactness II - t-Dependent Subsequences). Let the hypotheses of Lemma 4.5 be satisfied.
hen for almost every t ∈ (0, T )

θ̄(t) ≤ θ̄sup(t) := lim sup
τ→0

θ̄τ (t), (4.43)

nd for all t ∈ [0, T ] there exists a t-dependent subsequence {τ(t)} such that

θ̄τ(t)(t) → θ̄sup(t), (4.44)
ȳτ(t)(t) ⇀ y(t) in W 2,p(Ω), (4.45)

here y ∈ B([0, T ]; Y). Consequently,

(∇ȳτ(t))−⊤(t) → (∇y)−⊤(t) in L∞(Ω), (4.46)
(∇ȳτ(t))−⊤(t)∇z̄τ(t)(t) → (∇y)−⊤(t)∇z(t) in Lα(Ω). (4.47)

oreover, for every t ∈ [0, T ] there exists a sequence {vτ(t)(t)} ⊂ W 1,α(Ω) such that

∥vτ(t)(t)∥1,∞ ≤ C(α,Ω , t)
τ(t) , (4.48)

L3(Mτ(t)(t)) ≤ C(t)(τ(t))α, (4.49)
{|∇vτ(t)(t)|α} is equiintegrable, (4.50)

here Mτ(t)(t) := {x ∈ Ω : zτ(t)(t) ̸= vτ(t)(t) or ∇zτ(t)(t) ̸= ∇vτ(t)(t)}.

Proof. The convergence (4.44) can be achieved by a proper choice of the subsequence. Thanks to the
uniform estimates proven in Lemma 4.4, a further selection procedure yields (4.45). To prove that y(t) ∈ Y we
rst observe that the weak convergence in W 2,p(Ω) in (4.45) yields pointwise convergence of {det ∇ȳτ(t)(t)}.
ence the uniform energy bounds in Lemma 4.2, together with Fatou’s lemma, imply

+∞ > lim inf
τ→0

∫
Ω

dx
(det ∇ȳτ(t)(t))s

≥
∫
Ω

dx
(det ∇y(t))s

,

.e. (det ∇y(t))−1 ∈ Ls(Ω) and consequently det ∇y(t) > 0 a.e. in Ω . Second, we recall that the Ciarlet–Nečas
ondition is stable under weak W 1,p convergence; c.f. [42].

The strong convergence of {(∇ȳτ(t))−⊤(t)} in L∞(Ω) follows by the very same argument as in the proof
f Lemma 4.5. Property (4.47) follows from (4.29). The existence of the sequence {vτ(t)(t)} is a consequence
f Lemma A.1. □

.7. Improving the convergence of the elastic variables

As we argued in Lemma 4.5 for the damage variables, we show that for every t ∈ [0, T ] we can extract
urther t-dependent subsequences satisfying stronger compactness properties than those in Lemma 4.4.
ecall the limiting maps identified in Lemma 4.4.

emma 4.7 (Improved Convergence of the Elastic Energies). Let the hypotheses of Lemma 4.5 hold,
nd for every t ∈ [0, T ] let {τ(t)} be the subsequence identified in Lemma 4.6. Let the loading functional
: R × Y × Z → R be such that lim infτ→0 (ℓ(kτ, y(t), zτ (t)) − ℓ(kτ, ȳτ (t), zτ (t))) ≥ 0.
Then, for all t ∈ [0, T ] we have∫

γ(zτ(t)(t))W (∇ȳτ(t)(t),∇2ȳτ(t)(t)) dx →
∫

γ(z(t))W (∇y(t),∇2y(t)) dx, (4.51)

Ω Ω
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and

ȳτ(t)(t) → y(t) in W 2,p(Ω). (4.52)

n particular, for every t ∈ [0, T ]∫
Ω

γ(z̄τ(t)(t))W (∇ȳτ(t)(t),∇2ȳτ(t)(t)) dx →
∫
Ω

γ(z(t))W (∇y(t),∇2y(t)) dx. (4.53)

roof. Let t ∈ [0, T ]. For ease of notation throughout this proof we will simply write τ instead of τ(t). We
oint out, nevertheless, that all sequences will be t-dependent. By using the limit y(t) ∈ Y as a competitor

n the discrete stability (4.12) and subtracting from both sides the term
∫
Ω
γ(z(t))W (∇y(t),∇2y(t)) dx, we

btain after rearranging some terms∫
Ω

(
γ(zτ (t))W (∇ȳτ (t),∇2ȳτ (t)) − γ(z(t))W (∇y(t),∇2y(t))

)
dx (4.54)

≤
∫
Ω

(γ(zτ (t)) − γ(z(t)))W (∇y(t),∇2y(t)) dx

+
∫
Ω

ϕ
(
(∇y)−⊤(t)∇zτ (t)

)
− ϕ

(
(∇ȳτ )−⊤(t)∇zτ (t)

)
dx

− ℓ(kτ, y(t), zτ (t)) + ℓ(kτ, ȳτ (t), zτ (t)),

here kτ ↘ t as τ → 0. Note that the regularizing terms Hτ (zτ (t)) are finite thanks to the uniform estimate
4.15), and hence have canceled each other. Since γ and W are lower semi-continuous, by the convexity of

in its last argument and by classical Sobolev embeddings, we have lower semicontinuity of the left-hand
ide of (4.54) with respect to the convergences (4.21) and (4.45). Namely,

0 ≤ lim inf
τ→0

∫
Ω

(
γ(zτ (t))W (∇ȳτ (t),∇2ȳτ (t)) − γ(z(t))W (∇y(t),∇2y(t))

)
dx; (4.55)

ee e.g. [52] or [53, Cor. 7.9].
Concerning the right-hand side of (4.54), for every t ∈ [0, T ] we have∫

