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Abstract

This paper is devoted to the problem of existence of saturated models for first-
order many-valued logics. We consider a general notion of type as pairs of sets of
formulas in one free variable which express properties that an element of a model
should, respectively, satisfy and falsify. By means of an elementary chains con-
struction, we prove that each model can be elementarily extended to a κ-saturated
model, that is, a model where as many types as possible are realized. In order to
prove this theorem we obtain, as by-products, some results on tableaux (understood
as pairs of sets of formulas) and their consistency and satisfiability, and a general-
ization of the Tarski–Vaught theorem on unions of elementary chains. Finally, we
provide a structural characterization of κ-saturation in terms of the completion of
a diagram representing a certain configuration of models and mappings.

Keywords: mathematical fuzzy logic, first-order graded logics, uninorms, residu-
ated lattices, logic UL, types, saturated models, elementary chains

1 Introduction
Graded logics or fuzzy logics are particular kinds of many-valued inference systems
and form the subject of mathematical fuzzy logic [13,26]. Models of first-order many-
valued logics differ from classical structures by allowing predicates to be evaluated
over algebras of truth degrees, beyond the classical two-valued Boolean algebra. In
particular, models of first-order fuzzy logics are usually evaluated over algebras of lin-
early ordered truth-degrees and are an object of interest in computer science, where
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they are studied as weighted structures and used in several areas such as preference
modeling [9], argumentation theory [36], models of description logics [6], or valued
constraint satisfaction problems [29, 30, 35].

The general study of these models is, to some extent, analogous to classical model
theory (see e.g. [28, 31, 34]). Indeed, the study is based on strong completeness theo-
rems [12, 15, 27], which ensure the correspondence between theories and their classes
of models, and its literature has so far followed closely the classical agenda: e.g. study
of mappings and diagrams [19], ultraproduct constructions [20, 21], characterization
of elementary equivalence in terms of elementary mappings [22], Löwenheim–Skolem
theorems [23], back-and-forth systems for elementary equivalence [24], preservation
theorems and classification of structures [1], Fraı̈ssé limits [4], type omission theo-
rems [3, 17, 33], or relation with continuous model theory [7, 8].

On one hand, this description may give the impression that such research stream
might be little more than an exercise in generalization; however, this is very far from the
truth. In fact, the transit from the bivalued to the many-valued setting carries a substan-
tial increase in conceptual complexity. Central notions that used to have several equiv-
alent definitions in classical model theory now will split into different well-motivated
concepts, as their equivalence does not hold anymore. A paradigmatic example is the
very notion of elementary equivalence, which in many-valued models splits in three
non-equivalent definitions (see [24]). On the other hand, one may suspect the existence
of some translation of classical results into many-valued model theory. There is indeed
an interesting formal connection between models of the two kinds (see [12, 23, 24])
that describes many-valued structures as classical two-sorted structures with one sort
for the first-order domain and another accounting for truth-values in the algebra. This
connection certainly allows to import to the many-valued setting some classical results,
although very often they will be uninteresting (even unformulated) from the classical
point of view, as we discuss in the concluding remarks of the article.

This paper is devoted to another important item in the classical agenda: saturated
models, that is, the construction of structures rich in elements satisfying many ex-
pressible properties. In the classical equality-free context the problem was addressed
in [18]. In continuous model theory the construction of such models is well known
(cf. [5, 8]). However, the problem has not yet received a systematic treatment in math-
ematical fuzzy logic. It was only formulated in [21], where Dellunde suggested that
saturated models of fuzzy logics could be built as an application of the ultraproduct
construction. This idea followed the classical tradition found in [11]. However, in
other classical standard references such as [28, 31, 34] the construction of saturated
structures is obtained by other methods. Based on the initial results of [2], the goal of
the present article is twofold:

1. to show that, albeit elusive and hard to pin down in particular many-valued ex-
amples, saturated models for first-order fuzzy logics can always be guaranteed
to exist as elementary extensions of each given model,

2. to characterize saturated models in terms of the completion of a diagram repre-
senting a certain configuration of models and mappings.

The paper is organized as follows: after this introduction, Section 2 presents the
necessary preliminaries we need by recalling several semantical notions from math-
ematical fuzzy logic, namely, the algebraic counterpart of extensions of the uninorm
logic UL, first-order fuzzy models based on such algebras, and some basic model-
theoretic notions. Section 3 introduces the notion of tableaux (necessary for our treat-
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ment of types) as pairs of sets of formulas and proves that each consistent tableau has a
model. Section 4 defines types as pairs of sets of formulas in one free variable (roughly
speaking, expressing the properties that an element should satisfy and falsify) and con-
tains the main results of the paper: a fuzzy version of the Tarski–Vaught theorem for
unions of elementary chains, the existence theorem for κ-saturated models, and their
characterization by diagrams of mappings. Finally, Section 5 ends the paper with some
concluding remarks.

2 Preliminaries
In this section we introduce the object of our study, fuzzy first-order models, and sev-
eral necessary related notions for the development of the paper. For comprehensive
information on the subject, one may consult the Handbook of Mathematical Fuzzy
Logic [13] (e.g. Chapters 1 and 2).

We choose, as the underlying propositional basis for the first-order setting, the
class of residuated uninorm-based logics [32]. This class contains most of the well-
studied particular systems of fuzzy logic that can be found in the literature and has
been recently proposed as a suitable framework for reasoning with graded predicates
in [16], while it retains important properties, such as associativity and commutativity
of the residuated conjunction, that will be used to obtain the results of this paper.

The algebraic semantics of such logics is based on UL-algebras, that is, algebraic
structures A in the language L = {∧,∨,&,→, 0, 1,⊥,>} such that

• 〈A,∧A,∨A,⊥A,>A〉 is a bounded lattice,

• 〈A,&A, 1
A〉 is a commutative monoid,

• for each a, b, c ∈ A, we have:

a&A b ≤ c iff b ≤ a→A c, (res)

((a→A b) ∧ 1
A

) ∨A ((b→A a) ∧A 1
A

) = 1
A

(lin)

A is called a UL-chain if its underlying lattice is linearly ordered. Standard UL-
chains are those defined over the real unit interval [0, 1] with its usual order; in this case
the operation &A is a residuated uninorm, that is, a left-continuous binary associative
commutative monotonic operation with a neutral element 1

A (which need not coincide
with the element 1 of [0, 1]).

Let FmL denote the set of propositional formulas written in the language of UL-
algebras with a denumerable set of variables and let FmL be the absolutely free al-
gebra defined on such set. Given a UL-algebra A, we say that an A-evaluation is a
homomorphism from FmL to A. The logic of all UL-algebras is defined by establish-
ing, for each Γ ∪ {ϕ} ⊆ FmL, Γ � ϕ if and only if, for each UL-algebra A and each
A-evaluation e, we have e(ϕ) ≥ 1

A, whenever e(ψ) ≥ 1
A for each ψ ∈ Γ. The logic

UL is, hence, defined as preservation of truth over all UL-algebras, where the notion
of truth is given by the set of designated elements, or filter, FA = {a ∈ A | a ≥ 1

A}.
The standard completeness theorem of UL proves that the logic is also complete with
respect to its intended semantics: the class of UL-chains defined over [0, 1] by residu-
ated uninorms (the standard UL-chains); this justifies the name of UL (uninorm logic).

Most well-known propositional fuzzy logics can be obtained by extending the logic
UL with additional axioms and rules, possibly written an expanded language; therefore,
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from now on we will take L to be any language containing the operations of UL-
algebras and we will refer to any expansion of a UL-chain to such language simply as
a chain. Important examples of fuzzy logics covered in this framework are MTL, BL,
Gödel–Dummett logic G, Łukasiewicz logic �, their expansions with the projection
connective4, their expansions with truth-constants, etc. (see e.g. [12–14, 25]).