Ω

(γ(zτ (t)) − γ(z(t)))W (∇y(t),∇2y(t)) dx

≤ ∥γ(zτ (t)) − γ(z(t))∥∞

∫
Ω

W (∇y(t),∇2y(t)) dx

≤ C∥γ(zτ (t)) − γ(z(t))∥∞ → 0,

ince γ is continuous and hence uniformly continuous on [0, 1]. The second inequality is a consequence of the
act that y(t) ∈ Y for almost every t ∈ [0, T ], and of the growth condition (3.13). The uniform convergence
zτ (t) − z(t)∥∞ → 0 follows by (4.30), and by the compact Sobolev embedding of W 1,α(Ω) into C(Ω̄) for
> 3.
For the second term on the right-hand side of (4.54), we need to exclude concentrations of {∇zτ (t)}. Let

s recall that the improved convergence of ∇zτ (t) in (4.30) holds only almost everywhere in (0, T ), while
e aim to prove (4.53) for all times. Although {∇ȳτ (t)} converges uniformly, a blow up of {∇zτ (t)} may

till keep the difference bounded away from zero. We hence split this term using the equiintegrable sequence
∇vτ (t)} provided by Lemma 4.6, and satisfying (4.48)–(4.50). On the ‘bad’ set Mτ (t) we use the growth
nd coercivity condition (3.12), as well as the bound (4.28) in Lβ(Ω) and the convergence in (4.46). By
24
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(4.49) we obtain

lim sup
τ→0

∫
Mτ (t)

⏐⏐ϕ (
(∇y)−⊤(t)∇zτ (t)

)
− ϕ

(
(∇ȳτ )−⊤(t)∇zτ (t)

)⏐⏐ dx

≤ C lim sup
τ→0

∫
Mτ (t)

|∇zτ (t)|α dx ≤ C lim sup
τ→0

L3(Mτ (t))1− α
β

(∫
Ω

|∇zτ (t)|β
) α

β

≤ C lim sup
τ→0

|τα|1− α
β

(
τ−κ

) α
β ≤ C lim sup

τ→0
τα(1−(α+κ)/β) = 0,

for α + κ < β. On the good set Ω \ Mτ (t), in view of (3.12), (4.46), and (4.50), the sequence
{ϕ

(
(∇y)−⊤(t)∇zτ (t)

)
− ϕ

(
(∇ȳτ )−⊤(t)∇zτ (t)

)
} is equi-integrable. Therefore, since L3(Ω) < +∞ it suffices

o show that ⏐⏐ϕ (
(∇y)−⊤(t)∇zτ (t)

)
− ϕ

(
(∇ȳτ )−⊤(t)∇zτ (t)

)⏐⏐ → 0 in measure. (4.56)

Equivalently, we need to show that for every ε > 0 and n ∈ N there exists τ0 > 0 such that for all 0 < τ < τ0,

L3(Eε,τ ) := L3 ({⏐⏐ϕ (
(∇y)−⊤(t)∇zτ (t)

)
− ϕ

(
(∇ȳτ )−⊤(t)∇zτ (t)

)⏐⏐ ≥ ε
})

<
1
n
.

et then ε > 0 and n ∈ N. By the Markov’s inequality and the uniform bound on {∥∇zτ (t)∥α} given by
4.30), there exists Cn > 0 such that for all τ > 0 there holds

L3(Eτ ) := L3({|∇zτ (t)| ≥ Cn}) < 1
n
.

ince {∇ȳτ (t)} is bounded in L∞(Ω) by (4.46), we have that in the set Ω \Eτ both {(∇y)−⊤(t)∇zτ (t)} and
(∇ȳτ (t))−⊤(t)∇zτ (t)} take value in a bounded, and hence compact, subset K of R3. On the one hand, the
ontinuous function ϕ is uniformly continuous on K, and there exists δ > 0 such that for every x1, x2 ∈ K

ith |x1 − x2| < δ there holds |ϕ(x1) − ϕ(x2)| < ε. On the other hand, by (4.46), there exists τ0 > 0
ependent on n and such that for all 0 < τ < τ0

|(∇ȳτ (t))−⊤(t) − (∇y(t))−⊤(t)||∇zτ (t)| < δ

n Ω \Eτ . For these τ we therefore have Eε,τ ⊂ Eτ and hence L3(Eε,τ ) ≤ L3(Eτ ) < 1/n. This in turn yields
4.56).

Finally, by assumption the loading satisfies

lim sup
τ→0

(−ℓ(kτ, y(t), zτ (t)) + ℓ(kτ, ȳτ (t), zτ (t))) ≤ 0.

Altogether, we conclude that

lim sup
τ→0

∫
Ω

γ(zτ (t))W (∇ȳτ (t),∇2ȳτ (t)) − γ(z(t))W (∇y(t),∇2y(t)) dx ≤ 0. (4.57)

ombining (4.55) with (4.57) we deduce (4.51). By Lemma 3.3, we infer (4.52). The convergence in (4.53)
ollows by (4.52), Corollary 3.2, and by (4.30), which in turn guarantees the uniform convergence of
γ(z̄τ (t))} to γ(z(t)). □

.8. Passage to the limit

In this last subsection, relying on the compactness properties established in Sections 4.4–4.7, we show
hat the limiting pair (y, z) satisfies Definition 1. We begin by proving the semistability of the limiting pair
y, z). We point out that, in comparison with the previous lemmas, the result holds under slightly more
eneral lower-semicontinuity assumptions on the loading.
25
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Lemma 4.8 (Semi-Stability). Let the hypotheses of Lemma 4.5 hold, and let the loading functional ℓ :
× Y ×Z → R be such that the map (t, y, z, z̃) ↦→ ℓ(t, y, z̃) − ℓ(t, y, z) is lower semi-continuous on uniformly

ounded sequences in R × Y × W 1,α(Ω) × W 1,α(Ω) (see Section 3.1) that converge in the strong product
opology. Then,

∀t ∈ [0, T ], ∀z̃ ∈ Z : E(t, y(t), z(t)) ≤ E(t, y(t), z̃) + R(z̃ − z(t)). (4.58)

roof. Let t ∈ [0, T ] and z̃ ∈ Z. Let τ(t) be the t-dependent subsequence extracted in Lemma 4.7. With
slight abuse of notation throughout the proof we omit the explicit t-dependence and simply write τ . As

n Lemma 4.5, we cannot use z̃ ∈ Z directly as a competitor in the discrete semi-stability (4.13), because it
ay not lie in W 1,β(Ω). Thus, we work instead with its Lipschitz truncation z̃τ := (z̃)λ(τ). The dependence

f the truncation parameter λ on the time step τ is again chosen so that Hτ (z̃τ ) → 0 (see (4.31) and (4.32)).
fter moving the loading to the right-hand side, we obtain∫