A predicate language P is a triple 〈P,F,ar〉, where P is a non-empty set of pred-
icate symbols, F is a set of function symbols, and ar is a function assigning to each
symbol a natural number called the arity of the symbol. Let us further fix a denumer-
able set V whose elements are called object variables. The sets of P-terms, atomic
P-formulas, and 〈L,P〉-formulas are defined as in classical logic. A P-structure M
is a pair 〈A,M〉 where A is a chain and M = 〈M, 〈PM〉P∈P , 〈FM〉F∈F〉, where M
is a non-empty domain; PM is a function Mn → A, for each n-ary predicate symbol
P ∈ P; and FM is a function Mn → M for each n-ary function symbol F ∈ F. An
M-evaluation of the object variables is a mapping v : V → M ; by v[x→a] we denote
the M-evaluation where v[x→a](x) = a and v[x→a](y) = v(y) for each object vari-
able y 6= x. We define the values of the terms and the truth values of the formulas as
(where ◦ stands for any n-ary connective in L):

‖x‖Mv = v(x),

‖F (t1, . . . , tn)‖Mv = FM(‖t1‖Mv , . . . , ‖tn‖
M
v ),

‖P (t1, . . . , tn)‖Mv = PM(‖t1‖Mv , . . . , ‖tn‖
M
v ),

‖◦(ϕ1, . . . , ϕn)‖Mv = ◦A(‖ϕ1‖Mv , . . . , ‖ϕn‖
M
v ),

‖(∀x)ϕ‖Mv = inf≤A
{‖ϕ‖Mv[x→m] | m ∈M},

‖(∃x)ϕ‖Mv = sup≤A
{‖ϕ‖Mv[x→m] | m ∈M}.

If the infimum or supremum does not exist, the corresponding value is undefined. We
say that M is a safe if ‖ϕ‖Mv is defined for each P-formula ϕ and each M-evaluation v.
Formulas without free variables are called sentences and a set of sentences is called a
theory. Observe that ifϕ is a sentence, then its value does not depend on a particular M-
evaluation; we denote its value as ‖ϕ‖AM. If ϕ has free variables among {x1, . . . , xn}
we will denote it as ϕ(x1, . . . , xn); then the value of the formula under a certain eval-
uation v depends only on the values given to the free variables; if v(xi) = di ∈ M

we denote ‖ϕ‖Mv as ‖ϕ(d1, . . . , dn)‖AM. When ‖ϕ(d1, . . . , dn)‖AM ≥ 1
A, we can say

that d1, . . . , dn satisfy the formula ϕ in M, in symbols, M � ϕ[d1, . . . , dn]. We say
that M is a model of a theory T , in symbols M � T , if it is safe and for each ϕ ∈ T ,
‖ϕ‖AM ≥ 1

A. Observe that every safe structure is the model of some theory, so we can
simply talk about models when referring to safe structures.

A structure 〈A,M〉 is said to be exhaustive if every element of A is the value of
some formula for some tuple of objects from M . These models are instrumental in the
study of elementary diagrams (see below) and they have proven useful in characteriza-
tions of elementary equivalence [22] (Theorem 29). Henceforth, we will assume that
all models are exhaustive. For that purpose we need to make sure that our constructions
always give us back exhaustive models.

It is worth observing a couple of points. First, we allow arbitrary chains and we do
not focus in any kind of standard completeness properties. Second, we do not have, in
general, any distinguished (crisp or otherwise) equality symbol in our logical language.
This is because we will help ourselves to previous literature where the focus has been
on equality-free languages; see e.g. [15, 23, 27].
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Using the semantics just defined, the notion of semantical consequence is lifted
from the propositional to the first-order level in the obvious way. Such first-order logics
satisfy three important properties that we will use in the paper (see e.g. [14]), for each
theory T ∪ {ϕ,ψ, χ} (inductively defining for each formula α: α0 = 1, and for each
natural n, αn+1 = αn & α):

1. Local deduction theorem: T, ϕ � ψ if, and only if, there is a natural number n
such that T � (ϕ ∧ 1)n → ψ.

2. Proof by cases: If T, ϕ � χ and T, ψ � χ, then T, ϕ ∨ ψ � χ.

3. Finitarity: If T � ϕ, then for some finite T0 ⊆ T , T0 � ϕ.

Observe that alternatively we could have introduced calculi and a corresponding notion
of proof for these logics, but we prefer to keep the focus of the paper on the semantics.

3 Tableaux
In [10] semantical tableaux are described by means of pairs of sets of formulas (writing
on the left what needs to be verified, and on the right formulas to be falsified), as a
useful syntactical device in the intuitionistic setting where Boolean negation is absent.
For the same reason, in our framework we define a tableau as a pair 〈T,U〉 such that
T and U are sets of formulas in a predicate language. A tableau 〈T0, U0〉 is called a
subtableau of 〈T,U〉 if T0 ⊆ T and U0 ⊆ U . We say that 〈T,U〉 is satisfied by a model
M = 〈A,M〉 if there is an M-evaluation v such that for each ϕ ∈ T , ‖ϕ‖Mv ≥ 1

A,
and for all ψ ∈ U , ‖ψ‖Mv < 1

A. Also, we write 〈T,U〉 � ϕ meaning that for any
model and evaluation that satisfies 〈T,U〉, the model and the evaluation must make ϕ
true as well. A tableau 〈T,U〉 is said to be consistent if there is no finite subset U0 ⊆ U
such that T �

∨
U0. In the extreme case, we define

∨
∅ as ⊥.

The next theorem shows that each consistent tableau has a model, which will be
necessary in the next section. For its proof, we will use a Henkin canonical model
construction and the following related notions from [27]. We say that a set of sentences
T is an ∃-Henkin theory if, whenever T � (∃x)ϕ(x), there is a constant c such that
T � ϕ(c). T is a Henkin theory if T 6� (∀x)ϕ(x) implies that there is a constant c such
that T 6� ϕ(c). We say that T is doubly Henkin if it is both ∃-Henkin and Henkin. T is
a linear theory if for any pair of sentences ϕ,ψ either T � ϕ→ ψ or T � ψ → ϕ.

We will prove the next result for countable languages, though the generalization to
arbitrary cardinals is straightforward and left to the reader. It is easy to check that the
model constructed in the compactness theorem below is exhaustive.

Theorem 1. (Tableaux compactness / Model Existence Theorem) Let 〈T,U〉 be a
tableau. If for every finite T0 ⊆ T and U0 ⊆ U , 〈T0, U0〉 is satisfiable, then 〈T,U〉 is
satisfied in some model.