Ω

γ(z̄τ (t))W (∇ȳτ (t),∇2ȳτ (t)) + ϕ
(
(∇ȳτ )−⊤(t)∇z̄τ (t)

)
dx

+ Hτ (z̄τ (t))

≤
∫
Ω

γ(z̃τ )W (∇ȳτ (t),∇2ȳτ (t)) + ϕ
(
(∇ȳτ )−⊤(t)∇z̃τ

)
dx

− ℓ(kτ, ȳτ (t), z̃τ ) + ℓ(kτ, ȳτ (t), z̄τ (t)) + R(z̃τ − z̄τ (t)) + Hτ (z̃τ ).

n the left-hand side, the regularization Hτ (z̄τ (t)) converges to zero owing to Lemma 4.5. The remaining
nergy terms are lower semi-continuous with respect to (4.45)–(4.47). The first two terms on the right-
and side are continuous with respect to the strong convergence of deformations and damage variables
wing to Lemmas 4.5 and 4.7, Corollary 3.2, and to standard result on Nemytskii operators. Finally, by
he lower-semicontinuity of the loading functional we have

lim sup
τ→0

(−ℓ(kτ, ȳτ (t), z̃τ ) + ℓ(kτ, ȳτ (t), z̄τ (t))) ≤ −ℓ(t, y(t), z̃) + ℓ(t, y(t), z(t)).

his completes the proof of (4.58). □

The proof of the stability condition follows by similar arguments.

emma 4.9 (Stability). Let the hypotheses of Lemma 4.7 hold and let the loading functional ℓ : R×Y×Z → R
e such that for each ỹ ∈ Y the map (t, y, z) ↦→ ℓ(t, ỹ, z)−ℓ(t, y, z) is lower semi-continuous on R×W 2,p(Ω)×

1,α(Ω) with respect to the strong product topology. Then,

∀a.e.t ∈ [0, T ], ∀ỹ ∈ Y : E(t, y(t), z(t)) ≤ E(t, ỹ, z(t)) (4.59)

roof. In proving that the limiting map satisfies (4.59), we have to restrict ourselves to points t ∈ [0, T ]
or which z(t) = z(t) and the strengthened convergence (4.30) holds. In what follows, we will directly work

with the subsequence τ(t) identified in Lemma 4.7, and for ease of notation we will omit the t-dependence
imply denoting it by τ . Fix ỹ ∈ Y. By using it as a competitor in the discrete stability (4.12) we obtain,
fter moving the loading to the right-hand side,∫

Ω

γ(zτ (t))W (∇ȳτ (t),∇2ȳτ (t)) + ϕ
(
(∇ȳτ )−⊤(t)∇zτ (t)

)
dx

≤
∫
Ω

γ(zτ (t))W (∇ỹ,∇2ỹ) + ϕ
(
(∇ỹ)−⊤∇zτ (t)

)
dx

− ℓ(kτ, ỹ, z (t)) + ℓ(kτ, ȳ (t), z (t)).
τ τ τ
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Owing to Lemmas 4.5 and 4.7, we pass to the limit in the left-hand side by standard lower-semicontinuity
arguments. By the continuity of γ, the convergence in (4.30), and the fact that γ(zτ (t))W (∇ỹ,∇2ỹ) ≤
(max[0,1] γ)W (∇ỹ,∇2ỹ), the first term on the right-hand side satisfies∫

Ω

γ(zτ (t))W (∇ỹ,∇2ỹ) dx →
∫
Ω

γ(z(t))W (∇ỹ,∇2ỹ) dx.

By the lower-semicontinuity assumptions on the loading with respect to the given convergences, we have,
up to a countable subset J ⊂ [0, T ]

lim sup
τ→0

(−ℓ(kτ, ỹ, zτ (t)) + ℓ(kτ, ȳτ (t), zτ (t))) ≤ −ℓ(t, ỹ, z(t)) + ℓ(t, y(t), z(t)).

he passage to the limit in the ϕ-term follows by the strong convergences (4.30) and (4.46) and the growth
ondition (3.12). □

emark 4.2 (Limiting Stability). As opposed to Lemma 4.5, where the strong convergence of the deforma-
ions is proven for all times t ∈ [0, T ], here the stability holds only almost everywhere in (0, T ). The difference
etween the two proof strategies consists in the fact that here we needed to prevent both concentrations and
scillations of {∇zτ (t)}, while in Lemma 4.5 the possible oscillations have been suppressed for every t ∈ [0, T ]
wing to the uniform convergence of {∇ȳτ (t)}. Consequently, we obtain that the limiting pair (y, z) satisfies
he semi-stability and energy inequality for all times t ∈ [0, T ], but that the limiting stability condition only
olds for almost every t ∈ [0, T ].

We proceed by identifying the limiting work of the loading, under a further continuity assumption on ∂ℓ.

emma 4.10 (Identification of the Limiting Work of the Loading). Let the hypotheses of Lemmas 4.8 and
4.9 hold. Let the reduced power −∂tℓ : [0, T ] × Y × Z → R be continuous on uniformly bounded strongly
converging sequences in R × Y ×W 1,α(Ω) (see Section 3.1). Then,

θ = θ̄ in L1(0, T ) and ∀t ∈ [0, T ] : θ̄sup(t) = ∂tE(t, y(t), z(t)).

roof. Fix t ∈ [0, T ]. Let τ(t) be the t-dependent subsequence identified in Lemma 4.7, which is, however,
or simplicity henceforth denoted by τ . Choose {k(τ)} ⊂ N, also just denoted by {k} for simplicity, such
hat t ∈ ((k − 1)τ, kτ ] ⊂ [0, T ] and kτ ↘ t. On the one hand, by (4.44) we have

−∂tℓ(kτ, ȳτ (t), z̄τ (t)) = ∂tE(kτ, ȳτ (t), z̄τ (t)) = θ̄τ (t) → θ̄ sup(t).

n the other hand, by the improved convergences (4.29) and (4.52) and by the continuity assumptions on
he loading,

−∂tℓ(kτ, ȳτ (t), z̄τ (t)) → −∂tℓ(t, y(t), z(t)) = ∂tE(t, y(t), z(t)).

his yields the second part of the statement.
In order to prove the equality of θ̄ and θ we show that θτ − θ̄τ ⇀ 0 weakly in L1(0, T ), by modifying

the proof strategy in [48, proof of Thm. 8.9]. We first observe that by a density argument it is enough to
consider test functions of the form

φ(t) := cχ[k1τ0,k2τ0](t),

where τ0 is some fixed time step from the discretization, k1, k2 ∈ N are such that 0 < k1τ0 < k2τ0 < T , and

c ∈ R.
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Thanks to the equiintegrability of θ̄τ and θτ (see Lemma 4.4), we may suppose without loss of generality
hat τ0

τ is an integer number. Then for all τ < τ0 we have∫ T

0
(θτ (t) − θ̄τ (t))φ(t) dt =

∫ k2τ0

k1τ0

(θτ (t) − θ̄τ (t))cdt

= c

k2
τ0
τ∑

k=k1
τ0
τ +1

∫ kτ

(k−1)τ

∂tE(t, yk−1
τ , zk−1

τ ) − ∂tE(t, yk
τ , z

k
τ ) dt

= c

k2
τ0
τ∑

k=k1
τ0
τ +1

∫ kτ

(k−1)τ

∂tE(t, yk−1
τ , zk−1

τ ) − ∂tE(t+ τ, yk
τ , z

k
τ ) dt

+ c

k2
τ0
τ∑

k=k1
τ0
τ +1

∫ kτ

(k−1)τ

∂tE(t+ τ, yk
τ , z

k
τ ) − ∂tE(t, yk

τ , z
k
τ ) dt

= c

k2
τ0
τ∑

k=k1
τ0
τ +1

∫ kτ

(k−1)τ

∂tE(t, y
τ
(t), zτ (t)) − ∂tE(t+ τ, y

τ
(t+ τ), zτ (t+ τ)) dt

+ c

∫ k2τ0

k1τ0

∂tE(t+ τ, ȳτ (t), z̄τ (t)) − ∂tE(t, ȳτ (t), z̄τ (t)) dt. (4.60)

or the first term on the right-hand side of (4.60), we infer that

k2
τ0
τ∑

k=k1
τ0
τ +1

∫ kτ

(k−1)τ

∂tE(t, y
τ
(t), zτ (t)) − ∂tE(t+ τ, y

τ
(t+ τ), zτ (t+ τ)) dt

=
k2

τ0
τ∑

k=k1
τ0
τ +1

∫ kτ

(k−1)τ

∂tE(t, y
τ
(t), zτ (t)) dt−

k2
τ0
τ +1∑

k=k1
τ0
τ +2

∫ kτ

(k−1)τ

∂tE(t, y
τ
(t), zτ (t)) dt

=
∫ k1τ0+τ

k1τ0

θτ (t) dt−
∫ k2τ0+τ

k2τ0

θτ (t) dt.

Owing to the equi-integrability of θτ these two integrals can be made arbitrarily small as τ → 0. Eventually,
the second term on the right-hand side of (4.60) converges to zero by the Dominated Convergence Theorem.
Indeed, the pointwise convergence follows by the strong continuity of ∂tℓ, as well as by the convergences
(4.29) and (4.52), and by the uniform bound of (det ∇ȳτ (t))−1 in Ls(Ω) provided by the growth conditions
n (3.13) and by (4.53). The integrable majorant is obtained arguing exactly as in Step 1 of the proof of
emma 4.4. □

The next lemma shows that the limiting pair (y, z) satisfies an energy inequality. We point out that, in
roving the (semi)-stability condition, lower semicontinuity of the loading with respect to the weak topology
as needed, whereas for obtaining the energy inequality we need to enforce continuity with respect to the

trong product topology.

emma 4.11 (Energy Inequality). Let the hypotheses of Lemma 4.10 hold and let the loading ℓ : [0, T ] ×
× Z → R be continuous on uniformly bounded sequences in R × Y ×W 1,α(Ω) that converge in the strong

roduct topology (recall (3.2) and Section 3.1). Then,

∀t1, t2 ∈ I, t1 < t2 : E(t2, y(t2), z(t2)) + DissR(z; [t1, t2]) ≤ E(t1, y(t1), z(t1)) +
∫ t2

t

∂tE(t, y(t), z(t)) dt.

1
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Proof. Fix t1, t2 ∈ [0, T ] with t1 < t2, and let τ(t1) be the subsequence from Lemma 4.6 for which the
onvergences (4.52) and (4.53) for {ȳτ(t1)(t1)} hold at time t1. By the uniform bound in (4.33) and by the
oercivity assumptions in the statement of the lemma, we extract a further subsequence τ ′(t1) such that we
ave also

ȳτ ′(t1)(t2) ⇀ ξ(t2) in W 2,p(Ω). (4.61)

rguing as in Lemma 4.4, we can assume that we also have

(∇ȳτ ′(t1))−⊤(t2)∇z̄τ ′(t1)(t2) → (∇ξ)−⊤(t2)∇z(t2) in Lα(Ω). (4.62)

For ease of notation we omit the explicit dependence of this subsequence on t1 and denote it by τ ′

n the following. Let also {k1(τ ′)}, {k2(τ ′)} ⊂ N, also denoted simply by {k1} and {k2}, be such that
1 ∈ ((k1 − 1)τ ′, k1τ

′] ⊂ [0, T ] and t2 ∈ ((k2 − 1)τ ′, k2τ
′] ⊂ [0, T ] with k1τ

′ ↘ t1 and k2τ
′ ↘ t2. Using the

efinition of the discrete dissipation, the absolute continuity of the energy (3.20), and the discrete energy
nequality (4.6), we obtain

E(t2, ȳτ ′(t2), z̄τ ′(t2)) + DissR(z̄τ ′ ; [t1, t2]) (4.63)

= E(k2τ
′, ȳτ ′(k2τ

′), z̄τ ′(k2τ
′)) + DissR(z̄τ ′ ; [k1τ

′, k2τ
′]) −

∫ k2τ ′

t2

θ̄τ ′(t) dt

≤ E(k1τ
′, ȳτ ′(k1τ

′), z̄τ ′(k1τ
′)) +

∫ k2τ ′

k1τ ′
θτ ′(t) dt−

∫ k2τ ′

t2

θ̄τ ′(t) dt+ Hτ ′(z̄τ ′(k1τ
′)) − Hτ ′(z̄τ ′(k2τ

′))

= E(t1, ȳτ ′(t1), z̄τ ′(t1)) +
∫ t2

t1

θτ ′(t) dt−
∫ k1τ ′

t1

θτ ′(t) dt−
∫ k2τ ′

t2

θ̄τ ′(t) − θτ ′(t) dt

+ Hτ ′(z̄τ ′(k1τ
′)) − Hτ ′(z̄τ ′(k2τ

′)).