Proof. First, we observe that 〈T,U〉 is consistent. Suppose otherwise, that is, there
is a finite U0 ⊆ U such that T �

∨
U0. But then for some finite T0 ⊆ T , T0 �∨

U0. Moreover, this implies that 〈T0, {
∨
U0}〉 cannot be satisfiable, but this is a

contradiction with the fact that 〈T0, U0〉 has a model.
We start by adding a countable set C of new constants to the language. We enu-

merate as ϕ0, ϕ1, ϕ2, . . . all the formulas of the expanded language, and we enu-
merate as 〈θ0, ψ0〉, 〈θ1, ψ1〉, 〈θ2, ψ2〉, . . . all pairs of such formulas. We modify the
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proofs of Theorem 4 and Lemma 2 from [27] by building two chains of theories
T0 ⊆ · · · ⊆ Tn ⊆ . . . and U0 ⊆ · · · ⊆ Un ⊆ . . . such that 〈

⋃
i<ω Ti,

⋃
i<ω Ui〉

is a consistent tableau (checking that at every stage we obtain a consistent tableau
〈Ti, Ui〉), plus

⋃
i<ω Ti is a linear doubly Henkin theory. Then, we will simply con-

struct the canonical model as in Lemma 3 from [27]. We proceed by induction:
STAGE 0 : Define T0 = T and U0 = U .
STAGE s + 1 = 3i + 1 : At this stage, we make sure that our final theory will be

Henkin. To this end, we follow the proof of Lemma 2 (1) from [27]. If ϕi is not of
the form (∀x)χ(x), then we define Ts+1 = Ts and Us+1 = Us. Assume now that
ϕi = (∀x)χ(x). Then, we consider the following two cases:

(i) There is a finite U ′s ⊆ Us such that Ts � (
∨
U ′s) ∨ (∀x)χ(x). Then, we define

Ts+1 = Ts ∪ {(∀x)χ(x)} and Us+1 = Us.

(ii) Otherwise, let Ts+1 = Ts and Us+1 = Us ∪ {χ(c)} (where c is the first unused
constant from C up to this stage).

We have to check that 〈Ts+1, Us+1〉 is consistent in both cases. Suppose that (i)
holds and that Ts+1 = Ts ∪ {(∀x)χ(x)} �

∨
U ′s for some finite U ′s ⊆ Us . By

construction, we must have that Ts � (
∨
U ′′s ) ∨ (∀x)χ(x) for some finite U ′′s ⊆ Us.

Take the finite set Us = U ′s ∪ U ′′s ; clearly we also have Ts � (
∨
Us) ∨ (∀x)χ(x).

Now, by the local deduction theorem, Ts � ((∀x)χ(x) ∧ 1̄)n →
∨
Us for some n, so

Ts ∪ {((∀x)χ(x) ∧ 1̄)n} �
∨
Us. On the other hand, Ts ∪ {

∨
Us} �

∨
Us. Recall

that (∀x)χ(x) � ((∀x)χ(x) ∧ 1̄)n (this follows from the facts that ϕ � ϕ ∧ 1̄ and
ϕ,ψ � ϕ&ψ). So, by proof by cases, we have that Ts∪{(

∨
Us)∨ (∀x)χ(x)} �

∨
Us,

which means that Ts �
∨
Us, a contradiction since by induction hypothesis 〈Ts, Us〉

is consistent. If (ii) holds, suppose that 〈Ts, Us ∪ {χ(c)}〉 is not consistent; then, Ts �
(
∨
U ′s) ∨ χ(c) for some finite U ′s ⊆ Us. Since c is a constant new to Ts, we must have

that in any model of Ts, any element e can be made to satisfy ((
∨
U ′s) ∨ χ(x)), so

Ts � (∀x)((
∨
U ′s) ∨ χ(x)), so Ts � (

∨
U ′s) ∨ ((∀x)χ(x)), a contradiction.

STAGE s+1 = 3i+2 : At this stage we make sure that we will eventually obtain an
∃-Henkin theory. Ifϕi is not of the form (∃x)χ(x), then let Ts+1 = Ts andUs+1 = Us.
Otherwise, as in Lemma 2 (2) from [27], we have two cases to consider:

(i) There is a finite U ′s ⊆ Us such that Ts∪{ϕi} �
∨
U ′s, then we define Ts+1 = Ts

and Us+1 = Us.

(ii) Otherwise, define Ts+1 = Ts∪{χ(c)} (where c is the first unused constant from
C) and Us+1 = Us.

Again, in both cases 〈Ts+1, Us+1〉 is consistent (check the proof of Lemma 2 (2)
from [27]).

STAGE s + 1 = 3i + 3 : At this stage we work to ensure that our final theory
will be linear. So given the pair 〈θi, ψi〉 proceed as in Lemma 2 (3) from [27]. That
is, we start from the assumption that 〈Ts, Us〉 is consistent and letting Us+1 = Us
we look to add one of θi → ψi or ψi → θi to Ts to obtain Ts+1 while making the
resulting tableau 〈Ts+1, Us+1〉 consistent. Note that if Ts ∪ {θi → ψi} �

∨
U ′s+1

and Ts ∪ {ψi → θi} �
∨
U ′′s+1, then Ts ∪ {θi → ψi} � (

∨
U ′s+1) ∨ (

∨
U ′′s+1) and

Ts ∪ {ψi → θi} � (
∨
U ′s+1) ∨ (

∨
U ′′s+1). Hence, Ts ∪ {(ψi → θi) ∨ (θi → ψi)} �

(
∨
U ′s+1)∨(

∨
U ′′s+1) by proof by cases and, since � (ψi → θi)∨(θi → ψi), we obtain

that Ts � (
∨
U ′s+1) ∨ (

∨
U ′′s+1), a contradiction.
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In classical model theory, the standard definition of type is simply given as a set
of formulas with n-free variables, in the presence of a theory that provides a context
for the described properties of n-tuples of elements that one wants to verify/falsify.
Here we follow the same idea but, in order to account for the sentences that need to be
falsified, in the absence of a Boolean negation to formalize them, we use a two-sided
notion of type given as a tableau.

Definition 1. A tableau 〈p, p′〉 in some free variables is a type of a tableau 〈T,U〉
if 〈T ∪ p, U ∪ p′〉 is satisfiable. We call 〈p, p′〉 an n-type to signify that p ∪ p′ has n
free variables. Finally, 〈p, p′〉 is called complete if for any formula ϕ, either ϕ ∈ p or
ϕ ∈ p′.

4 Saturated models
Let us recall the notions of (elementary) mappings and substructures between fuzzy
first-order structures (see e.g. [23]). Let A and B be chains and let 〈A,M〉 and 〈B,N〉
be P-structures. Let f be a mapping from A to B, and g be a mapping from M to N .
The pair 〈f, g〉 is said to be a mapping from 〈A,M〉 to 〈B,N〉. A mapping 〈f, g〉 is
said to be a strong homomorphism if:

1. f is a homomorphism of (expansions of) UL-algebras.

2. g : M → N is a homomorphism between the algebraic reducts of the first-order
structures, that is, for every n-ary function symbol F ∈ P and d1, . . . , dn ∈M ,

g(FM(d1, . . . , dn)) = FN(g(d1), . . . , g(dn)).

3. For every n-ary predicate symbol P ∈ P and d1, . . . , dn ∈M ,

f(PM(d1, . . . , dn)) = PN(g(d1), . . . , g(dn)).

We say that a strong homomorphism 〈f, g〉 is an elementary homomorphism if for every
formula ϕ(x1, . . . , xn), and d1, . . . , dn ∈M ,

f(‖ϕ(d1, . . . , dn)‖AM) = ‖ϕ(g(d1), . . . , g(dn))‖AN .

A strong homomorphism 〈f, g〉 is an embedding if both mappings f and g are one-
to-one.
〈A,M〉 is a substructure of 〈B,N〉 if the following conditions are satisfied:

1. M ⊆ N .

2. For each n-ary function symbol F ∈ F, and elements d1, . . . , dn ∈M ,

FM(d1, . . . , dn) = FN(d1, . . . , dn).

3. A is a subalgebra of B.

4. For every quantifier-free formula ϕ(x1, . . . , xn), and d1, . . . , dn ∈M ,

‖ϕ(d1, . . . , dn)‖AM = ‖ϕ(d1, . . . , dn)‖BN .
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Moreover, 〈A,M〉 is an elementary substructure of 〈B,N〉 if condition 4 holds for
arbitrary formulas. In this case, we also say that 〈B,N〉 is an elementary extension of
〈A,M〉.