For the first term on the right-hand side of (4.63) we apply the convergence of elastic energies in (4.53), as
ell as the continuity of the phase field energy ϕ and of the loading ℓ with respect to the strong convergence

4.29) and (4.52) of ȳτ ′(t1) and z̄τ ′(t1). For the second term we exploit the convergence of the work of the
oading (4.27). The third and fourth energy terms converge to zero due to the equiintegrability of {θ̄τ ′} and
θτ ′}. Eventually, the regularization terms converge to zero owing to (4.31).

On the left-hand side of (4.63) we exploit the lower semicontinuity of the energy E with respect to the
trong convergences (4.29) and (4.62), and to the weak convergence (4.61). The lower-semicontinuity of
he dissipation DissR(z̄τ ′ ; [0, t]) is a consequence of (4.23) and (4.24). Thus, using in addition the stability
ondition (4.59), we obtain

E(t2, y(t2), z(t2)) + DissR(z; [t1, t2]) ≤ E(t2, ξ(t2), z(t2)) + DissR(z; [t1, t2])

≤ E(t1, y(t1), z(t1)) +
∫ t2

t1

θ(t) dt.

o conclude we recall that by Lemma 4.10 we have θ = θ̄ ≤ θ̄ sup a.e. in (0, T ) and that θ̄ sup(t) =
tE(t, y(t), z(t)) for every t ∈ [0, T ]. □

emark 4.3 (Limiting Energy Inequality). When analyzing the proof we see that energy equality is
ound to break not only when the weak limit of ∂tE(t, ȳτ (t), z̄τ (t)) is strictly less than the maximal power
tE(t, y(t), z(t)), but also whenever E(t2, y(t2), z(t2)) < E(t2, ξ(t2), z(t2)), i.e. all the cluster points of ȳτ (t2)
aximizing the work of the loading at time t2 have strictly less energy than any limit ξ(t2) which maximizes

he reduced power at time t1.

We are finally in a position to prove our main result.
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Proof of Theorem 3.4. Most of the statement has been proven in Lemmas 4.1–4.3 and 4.4–4.11. The
injectivity of the limiting deformation y follows directly from the definition of the space Y in (3.2), the
Ciarlet–Nečas condition (3.5), and the integrability of the distortion coefficient (3.6), which in turn is a
consequence of Hölder’s inequality. Due to the regularization Hτ we also have to show that the limiting
damage variable z satisfies the initial condition. This can be inferred by the equality z̄τ (0) = zτ (0) = z0

τ =
(z0)λ(τ), and by the convergences

z̄τ (0) ⇀∗ z(0) in L∞(Ω),

and
(z0)λ(τ) → z0 in W 1,α(Ω),

being a consequence of (4.20) and of Lemma A.2, respectively. □

5. Discussion of the results

We generalized the concept of local solutions, developed in [4,5] for separately convex energies by intro-
ducing the notion of separately global solutions in Definition 1. This novel class of local solution allows to
encompass in the analysis energy densities which are non-convex with respect to the deformation variable and
where convexity is only enforced with respect to higher-order derivatives. Large-strain formulations including
injectivity constraints and blow up for extreme compressions, as well as mixed Eulerian–Lagrangian energetic
contributions are also incorporated within the framework described in this paper. Unlike energetic solutions,
separately global solutions do not force ‘too early jumps’ and have therefore a broad range of application.

Our main result in Theorem 3.4 is the existence of separately global solutions in the setting of gradient
bulk damage and for non-simple materials.

The mathematical regularization provided by the coercivity and convexity of the energy with respect to
higher-order derivatives of the deformations is essential to handle nonlinear Eulerian–Lagrangian couplings
between the deformations and the internal variables. This higher-order formulation is indeed necessary for
passing from time-discrete interpolants to time-continuous solutions. It is, on the other hand, not needed for
proving existence of time-discrete solutions, for which polyconvex energies dependent only on the gradient
of the deformations can be included in the analysis. This is a consequence of the alternating minimization
scheme (4.3) which makes the discrete problem effectively decoupled.

A further key point of our analysis is the fact that, at the time-discrete level, different piecewise-constant
interpolants of the damage variable come into play in the discrete stability (4.12) and semi-stability (4.13)
conditions. To pass to the time-continuous setting in the semi-stability condition and to obtain the limiting
energy inequality, on the other hand, the selection of suitable time-dependent subsequences of the piecewise-
constant interpolants is needed in order to guarantee strong convergence of deformations and internal
variables in the appropriate topologies. This in turn, is related to the fact that in the energy inequality
in Lemma 4.11, both the left- and the right-hand side of the estimate involve energy contributions evaluated
at arbitrary times t ∈ [0, T ], so that on the left-hand side mere lower semicontinuity does not suffice.

For this reason, the selection of time-dependent subsequences in Lemmas 4.5 and 4.7 is hinged upon
novel techniques, not being simply based on error estimates between the right- and left-continuous piecewise-
constant interpolants. For proving the energy inequality, apart from selecting deformations that maximize
the work of the loading in the sense of (4.44), we also strongly rely on the global minimality of the elastic
variable, cf. (4.59). These issues are connected to the non-uniqueness of deformations caused by the lack of
convexity of the energy, which makes the selection of t-dependent subsequences in Lemma 4.6 quite subtle
see also [15]).