A sequence {Mi | i < γ} of models where Mi = 〈Ai,Mi〉 is a called a chain
when for all i < j < γ we have that 〈Ai,Mi〉 is a substructure of 〈Aj ,Mj〉. If,
moreover, these substructures are elementary, we speak of an elementary chain. The
union of the chain {Mi | i < γ} is the structure 〈A,M〉 where A is the classical union
of the chain of algebras {Ai | i < γ}, while M is defined by taking as its domain⋃
i<γMi, interpreting the constants of the language as they were interpreted in each

Mi and similarly with the relational symbols of the language. Let us note that since
all the classes of algebras under consideration are classically ∀1-axiomatizable, A will
always be an algebra of the appropriate sort. Observe as well that M is well defined
given that {〈Ai,Mi〉 | i < γ} is a chain.

Theorem 2. (Tarski–Vaught theorem on unions of elementary chains) Let A = 〈A,M〉
be the union of an elementary chain {〈Ai,Mi〉 | i < γ}. Then, for each sequence a of
elements of Mi and each formula ϕ(x), ‖ϕ(a)‖AM = ‖ϕ(a)‖Ai

Mi
. Moreover, the union

A = 〈A,M〉 is a safe structure.

Proof. We proceed by induction on the complexity of ϕ. When ϕ is atomic, the result
follows by definition of A. For any n-ary connective ◦,

‖◦(ψ0(a), . . . , ψn(a))‖AM = ◦A(‖ψ0(a)‖AM , . . . , ‖ψn(a)‖AM) =

◦Ai(‖ψ0(a)‖Ai

Mi
, . . . , ‖ψn(a)‖Ai

Mi
) = ‖◦(ψ0(a), . . . , ψn(a))‖Ai

Mi
,

where the second equality follows by the induction hypothesis and the definition of A.
Let ϕ = (∃x)ψ (the case of ϕ = (∀x)ψ is analogous). Consider ‖ψ(a, b)‖AM for

b ∈ Mn. Take j > i sufficiently large such that b ∈ Mn
j . By induction hypothesis,

‖ψ(a, b)‖Aj

Mj
= ‖ψ(a, b)‖AM. By the elementarity of the chain, ‖(∃x)ψ(a)‖Ai

Mi
=

‖(∃x)ψ(a)‖Aj

Mj
. Hence, ‖ψ(a, b)‖AM ≤A ‖(∃x)ψ(a)‖Ai

Mi
. Then ‖(∃x)ψ(a)‖Ai

Mi
is an

upper bound for
{‖ψ(a, x)‖AM | b ∈M

n}

in A. Moreover, suppose that u is another such upper bound in A. This means that we
can find j > i such that u ∈ Aj . Then u is an upper bound in Aj of

{‖ψ(a, x)‖Aj

Mj
| b ∈Mj

n},

which means that

‖(∃x)ψ(a)‖Ai

Mi
= ‖(∃x)ψ(a)‖Aj

Mj
≤Aj u,

so
‖(∃x)ψ(a)‖Ai

Mi
≤A u.

Therefore:
‖(∃x)ψ(a)‖Ai

Mi
= ‖(∃x)ψ(a)‖AM .

This establishes as well that the union of this chain of models is a safe structure,
and hence, a model.

Corollary 3. The union of an elementary chain of exhaustive models is itself exhaus-
tive.
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Proof. Suppose that x ∈ A. Then, x ∈ Ai for some i, so x = ‖ϕ(a)‖Ai

Mi
for some

sequence ā of elements of Mi and some formula ϕ; but then x = ‖ϕ(a)‖AM by Theo-
rem 2.

Given a model M = 〈A,M〉 and a collection D ⊆ M , we denote by ThD(M)
the theory of M relative to D, that is, the collection of all sentences ϕ (in the language
augmented with constants to denote the elements of D) such that ‖ϕ‖AM ≥ 1

A. On the
other hand, ThD(M) will simply denote the set-theoretic complement of ThD(M).

Our next aim is to show an application of tableaux compactness: elementary amal-
gamation of models. To this end, we need to introduce and recall several notions. We
will write 〈B1,M1, ā〉 V 〈B2,M2, b̄〉 whenever for every formula ϕ, 〈B1,M1〉 �
ϕ[ā] only if 〈B2,M2〉 � ϕ[b̄]. Similarly, when ā and b̄ are empty we write 〈B1,M1〉V
〈B2,M2〉. Given a model 〈A,M〉, by the elementary diagram of 〈A,M〉, in sym-
bols Eldiag(A,M), we will denote the theory of 〈A,M〉 relative to the whole of M .
In a nutshell, Eldiag(A,M) = ThM (A,M). This notion has been studied in detail
in [19, 22, 27] and we refer the reader to those papers for further information. On the
other hand, Eldiag(A,M) will denote the set-theoretic complement of Eldiag(A,M).
The important fact for our purposes is the following:

Fact 4. If a canonical model (those models obtained by the Model Existence Theorem)
realizes 〈Eldiag(A,M),Eldiag(A,M)〉 and 〈A,M〉 is exhaustive, then we can build
an embedding from 〈A,M〉 into the new canonical model (cf. [22], Corollary 27).

Theorem 5. (Elementary amalgamation) Let M1 = 〈B1,M1〉 and M2 = 〈B2,M2〉
be two models and let M0 = 〈A,M〉 ⊆ 〈B2,M2〉 be a substructure whose do-
main is generated by a sequence of elements b and such that there is an embedding
〈i, h〉 : 〈A,M〉 −→ 〈B1,M1〉. Moreover, suppose that a is a sequence of elements of
M1 of the same length as b such that 〈B1,M1, a〉 V 〈B2,M2, b〉. Then, there is a
model M = 〈C,N〉 into which 〈B1,M1〉 is P-elementarily mapped by 〈f, g〉 while
〈B2,M2〉 isP-elementarily embedded. Furthermore, we can guarantee that g(a) = b.
The situation is described by the following picture:

M = 〈C,N〉

M0 = 〈A,M〉

M1 = 〈B1,M1, a〉 M2 = 〈B2,M2, b〉

〈f, g〉 4
V

⊆〈i, h〉

In particular, the result is true when the sequence of elements b is empty.

Proof. We take isomorphic copies, if necessary, to guarantee that a = b and the struc-
tures 〈B1,M1〉 and 〈B2,M2〉 have no other elements in common. Furthermore, tak-
ing isomorphic copies, we may assume that 〈B2,M2〉 is just a P-elementary substruc-
ture. It is not a difficult to show that

〈Eldiag(B1,M1) ∪ Eldiag(B2,M2),Eldiag(B2,M2)〉

9



(where we let the elements of the domain serve as constants to name themselves) has
a model, which suffices for the purposes of the result. Otherwise, by Theorem 1, for
some finite

Eldiag0(B2,M2) ⊆ Eldiag(B2,M2)

and
Eldiag0(B2,M2) ⊆ Eldiag(B2,M2),

we have that

Eldiag(B1,M1) � ((
∧

Eldiag0(B2,M2)) ∧ 1)k →
∨

Eldiag(B2,M2)

for some k by the local deduction theorem. Since 〈B1,M1, a〉V 〈B2,M2, b〉, given
that

〈B2,M2〉 � ((
∧

Eldiag0(B2,M2)) ∧ 1)k →
∨

Eldiag(B2,M2)[b],

we get a contradiction.
Observe that the proof can be similarly carried out, mutatis mutandis, when the

sequence of elements b is empty.

It is worth noticing that if we have models M,M1 and M2 with mappings between
them as described in Theorem 5, then M1 V M2 holds. This, in conjunction with
Theorem 5, gives a characterization of the relation V (in the style of Theorem 29
from [22]). Observe that the relation V in a Boolean setting with classical negation
around would coincide with typical elementary equivalence (the relation ≡, studied
in [22] for the fuzzy setting). However, both relations come apart in non-classical
frameworks.

The next result is an example of an application of elementary amalgamation. Sup-
pose that our language has a binary predicate R. We will say that an element a of a
structure 〈B1,M1〉 is R-algebraic over X (a finite subset of M1) if, where c̄ lists the
elements of X , there is a formula ϕ such that 〈B1,M1〉 � ϕ[a, c̄] and

〈B1,M1〉 � (∃y0, . . . , yn)(∀x)(ϕ(x, c̄)→ Rxy0 ∨ · · · ∨Rxyn).

Corollary 6. Let 〈B1,M1〉 be a model in a language with a binary relation R, let a
be a sequence listing the elements of a finite set X ⊆ M1, and b ∈ M1. If b is not
algebraic over X , then

(i) There is a model 〈B2,M2〉 into which 〈B1,M1〉 is elementarily mapped by
a pair of maps 〈f, g〉 such that for some c /∈ g(M1) and sequence d of M2,
〈B1,M1, a, b〉V 〈B2,M2, d, c〉.

(ii) There is a model 〈B3,M3〉 into which 〈B1,M1〉 is elementarily mapped by a
pair of maps 〈f, g〉 such that 〈B3,M3〉 has an elementary substructure 〈B2,M2〉
containing g(X) such that g(b) /∈M2.

Proof. (i): Let ∆(x) be the collection of all formulas with parameters in X satisfied
by b. Add a new constant c to the language and consider the theory:

T0 = Eldiag(B1,M1) ∪∆(x).

10



Consider the tableau 〈T0, {Rxd | d ∈M1}〉. We claim that it is consistent. For other-
wise,

Eldiag(B1,M1) ∪∆(x) � Rxd0 ∨ · · · ∨Rxdn
for some n. Using the local deduction theorem, we conclude that there is m such that
for some ∧-conjunction ϕ of formulas from ∆(x), we have that

Eldiag(B1,M1) � (ϕ(x) ∧ 1)m → Rxd0 ∨ · · · ∨Rxdn,

and, then

Eldiag(B1,M1) � (∀x)((ϕ(x) ∧ 1)m → Rxd0 ∨ · · · ∨Rxdn).

However, 〈B1,M1〉 � ϕm[b] and given that

〈B1,M1〉 � (∀x)((ϕ(x) ∧ 1)m → Rxd0 ∨ · · · ∨Rxdn),

b is algebraic over X contrary to our assumption.
(ii): By (i) and the elementary amalgamation theorem.

We are finally ready to define the intended notion of type with respect to a model
M (observe that it is the particular case of Definition 1 in which the tableau would be
〈ThD(M),ThD(M)〉).

Definition 2. Let M = 〈A,M〉 be a model. If 〈p, p′〉 is a pair of sets of formulas
in some variable x and parameters over some D ⊆ M , we will call 〈p, p′〉 a type of
〈A,M〉 over D if the tableau 〈ThD(M) ∪ p,ThD(M) ∪ p′〉 is satisfiable (consistent).
We will denote the set of all such types by S〈A,M〉(D).

The following definition captures the notion of a model realizing as many types as
possible (under a certain cardinal restriction).

Definition 3. For any cardinal κ, a model M = 〈A,M〉 is said to be κ-saturated if for
any D ⊆ M such that |D| < κ, any type in SM(D) is satisfiable in M. In particular,
M is said to be saturated if it is |M |-saturated.

We can observe that in the above definition it suffices to consider types in one free
variable. Indeed, the more general case of finitely many variables, say, x0, . . . , xn can
be reduced to the one variable case by a standard argument. Indeed, suppose that the
tableau 〈ThD(M) ∪ p,ThD(M) ∪ p′〉 is satisfiable in some model 〈B,N〉 (obtained
by the model existence theorem) by a sequence e0, . . . , en ∈ N . Thus, the type of e0
with parameters over D is realized in M = 〈A,M〉 by an element e′0. But then we can
also realize in 〈A,M〉 the type 〈T,U〉 where

T = {ϕ(x, e′0) | 〈B,N〉 � ϕ(e1, e0)}

U = {ψ(x, e′0) | 〈B,N〉 6� ψ(e1, e0)}

since it is satisfied in 〈B,N〉 by interpreting e′0 as e0. We keep going this way until we
finally realize the type of an element e′n with parameters in D ∪ {e′0, . . . , e′n−1}.

Example 7. Let n ∈ N. We will build an example of a saturated model with domain
of cardinality 2n. Consider a signature with unary predicates {Pi | i < n} ∪ {U}. We
consider a model M = 〈A,M〉 constructed as follows. We take an appropriate finite
chain A, namely, the Łukasiewicz three-element chain over the set {0, 12 , 1} with the
operations defined for each a, b ∈ {0, 12 , 1} as:
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1. a ∧A b = min{a, b}

2. a ∨A b = max{a, b}

3. a&A b = max{a+ b− 1, 0}

4. a→A b = min{1− a+ b, 1}

5. 0
A

= ⊥A = 0

6. 1
A

= >A = 1

Next, let M have as domain ℘(n) (where we understand n as its von Neumann counter-
part {0, . . . , n−1}). We define the interpretation of U to take value 1

2 for every element
of the domain of M (this is just to guarantee exhaustiviness in an effortless way). The
remaining unary predicates are defined as follows: for d ∈ ℘(n), ‖Pi[d]‖M = 1 iff
i ∈ d, and ‖Pi[d]‖M = 0 iff i /∈ d. But, then, for any formula ϕ(x, z) of the language,

M |= (∀x)(∀y)((
∧
i<n

(Pix↔ Piy))→ (ϕ(x, z)↔ ϕ(y, z))).

This is because
∥∥∧

i<n(Pi[d]↔ Pi[e])
∥∥M = 1 iff ‖Pi[d]‖M = ‖Pi[e]‖M (i < n) iff

d = e. Moreover, since we are working with crisp predicates, if ‖Pi[d]‖M 6= ‖Pi[e]‖M

for some i, ‖(Pi[d]↔ Pi[e])‖M = 0, and hence,
∥∥∧

i<n(Pi[d]↔ Pi[e])
∥∥M = 0

A
.

Hence, in either case∥∥∥∥∥∧
i<n

(Pi[d]↔ Pi[e])

∥∥∥∥∥
M

≤ ‖ϕ(d, c)↔ ϕ(e, c)‖M.

Let D ( ℘(n). Take any model M′ = 〈A′,M′〉 where 〈ThD(M),ThD(M)〉 is sat-
isfied and b is an element that satisfies a type 〈p, p′〉 over D. By (iii) in the proof of
Theorem 10 below, we can assume, without loss of generality, that M′ is an elemen-
tary extension. Observe that all the Pis are also crisp in the new model. Suppose that
‖Pj [b]‖M

′
= 1

A′

for exactly j ∈ X ⊆ {0, . . . , n−1}. Then the same holds for b′ = X
in M by definition of M. Hence,

M′ |=
∧
i<n

(Pi[b]↔ Pi[b
′]),

which implies that 〈p, p′〉 is actually satisfied by b′ in M. Therefore, we have seen that
M is 2n-saturated. Intuitively, the point of this model is that whichever configuration
of Pis an element satisfies will determine its type, and in M we made sure that every
configuration was covered by some element.