Although the ansatz for the stored energy density in (3.10) is rather specific, the analysis is prone
o be extended to different mathematical models in which the highest order terms for the elastic and
30
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internal variables are decoupled. Possible forthcoming generalizations include e.g. phase transitions and finite
plasticity. In this latter setting, the convexity in the internal variable would be lost and hence the connection
with the local stability (1.3a) broken. Nevertheless the existence theory based on global semi-stability,
replacing the dissipation potential with a dissipation distance, would be in principle feasible.

A further generalization concerns the regularization of the energy by the hessian of the deformations.
Working with the nonlinear coupling it would be natural to replace the coercivity requirement with respect
to the full hessian with the notion of gradient polyconvexity (GPC), see [54]. On the one hand, in fact,
GPC allows for the existence of minimizers under weaker regularity assumptions on the deformations. On
the other hand, when the boundedness of det ∇y from zero is assumed (which was a key ingredient in our
nalysis), GPC still guarantees integrability of the second gradient. It remains an open question, whether
he existence theory can be fully extended to the GPC setting.
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ppendix. Analytical tools and existence of discrete solutions

roof of Corollary 3.1. As p > 3, y ∈ Y can be considered continuous. Assume without loss of generality
hat 0 ∈ Ω , and assume by contradiction that det ∇y(0) = 0. Then we have for every x ∈ Ω that

| det ∇y(x)| ≤ C(1 + |∇y(x)|2 + |∇y(0)|2)|∇y(x) − ∇y(0)| ≤ C̃|x|α , (A.1)

here α = 1−3/p is given by the continuous embedding W 2,p(Ω) ↪→ C0,α(Ω), and where the first inequality
ollows from the local Lipschitz property of F ↦→ detF , see also [55, Prop. 2.32]. Hence,∫

Ω

dx
(det ∇y)s

dx ≥
∫

B(0,r)

dx
(det ∇y)s

dx ≥
∫

B(0,r)

dx
C̃s|x|αs

≥ 4
3πr

3 1
C̃srαs

.

owever, the last expression diverges for r → 0 if 3 − αs < 0, i.e., if s > 3p/(p− 3). If s = 3p/(p− 3) then
e have that for every r > 0 small enough∫

B(0,r)

dx
(det ∇y)s

≥ 4π
3C̃s

,

which is not possible if (det ∇y)−1 ∈ Ls(Ω), because the Lebesgue integral is absolutely continuous.
Altogether, we proved that y ̸∈ Y. If 0 ∈ ∂Ω then we proceed in a similar way. Namely, as Ω is Lipschitz, it
has the cone property. This implies that L3((B(0, r)∩Ω) ≥ C̃r3 for r > 0 small and some C̃ > 0 independent
of r. Hence det ∇y > 0 in Ω̄ and it is a continuous function. Inevitably, it is bounded from below by a positive
constant in Ω̄ .

For the proof of the uniform bound we refer to [54, Proof of Prop. 5.1], from which we can apply the
procedure for an infinite number of minimizers. □

We proceed by providing a proof of Lemma 3.3.
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Proof. Consider the sequence {(zk,∇yk,∇2yk)}. By the fundamental theorem on Young measures, see
56, Thm. 6.2] or [40], there is a subsequence generating a Young measure ν. Thanks to [56, Prop. 6.13] the
trong convergence of zτ and ∇yτ implies

νx = δz(x) ⊗ δ∇y(x) ⊗ µx for a.e. x ∈ Ω

here µ = µx is the Young measure generated by (∇2yk)k∈N. In view of (3.9) and [56, Thm. 6.11] applied
to h̃ := h+ c we get∫

Ω

h̃(x, z(x),∇y(x),∇2y(x)) dx = lim inf
k→∞

∫
Ω

h̃(x, zk(x),∇yk(x),∇2yk(x)) dx

≥
∫
Ω

∫
R3×3×3

h̃(x, z(x),∇y(x), G)µx(dG) dx .

he strict convexity of h̃ in the last variable together with Jensen’s inequality imply that µx = δ∇2y(x) for
almost every x ∈ Ω . This further implies that ∇2yk converges to ∇2y in measure; see [57, Cor.3.2]. Finally,
3.9) with [56, Corollary 6.10] yields the strong convergence of yk → y in W 1,p(Ω ;R3). □

Remark A.1. For a reader not familiar with Young measures we sketch a different proof, which, however,
still relies on the coercivity and growth of the energy, and on its equiintegrability, and which resembles in
many aspects the original proof. The key idea is to use the classical result by A. Visintin [47] to infer that∫

Ω

h(x, z(x),∇y(x),∇2yk(x)) dx →
∫
Ω

h(x, z(x),∇y(x),∇2y(x)) dx.

o prove the thesis we then need to show that∫
Ω

(
h(x, zk(x),∇yk(x),∇2yk(x)) − h(x, z(x),∇y(x),∇2yk(x))

)
dx → 0.

roving that the integrand converges in measure is standard, it thus remains only to prove the equiin-
egrability of h(x, zk(x),∇yk(x),∇2yk(x)). The latter follows by the convergence (3.9). Indeed, the lower
emicontinuity of the functional implies convergence on all measurable subset of Ω . Hence the limit of the
ntegrands in the sense of the biting convergence coincides with h(x, z(x),∇y(x),∇2y(x)) (see [56, Theorem
.6]). Since (3.9) holds, we have by [56, Lemma 6.9] that the integrands converge in the weak L1-topology.
his, in turn, yields the equiintegrability of the sequence.

We conclude this appendix with the statements of two technical lemmas which have been instrumental
or the proof of our main result.

emma A.1 (Decomposition Lemma; [58]). Let Ω ⊂ R3 be a Lipschitz domain and let {wi} ⊂ W 1,α(Ω),
> 1, be bounded. Then there exists a subsequence {wj} and a sequence {vj} ⊂ W 1,α(Ω) such that

∥vj∥1,∞ ≤ C(α,Ω)j,

L3(Mj) ≤ C

jα
,

{|∇vj |α} is equiintegrable,

here Mj := {x ∈ Ω : wj(x) ̸= vj(x) or ∇wj(x) ̸= ∇vj(x)}.

emma A.2 (Lipschitz Truncation; [59]). Let Ω ⊂ R3 be a Lipschitz domain, 1 < α < +∞, and
u ∈ W 1,α(Ω). Then for every λ > 0 there exists uλ ∈ W 1,∞(Ω) such that

λ
∥u ∥1,∞ ≤ C(α,Ω)λ,
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L3({u ̸= uλ or ∇u ̸= ∇uλ}) ≤ C(α)
λα

∫
|∇u|≥λ/2

|∇u(x)|α dx

∥uλ∥1,α ≤ C(α,Ω)∥u∥1,α.