Saturated models can be found relatively easily in classical first-order logic (with
equality). Simple examples are finite models (see [28], p. 484) or 〈Q, <〉, the ordering
of the rationals. Typically, for finite models this follows simply because there is a the-
ory pinning down the isomorphism type of the model, so there is only one elementary
extension of a finite model, namely, itself. The case of 〈Q, <〉 follows by the Can-
tor back-and-forth argument because any countable ω-categorical structure is saturated
(Exercise 7.2.11 from [28]).
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The situation in the present non-classical setting is a bit trickier. Observe that since
we do not have a formula characterizing cardinality (as it can be shown by running an
argument using the Upwards Löwenheim–Skolem Theorem from [23]), we cannot just
write a theory pinning down the isomorphism type of a finite model as we would do
in the classical case. However, something else is true. For a type 〈p, p′〉 of a model
M = 〈A,M〉 with domain of finite cardinality n, if every finite subtableau 〈p0, p′0〉
of 〈p, p′〉 is realized in M = 〈A,M〉, then 〈p, p′〉 is too. Otherwise, for each element
ai ∈ M (1 ≤ i ≤ n), there is a formula ϕi such that either (1) ϕi ∈ p and M 6|=
ϕi[ai] or (2) ϕi ∈ p′ and M |= ϕi[ai]. Take the sets X = {ϕi | (1) holds} and
Y = {ϕi | (2) holds}. Then the finite subtableau 〈X,Y 〉 is not realizable in M, which
is a contradiction. Using this fact, we can see that finite models are always saturated.

Proposition 8. For a type 〈p, p′〉 of a model M = 〈A,M〉 with finite domain, every
finite subtableau 〈p0, p′0〉 of 〈p, p′〉 is realized in M = 〈A,M〉.

Proof. 1 Since 〈p, p′〉 is a type of model M, we have an elementary extension M∗ of
M where 〈p, p′〉 is realized by an element b. Trivially, it follows then that for any finite
subtableau 〈p0, p′0〉 of 〈p, p′〉,

M∗ |=
∧
p0[b] and M∗ 6|=

∨
p′0[b].

Assume now for reductio that for some such finite 〈p0, p′0〉, M does not realize 〈p0, p′0〉.
So for each a ∈M

M 6|=
∧
p0[a] or M |=

∨
p′0[a],

which implies that either
∨
p′0(a) ∈ ThM (M) or

∧
p0(a) ∈ ThM (M). But then the

tableau
〈ThM (M) ∪ {

∧
p0(a)},ThM (M) ∪ {

∨
p′0(a)}〉

is not satisfiable, and, by Theorem 1, we must have that for some finite Φa0 ⊆ ThM (M),

ThM (M) ∪ {
∧
p0(a)} � (

∨
Φa0(a)) ∨ (

∨
p′0(a)).

Then, for some k,

ThM (M) � (
∧
p0(a) ∧ 1)k → (

∨
Φa0(a)) ∨ (

∨
p′0(a)).

Choosing k sufficiently large, which is possible since there are only finitely many a ∈
M , we can get that for any such a,

M |= (
∧
p0(a) ∧ 1)k →

∨
c∈M

((
∨

Φc0(a)) ∨ (
∨
p′0(a))),

which implies that

M |= (∀x)(
∧
p0(x) ∧ 1)k →

∨
c∈M

((
∨

Φc0(x)) ∨ (
∨
p′0(x))).

But since M∗ is an elementary extension of M,

M∗ |= (∀x)(
∧
p0(x) ∧ 1)k →

∨
c∈M

((
∨

Φc0(x)) ∨ (
∨
p′0(x))),

1This proof was essentially suggested by an anonymous referee.
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and then
M∗ |= (

∧
p0(b) ∧ 1)k →

∨
c∈M

((
∨

Φc0(b)) ∨ (
∨
p′0(b))).

Because we have that M∗ |=
∧
p0[b], it follows that M∗ |= (

∧
p0[b] ∧ 1)k, and since

M∗ 6|=
∨

Φc0[b], it must be that M∗ |=
∨
p′0[b], a contradiction.

Corollary 9. Finite models are saturated.

Given two theories of our language T and S, we write T 2 S if there is ϕ ∈ S such
that T 2 ϕ.

Theorem 10. For each infinite cardinal κ, each model can be elementarily extended
to a κ+-saturated model.

Proof. Let M = 〈A,M〉 be a model. Observe that

|{D ⊆M | |D| ≤ κ}| ≤ |M |κ.

This means, together with the fact that |SM(D)| ≤ 2κ, that we can list all types in
SM(D) for D ⊆M, |D| ≤ κ as {〈pα, pα′〉 | α < |M |κ}.

We will find a model 〈A′,M′〉 that realizes all types in SM(D) for any D ⊆
M, |D| ≤ κ. We will use the union of elementary chains construction, defining a
sequence of models {〈Aα,Mα〉 | α < |M |κ}which is an elementary chain, and where
〈Aα,Mα〉 realizes 〈pα, pα′〉.

The goal is to build the model
⋃
α<|M |κ〈Aα,Mα〉, which will be our 〈A′,M′〉.

We let

(i) M0 = 〈A0,M0〉 = 〈A,M〉

(ii) Mα = 〈Aα,Mα〉 =
⋃
β<α〈Aβ ,Mβ〉 when α is a limit ordinal.

(iii) Mα+1 = 〈Aα+1,Mα+1〉 is an elementary extension of 〈Aα,Mα〉 which real-
izes 〈pα, pα′〉. We build 〈Aα+1,Mα+1〉 using Lemma 3.24 [15], the construc-
tion of canonical models from that paper and our tableaux compactness.

We start by showing that

Eldiag(Aα,Mα) ∪ pα 2 X,

where X is an arbitrary finite subset of Eldiag(Aα,Mα)∪ pα′ . Observe that the
set of theories {X} is trivially deductively directed in the sense of Definition 3.21
from [15]. Using the canonical model construction and Lemma 3.24 [15] we can
then provide a model for the tableau 〈Eldiag(Aα,Mα) ∪ pα, X〉 for each such
X . Hence, an application of tableaux compactness provides us with a model of
〈Eldiag(Aα,Mα) ∪ pα,Eldiag(Aα,Mα) ∪ pα′〉.
Suppose, for a contradiction, that for each ψ ∈ X ,

Eldiag(Aα,Mα) ∪ pα � ψ.

Then take ψ ∈ X . There are two possibilities: either (1) ψ ∈ Eldiag〈Aα,Mα〉
or (2) ψ ∈ pα′ . First. let us suppose that (1) holds. Since

Eldiag(Aα,Mα) ∪ pα � ψ,
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by the local deduction theorem, pα � (ϕ ∧ 1̄)n → ψ where ϕ is
∧
S for some

finite S ⊆ Eldiag(Aα,Mα). Quantifying away the new constants (so only con-
stants from the particularD ⊆M remain), we obtain that pα � (∀x)((ϕ∧1̄)n →
ψ). Now, since

〈pα,ThD(Mα)〉

has a model, we have that

(∀x)((ϕ ∧ 1̄)n → ψ) /∈ ThD(Mα),

so
(∀x)((ϕ ∧ 1̄)n → ψ) ∈ ThD(Mα).

But then ‖ϕ‖Aα

Mα
≥ 1

Aα , so ‖ϕ ∧ 1̄‖Aα

Mα
≥ 1

Aα and, hence, ‖(ϕ ∧ 1̄)n‖Aα

Mα
≥

1
Aα , which leads to a contradiction. On the other hand, suppose that (2) holds

(ψ ∈ pα′ ). Similarly, we can obtain that Eldiag(Aα,Mα) � (∀x)((ϕ ∧ 1)n →
ψ) where this time ϕ is a lattice conjunction of elements from pα. Then, the
formula (∀x)((ϕ ∧ 1)n → ψ) would have to be in ThD(Mα). This gives a
contradiction with the existence of a model of

〈ThD(Mα) ∪ pα,ThD(Mα) ∪ pα′〉.

Next we build another elementary chain to get the κ+-saturated structure 〈D,O〉.
This time we put:

(i) 〈D0,O0〉 = 〈A,M〉

(ii) 〈Dα,Oα〉 =
⋃
β<α〈Dβ ,Oβ〉 when α is a limit ordinal.

(iii) 〈Dα+1,Oα+1〉 is a model that elementarily extends 〈Dα,Oα〉 and realizes all
types in S(Dα,Oα)(X) for any X ⊆Mα, |X| ≤ κ.

Consider the structure
⋃
α<κ+〈Dα,Oα〉, which will be our 〈D,O〉. Suppose that

X ⊆ N, |X| ≤ κ and 〈p, p′〉 ∈ S〈D,O〉(X). By the regularity of the cardinal κ+, we
must have that indeed X ⊆ Oα for some α < κ+. But, of course, since ThX(D,O) =
ThX(Dα,Oα) and ThX(D,O) = ThX(Dα,Oα), 〈p, p′〉 ∈ S〈Dα,Oα〉(X), so it is in
fact realized in 〈Dα+1,Oα+1〉, and hence in 〈D,O〉.

Observe that, in contrast to the classical theorem, we do not really have a nice bound
on the size of the resulting model, since the Downward Löwenheim–Skolem Theorem
available to us (Theorem 30 [23]) has a more complicated cardinality calculation when
determining the size of the resulting structure. For instance, in the proof of Theorem
10, we would want to make sure that |Mα| = |Mα+1| via a Löwenheim–Skolem
argument. What we would want to do is take Mα+1 to be the domain of size |Mα| of
an elementary substructure of the model 〈B,N〉 of the tableau

〈Eldiag(Aα,Mα) ∪ pα,Eldiag(Aα,Mα) ∪ pα′〉

obtained by compactness. Classically, this is no problem, but in our context, the pos-
sibility of building such an elementary substructure depends on |Mα| being ≥ p(B)
where p(B) is a cardinal depending on 〈B,N〉 and the size of B with a calculation
which is not at all obvious (Definition 28 [23]). Hence, we do not, in general, seem to
get models that are saturated in the sense of κ-saturated with respect to the size κ of
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their own domain, even under set-theoretic assumptions like the Generalized Contin-
uum Hypothesis, as is the case in classical model theory.

We can provide a structural characterization of κ-saturation under certain condi-
tions. There is a cardinality restriction on the algebra of truth values of the model that
is not explicitly stated in the classical case (cf. Theorem 16.6 [34]). The reason for the
restriction is again the form the Downward Löwenheim–Skolem Theorem has in the
general non-classical context (Theorem 30 [23]).

Theorem 11. Let κ be an uncountable cardinal, P be countable, and M = 〈A,M〉 a
model with A of cardinality < κ. Then, the following are equivalent:

(i) A model M = 〈A,M〉 is κ-saturated.

(ii) Every diagram

M = 〈A,M〉

|M1| < κ M1 = 〈B1,M1〉 M2 = 〈B2,M2〉 |M2| ≤ κ

4 〈f, g〉

4

can be completed as shown in the picture, where 〈f, g〉 is a mapping where f : B2 −→
A is a partial embedding between algebras, and g : M2 −→ M is a mapping such
that M2 |= ϕ[a] iff M |= ϕ[g(a)].

Proof. (i) =⇒ (ii) : Assume that 〈A,M〉 is κ-saturated. Let M2 \M1 = {cα |
α < κ}. We let f be the partial mapping from B2 to A which is just the inclusion
mapping on B1 (recall that B1 ⊆ B2). We define g by cases: if x ∈M1 then g acts
on x as the inclusion, while g(cα) will be defined inductively. Fix α and assume that
M2 |= ϕ[a] iff M |= ϕ[g(a)] whenever the sequence a has only elements from either
M1 or {cβ | β < α}. The complete type 〈p, p′〉 of cα in M2 is a type of M over
M1 ∪ {cβ | β < α}, and this latter set is of cardinality < κ. Hence, by κ-saturation,
〈p, p′〉 is realized in M, and the witness to this fact will serve as the our g(cα).

(ii) =⇒ (i) : Assume that the diagram in the picture can be completed as shown.
Let Y ⊆ M be of cardinality < κ. Assume that Y is such that every element of A is
the value of some formula in a variable assignment taking elements from Y , otherwise
just add all the necessary elements (since M is exhaustive it suffices to add less than
κ elements, since A has cardinality < κ). Then, by Theorem 30 [23], we get an
elementary substructure M1 = 〈A,M1〉 of M = 〈A,M〉 such that Y ⊆ N and
|M1| < κ, which then will be exhaustive. Take 〈p, p′〉 ∈ SM(Y ) = SM1(Y ). By (iii)
in the proof of Theorem 10, we have an elementary extension M2 = 〈B,M2〉 of M1

which can be taken to be of cardinality ≤ κ (by construction of the canonical model)
where 〈p, p′〉 is realized by an element d. Then g(d) realizes 〈p, p′〉 in M.

A type of the form 〈p, ∅〉 will be called a left type. We might also write it simply as
p. Left types are characterizable in the following way:

Proposition 12. p is a left type of 〈B,M〉 with parameters in X ⊆ M iff there is an
elementary extension of 〈B,M〉 where p is realized.

Proof. Let 〈B′,M′〉 be an elementary extension of the model 〈B,M〉 and assume
that it realizes p. We have that ThX(B,M) = ThX(B′,M′) and ThX(B,M) =
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ThX(B′,M′), so in fact p is a left type of 〈B,M〉. On the other hand, if p is a left type
of 〈B,M〉with parameters inX ⊆M , take a model of 〈ThX(B,M) ∪ p,ThX(B,M)〉.
Now use the elementary amalgamation theorem to obtain the model we desire.

Definition 4. For any cardinal κ, a model 〈B,M〉 is said to be left κ-saturated if for
any X ⊆M such that |X| < κ, any left type in S〈B,M〉(X) is satisfiable in 〈B,M〉.

Now we provide a result for the construction of left κ-saturated models which is
just a corollary of Theorem 10:

Theorem 13. For each cardinal κ, each model can be elementarily extended to a left
κ+-saturated model.

We can end with an application. A model 〈B,M〉 is said to be κ-homogeneous
if for any X ⊆ M and |X| < κ, if there is a pair 〈f, g〉 with g : X −→ M and
f a homomorphism defined on at least {‖ϕ(ā)‖BM | ā ∈ Xn for some n} such that
f(‖ϕ(ā)‖BM) = ‖ϕ(g(ā))‖BM, then for any a ∈ M , we can find a pair 〈f ′, g′〉 with
g′ : X ∪ {a} −→ M and f ′ a homomorphism defined on at least {‖ϕ(ā)‖BM | ā ∈
(X ∪ {a})n for some n} such that f ′(‖ϕ(ā)‖BM) = ‖ϕ(g′(ā))‖BM.

Proposition 14. If 〈B,M〉 is left κ-saturated, then 〈B,M〉 is κ-homogeneous.

Proof. Let b ∈M \X and consider:

∆ = {ϕ(x, g(a)) : a ∈ Xn, 〈B,M〉 |= ϕ(b, a)}.