In particular, denoting Mλ := {x ∈ Ω : u(x) ̸= uλ(x) or ∇u(x) ̸= ∇uλ(x)}, we have

lim
λ→∞

λαL3(Mλ) = 0, and lim
λ→∞

∥uλ − u∥1,α = 0.

The next two lemmas show existence of discrete solutions in the case in which the elastic energy density
satisfies weaker growth assumptions than those in Lemma 4.3. Namely, we suppose W (∇y,∇2y) = Wd(∇y),
i.e. no coercivity with respect to higher-order derivatives of the deformations is required. We consider the
state space Qd, defined as

Qd := {(y, z) ∈ Yd × Zd : Cof(∇y)(∇z) ∈ Lα(Ω)} ⊂ Yd × Zd,

with

Yd := {y ∈ W 1,p(Ω ,R3) : Cof(∇y) ∈ Lq(Ω),det ∇y ∈ Lr(Ω),
(det ∇y)−1 ∈ Ls(Ω),det ∇y > 0 a.e. in Ω , (3.5) holds},

and
Zd := {z ∈ W 1,1(Ω) : 0 ≤ z ≤ 1 a.e. in Ω},

or p, q, r > 1, s ≥ 0, and α > 3, and we replace the energy functional E by

Ed(t, y, z) :=
∫
Ω

(γd(z)Wd(∇y) + ϕd (Cof(∇y)∇z)) dx− ℓd(t, y, z). (A.2)

n definition (A.2) we suppose that
γd ∈ C(R) and positive, (A.3)

nd that the energy density Wd : R3×3 → R is polyconvex and satisfies the following coercivity assumptions

Wd(F ) ≥ c(|F |p + | Cof F |q + (detF )r + (detF )−s − 1), (A.4)

or every F ∈ R3×3. Further, we assume that

ϕd(u) ≥ c(|u|α − 1), (A.5)

or every u ∈ R3, and that the nonlinear loading satisfies

− ℓd(t, y, z) ≥ c

(⏐⏐⏐⏐∫
ΓD

y dH2
⏐⏐⏐⏐ − ∥∇y∥p̃

p − ∥ Cof ∇y∥q̃
q − ∥ det ∇y∥r̃

r (A.6)

−∥(det ∇y)−1∥s̃
s − ∥ Cof(∇y)∇z∥α̃

α − 1
)
,

or every (y, z) ∈ Qd, for 0 ≤ p̃ < p, 0 ≤ q̃ < q, 0 ≤ r̃ < r, 0 ≤ s̃ < s, and 0 ≤ α̃ < α.
In this setting, we seek solutions to the discrete problem

z0
τ = z0, (A.7a)
y0

τ minimizes y ↦→ Ed(0, y, z0
τ ) (A.7b)

yk
τ minimizes y ↦→ Ed(kτ, y, zk−1

τ ) (A.7c)
zk

τ minimizes z ↦→ Ed(kτ, yk
τ , z) + R(z − zk−1

τ ). (A.7d)

We state below the existence results. We observe that the assumptions of the next two lemmas are fulfilled
or problem (A.7), provided that the initial condition is energetically stable. For k = 1, in fact, we can choose
˜ := y0 and z̃ := (z0)λ(τ) because the domain of Ed is independent of time and R(0) = 0. The same conclusion
olds for every larger k arguing by induction.
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Lemma A.3 (Existence of Discrete Solutions — Deformations). Let Ω ⊂ R3 be a bounded Lipschitz domain,
et ∂Ω = ΓD ∪ ΓN be a measurable partition, with ΓD having a positive two dimensional Hausdorff measure.
et γd : R → (0,+∞) specify the incomplete damage, and let the stored energy density Wd : R3×3 → R

be polyconvex and satisfy the coercivity assumption (A.4) with p ≥ 2, q > p/(p − 1), r > 1, s ≥ 1.
Let also ϕd : R3×3 → R be convex, and satisfy the coercivity condition (A.5), where α is such that
1/p + 1/s + 1/α ≤ (q − 1)/q. Finally, let kτ ∈ [0, T ] and zk−1

τ ∈ Zd be such that there exists ỹ ∈ Yd

satisfying
(ỹ, zk−1

τ ) ∈ Qd, Ed(kτ, ỹ, zk−1
τ ) < +∞. (A.8)

Let the loading y ↦→ −ℓd(kτ, y, zk−1
τ ) be lower semi-continuous with respect to the weak product topology

on W 1,p(Ω) × Lq(Ω) × Lr(Ω) ∋ (y,Cof ∇y,det ∇y), and satisfy the coercivity condition (A.6).
Then, the functional

Fd(y) := Ed(kτ, y, zk−1
τ ) =

∫
Ω

(
γd(zk−1

τ )Wd(∇y) + ϕd(Cof(∇y)∇zk−1
τ )

)
dx (A.9)

− ℓd(kτ, y, zk−1
τ )

has a minimizer yk
τ ∈ Yd such that

(yk
τ , z

k−1
τ ) ∈ Qd, Ed(kτ, yk

τ , z
k−1
τ ) < +∞.

If p > 3, then the minimizer is injective almost everywhere in Ω . If p > 6 and s > 2p/(p − 6), then the
minimizer is injective everywhere in Ω .

Proof. Since γd(zk−1
τ ) > 0, by the growth assumptions in (A.6) we need to address only the coercivity

and lower-semicontinuity of the ϕd term. The remaining part of the proof follows from standard results
on polyconvex energies; see e.g. [18]. Let yn ⇀ yk

τ be a minimizing sequence for Fd having finite energy.
Note that its existence is guaranteed by (A.8). By the coercivity of ϕd we may further suppose that there
exists f ∈ Lα(Ω) such that, up to extracting not relabeled subsequences,

Cof(∇yn)∇zk−1
τ ⇀ f in Lα(Ω) as n → ∞.