However, for every ϕ(x, g(a)) ∈ ∆ we have that indeed 〈B,M〉 � (∃x)ϕ(x, a) by
definition, so given the existence of the map 〈f, g〉 with g : X −→ M , we see that
〈B,M〉 � (∃x)ϕ(x, g(a)) (because 〈B,M〉 � ϕ(a) only if 〈B,M〉 � ϕ(g(a))).
Hence, the type 〈∆, ∅〉 is finitely satisfiable, so satisfiable by some element c. Now
expand g by adding the pair 〈b, c〉. Moreover, expand f to f ′ in the obvious way that
would satisfy the condition f ′(‖ϕ(ā)‖BM) = ‖ϕ(g′(ā))‖BM for ā ∈ (X ∪ {b})n (which
would also make it a homomorphism).

5 Concluding Remarks
In this paper we have shown the existence of κ-saturated first-order fuzzy models (The-
orem 10), that is, models realizing as many types as possible (given some cardinality
restrictions). Furthermore, in Theorem 11, we have provided a structural characteri-
zation of κ-saturation in terms of the completion of a diagram representing a certain
configuration of models and mappings.

It is natural to wonder if the two-sorted translation of the languages of predicate
fuzzy logics into predicate classical logic introduced in [23] can be used to obtain
in a direct way our results from their classical counterparts. We will briefly explore
now to what extent this can be accomplished. We will see that our results could be
interpreted as non-classical proofs of certain theorems in classical model theory for a
fragment of a language that, as far as we know, had not drawn specific attention in the
literature. Furthermore, these results are not, in general, immediate consequences of
their classical counterparts since the fact that we are working with exhaustive models
makes it necessary to appeal to the classical Omitting Types Theorem most of the time.
It is not clear that one can point out to any place where these facts had been proved
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simply because they might not be of particular interest from the classical point of view,
while they are interesting from the non-classical perspective.

Let us begin by recalling some definitions and facts from [23].

Definition 5. A many-sorted predicate language Pk is a tuple

〈S,PredPk ,FuncPk ,ArPk ,SortPk〉,

where S is a non-empty set of sorts of size k, PredPk is a non-empty set of sorted
predicate symbols, FuncPk is a set (disjoint with PredPk ) of sorted function symbols,
ArPk is the arity function, assigning to each predicate or function symbol a natural
number called the arity of the symbol, and SortPk is a function that maps each n-ary
R ∈ PredPk to a sequence of n sorts and each n-ary F ∈ PredPk to a sequence of
n+ 1 sorts.

Definition 6. Given a many-sorted predicate language Pk, we define a Pk-structure
as a tuple M = 〈M,

〈
RM

〉
R∈PredPk

,
〈
FM

〉
f∈FuncPk

〉, where M is a family of non-

empty domains {S(M) | S ∈ S}; for each n-ary R ∈ PredPk , if SortPk(R) =
〈S1, . . . , Sn〉, RM ⊆ S1(M) × . . . × Sn(M); for each n-ary function symbol F ∈
FuncPk , if SortPk(F ) = 〈S1, . . . , Sn, S〉, FM is a function from S1(M) × . . . ×
Sn(M) to S(M).

Let us show now how we can translate our predicate language P from §2 into a
classical 2-sorted language P2:

• For each sort i ∈ {1, 2}, we take quantifiers ∀i and ∃i.

• Variables of sort 1 are denoted as x, y, z, x1, . . . , xn, . . ., and those of sort 2 as
v, w, v1, . . . , vn, . . .

• For each sort i ∈ {1, 2}, we take an equality symbol ≈i.

• For each propositional n-ary connective λ, we take the same symbol λ as a func-
tional of type 〈1, (n). . . , 1, 1〉.

• For each n-ary functional symbol F ∈ F, we take the same symbol F as a
functional of type 〈2, (n). . . , 2, 2〉.

• For each n-ary relational symbol R ∈ P, we take the same symbol R as a
functional of type 〈2, (n). . . , 2, 1〉.

Now, given a P-structure 〈B,M〉, we build a 2-sorted P2-structure BM:

• The universe of sort 1 is B and the universe of sort 2 is M .

• The symbols ≈i are interpreted as crisp equality in the corresponding sorts.

• For each propositional n-ary connective λ, define λBM as λB .

• For each n-ary functional symbol F ∈ F, define FBM as FM.

• For each n-ary relational symbol P ∈ P, define PBM as PM.
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Fact 15 ( [23]). For each P-formula ϕ(v1, . . . , vn), there is a P2-formula
Eϕ(v1, . . . , vn, x) such that, for every P-structure 〈B,M〉, and d1, . . . , dn ∈M ,

‖ϕ(d1, . . . , dn)‖BM = b ⇔ BM |= Eϕ(d1, . . . , dn, b).

Fact 16 ( [23]). A P-structure 〈B,M〉 is safe iff for every P-formula ϕ(v1, . . . , vn),

BM |= (∀v1, . . . , vn)(∃!x)Eϕ(v1, . . . , vn, x).

Fact 17. For every P-formula ϕ(v1, . . . , vn), and P-structure 〈B,M〉,

〈B,M〉 |= ϕ(a1, . . . , an) iff BM |= (∀x)(Eϕ(a1, . . . , an, x)→ x ≥ 1).

Fact 18. A P-structure 〈B,M〉 is exhaustive iff the classical type

p(x) = {¬(∃v1, . . . , vn)Eϕ(v1, . . . , vn, x) | ϕ(v1, . . . , vn) is a P-formula}

is omitted in BM.

From the above observations, in addition with the observation that the class of UL-
chains is axiomatizable in P2 by a ∀1-theory, we see that the class of P2-structures
BM which are safe is axiomatizable by a theory T which is ∀∃. Furthermore, the
class of safe BM which are exhaustive is comprised of all models of T which omit the
type p(x) from Fact 18. Furthermore, it is not difficult to observe that our elementary
extensions are plain superstructures from the point of view of P2 on models of the
theory T omitting the type p(x). The key observation is to notice that an equality ≈1

holding in a two-sorted model is actually the same as a certain↔ formula holding in
one of our many-valued models.

Our Theorem 1, from the classical point of view, becomes:

Fact 19. Let 〈T,U〉 be a tableau. If every finite subset of the theory

S = {(∀x)(Eϕ(a1, . . . , an, x)→ x ≥ 1) | ϕ ∈ T} ∪
{¬(∀x)(Eψ(a1, . . . , an, x)→ x ≥ 1) | ψ ∈ U}

has a model omitting the type p(x) from Fact 18 and satisfying the theory T, then S
itself has one such model.

Classically, the proof of Fact 19 would require an application of the Omitting Types
Theorem. So we would have to show that the type p(x) is non-isolated. Finally, from
the classical perspective, our Theorem 10 becomes:

Fact 20. For each infinite cardinal κ, each model BM of the theory T omitting the
type p(x) from Fact 18 is a substructure of another such model B′M where every free
partial type over < κ+ many parameters of BM is satisfied.

Once more, the proof of this fact would be using the Omitting Types Theorem, so
it would not be a direct instance of the classical existence of saturated models; one
would have to modify the construction in the classical case to obtain our theorem. We
have only seen two examples but they should suffice for the reader to figure out for
themselves how to restate the results of the paper in the classical setting.

A complementary task to the one tackled in the present paper is that of building
models realizing very few types, which in classical model theory is accomplished by
means of the Omitting Types Theorem (already mentioned above). In the context of
mathematical fuzzy logic, some work along these lines has been done focusing on types
with respect to a theory in [8, 17, 33] and, for the more general two-sided types used
in this paper, we prove the theorem in [3]. In the latter article, we also considered
topological aspects of this problem.
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