Since ϕd is convex and finite, the second integrand in (A.9) is weakly lower semi-continuous with respect to
the weak convergence in Lα. Hence, it remains only to identify the limit f ∈ Lα(Ω). Thanks to the estimate

|∇zk−1
τ | ≤ C

⏐⏐⏐⏐ ∇y⊤
n

det ∇yn

⏐⏐⏐⏐ | Cof(∇yn)∇zk−1
τ | ≤ C

det ∇yn
|∇yn|| Cof(∇yn)∇zk−1

τ |, (A.10)

as well as to the choice of p, s, and α, and the coercivity of Wd and ϕd, we have ∇zk−1
τ ∈ Lq′(Ω).

Therefore, for every ψ ∈ L∞(Ω) we may choose φ := ψ⊗ ∇zk−1
τ as a test function for the weak convergence

Cof ∇yn ⇀ Cof ∇yk
τ in Lq(Ω). This yields

f = Cof(∇yk
τ )∇zk−1

τ ∈ Lα(Ω),

and completes the proof of the lemma. □

Remark A.2 (Assumptions on the Exponents — 1). Let us explain how the assumptions on the exponents
p, q, s, and α interact. Normally the existence of minimizers for polyconvex energies is known even for
q ≥ p/(p−1), i.e. (q−1)/q ≥ 1/p. However, due to the requirements on α, we have 1/p < 1/p+1/s+1/α ≤
(q − 1)/q. Therefore, for smaller values of s or α, larger values of q are needed.
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Lemma A.4 (Existence of Discrete Solutions — Damage Variables). Let Ω ⊂ R3 be a bounded Lipschitz
omain. Assume that the damage function γd : R → (0,+∞) is continuous, and let the stored energy density
Wd : R3×3 → R be bounded from below. Let ϕd : R3×3 → R be convex, and satisfy the coercivity condition
(A.5), with α such that 1/p+ 1/s ≤ (α− 1)/α. Eventually, let the dissipation potential R : L1(Ω) → [0,+∞)
be lower semi-continuous with respect to the strong L1-topology. Let kτ ∈ [0, T ], yk

τ ∈ Yd, and zk−1
τ ∈ Zd be

such that there exists z̃ ∈ Zd satisfying

(yk
τ , z̃) ∈ Qd, Ed(kτ, yk

τ , z̃) + R(z̃ − zk−1
τ ) < +∞. (A.11)

Let the loading z ↦→ −ℓ(kτ, yk
τ , z) be lower semi-continuous with respect to the weak W 1,1-topology, and satisfy

the coercivity condition (A.6). Then, the functional

Gd(z) := Ed(kτ, yk
τ , z) + R(z − zk−1

τ )

=
∫
Ω

(
γd(z)Wd(∇yk

τ ) + ϕd(Cof(∇yk
τ )∇z)

)
dx− ℓd(kτ, yk

τ , z) + R(z − zk−1
τ )

as a minimizer zk
τ ∈ Zd such that

(yk
τ , z

k
τ ) ∈ Qd, Ed(kτ, yk

τ , z
k
τ ) + R(zk

τ − zk−1
τ ) < +∞.

roof. Let {zn} be a minimizing sequence for Gd. We first observe that, thanks to (A.11), {zn} has finite
nergy. By the continuity of γd and by the boundedness of Wd from below we have∫

Ω

γd(zn)Wd(∇yk
τ ) dx ≥ −cL(Ω) max

z∈[0,1]
γd(z) > −∞.

ince R ≥ 0, we infer from the coercivity assumptions on ϕd and ℓd that {Cof(∇yk
τ )∇zn} is bounded in

α(Ω). Since {zn} is bounded in L∞(Ω) by the definition of Zd, up to subsequences we deduce

Cof(∇yk
τ )∇zn ⇀ f in Lα(Ω),

zn ⇀
∗ zk

τ in L∞(Ω),

or some f ∈ Lα(Ω) and zk
τ ∈ L∞(Ω).

To conclude, we need to characterize the limit f , and to show that ∇zk
τ ∈ L1(Ω). Thanks to the choice

f p, s, and α, the bound
|(Cof ∇yk

τ )−T | ≤ |∇yk
τ |

det ∇yk
τ

uarantees that (Cof ∇yk
τ )−⊤ ∈ Lα′(Ω). Hence, we obtain

∇zn ⇀ (Cof ∇yk
τ )−1f in L1(Ω).

ince also zn ⇀ zk
τ in L1(Ω), by the definition of the distributional gradient we deduce

∇zk
τ = (Cof ∇yk

τ )−1f ∈ L1(Ω),

hich in turn provides an identification of f . As a by-product we have also obtained, for a suitable (not
elabeled) subsequence, that the following convergences hold true

zn ⇀ zk
τ in W 1,1(Ω), zn → zk

τ in Lα̂(Ω), zn → zk
τ a.e. in Ω ,

or every 1 ≤ α̂ < 3/2, which follows by the compact embedding W 1,1(Ω) ⋐ Lα̂(Ω).
To conclude the proof, it remains to show the lower semicontinuity of the functional Gd(z) with respect

o these convergences. The lower semicontinuity of the first term is ensured by the continuity of γd and by
atou’s lemma. For the second term, we deduce it arguing as in Lemma A.3. Finally, the loading ℓ and the
issipation potential R are lower semicontinuous with respect to the given convergences by assumption. □

emark A.3 (Assumptions on the Exponents — 2). Note that here small values of p or s imply large values
f α, and hence in turn, recalling Remark A.2, of q.
35
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[54] B. Benešová, M. Kruž́ık, A. Schlömerkemper, A note on locking materials and gradient polyconvexity, Math. Models

Methods Appl. Sci. 28 (12) (2018) 2367–2401.
[55] B. Dacorogna, Direct Methods in the Calculus of Variations, Springer, New York, 2007.
[56] P. Pedregal, Parametrized Measures and Variational Principles, Birkhäuser, Basel, 1997.
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