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A General Omitting Types Theorem in
Mathematical Fuzzy Logic

Guillermo Badia and Carles Noguera

Abstract—This paper is a contribution to the theoretical study
of weighted structures in fuzzy logic. We consider an important
item from classical model theory: the construction of models
that do not have any collection satisfying certain prescribed
properties, that is, an omitting types theorem. We generalize the
work done by Cintula and Diaconescu (Omitting Types Theorem
for Fuzzy Logics, IEEE Transactions on Fuzzy Systems 27(2):273–
277, 2019), who solved the problem for standard one-sided types.
Instead, we introduce types for fuzzy structures as pairs of
sets of formulas with free variables (expressing, respectively,
properties to be satisfied and those to be avoided) and prove
the corresponding omitting types theorem in the framework of
uninorm-based logics.

Index Terms—mathematical fuzzy logic, omitting types theo-
rem, first-order fuzzy logics, uninorms, weighted structures

I. INTRODUCTION

MATHEMATICAL fuzzy logic studies graded logics as
particular kinds of many-valued inference systems in

several formalisms, including first-order predicate languages.
Models of such first-order graded logics are variations of
classical structures in which predicates are evaluated over
wide classes of algebras of truth degrees, beyond the classical
two-valued Boolean algebra. They can be seen as a formal
rendering of various structures used by fuzzy set theory for
its numerous applications (see e.g. [1]) or, more generally, as
weighted structures used recently in several areas of computer
science, e.g., for preference modeling [2], argumentation the-
ory [3], models of description logics [4], or valued constraint
satisfaction problems [5]–[7].

Classical model theory is the study of the construction and
classification of two-valued structures using Boolean logics
(cf. [8]–[10]). Chen Chung Chang and H. Jerome Keisler pro-
posed, in their 1966 monograph [11], to extend classical model
theory to capture better some metric notions. Their starting
point was the observation that, unlike in algebraic structures,
in metric structures the basic relation is not equality but the
distance between two objects, which can be seen as a binary
relation taking values in the real unit interval. Their idea slowly
gained momentum till it reached much popularity in recent
years. Indeed, Itaı̈ Ben Yaacov, Alexander Berenstein, C. Ward
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Henson, Alexander Usvyatsov, and others have developed a
full spectrum of model-theoretic techniques and constructions
in this setting, thus turning continuous model theory into a
prominent branch of model theory; see e.g. [12], [13]. This
field is known to be connected to many-valued logic (see [14]).

The study of models of first-order fuzzy logics is based
on the corresponding strong completeness theorems [15], [16]
and has already addressed several crucial topics such as:
characterization of completeness properties with respect to
models based on particular classes of algebras [17], models
of logics with evaluated syntax [18], [19], study of mappings
and diagrams [21], ultraproduct constructions [22], charac-
terization of elementary equivalence in terms of elementary
mappings [23], characterization of elementary classes as those
closed under elementary equivalence and ultraproducts [24],
Löwenheim–Skolem theorems [25], and back-and-forth sys-
tems for elementary equivalence [26].

For classical model theory [8]–[10] a type is, roughly
speaking, a description of an object (or a tuple of objects)
whose existence is consistent with a given theory (i.e., a
collection of formulas). Types are the central notion of another
important item in the classical agenda: the study of models
where many types are omitted, that is, the construction of
structures forbidding elements satisfying certain expressible
properties. For instance, in the theory of strict partial orders,
one might omit the type p:

{x1 < x2, x2 < x3, x3 < x4} ∪ {x4 6< x1}.

A strict partial order 〈P,<〉 omits p iff every four-element
total order in 〈P,<〉 forms a cycle.

In continuous model theory, the construction of such models
is well known (see [12], [27], [28]). In mathematical fuzzy
logic, the problem was originally addressed in [18] for eval-
uated syntax, and more recently in [29] for the general case.
However, previous results only applied to definitions of types
precluding the possibility of expressing properties that fail
simpliciter. By the latter, we mean formulas that take value
< 1, not that fail because they lead to some absurdity, e.g. the
bottom of the lattice.

The goal of the present paper is to establish a new omitting
types theorem, generalizing the main result in [29], where we
consider types in the form of pairs that track the properties
that hold as well as the properties that do not. This is useful,
for example, in cases where we want to consider the analogue
of the above described type for fuzzy strict partial orders as
opposed to classical strict partial orders. The second set in
the union described contains a formula stating that the order
relation fails between x4 and x1. This, in the fuzzy setting,
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would come to mean that x4 < x1 takes a value < 1, which
is, in general, not the same as taking value 0. But without a
way to capture the idea that formulas fail simpliciter, all we
can express in the standard language of fuzzy logics would be
the formula ¬(x4 < x1), which is defined as (x4 < x1)→ 0.
Hence, our more general result, seems to be more useful in
actual applications, such as in the theory of fuzzy orders.
For example, when expressing acyclicity conditions of fuzzy
graphs, usually one has to use means that are not readily
captured by the notion of a theory of the logical language (e.g.
[30]). In contrast, we can take care of this problem inside our
logical setting thanks to the introduction of a generalization
of the notion of theory that keeps track not only of formulas
that must hold, but also of what formulas must fail. Of course,
one could also add a new connective directly, but our interest
is to obtain a general result that stays in the original, simpler,
framework of [29].

The omitting types theorem obtained in the present paper
stands in clear constrast with the complementary results pub-
lished in [31], in which we have shown a construction of
saturated models, that is, models that (instead of omitting
types) realize as many types as possible.

The paper is organized as follows. Section II presents the
necessary logical preliminaries we need by recalling several
semantical notions from mathematical fuzzy logic, namely,
the algebraic counterpart of extensions of the uninorm logic
UL and fuzzy first-order models based on such algebras.
Section III introduces the notion of tableaux (necessary for
our treatment of types) as pairs of sets of formulas and
proves that each consistent tableau has a model. Furthermore,
it defines types as pairs of sets of formulas with some free
variables that are consistent with respect to a given tableau
and presents a property of certain spaces of such types which
is reminiscent of compactness (and will substitute it) in this
setting. Section IV provides an omitting types theorem for
the setting of tableaux (with a certain technical restriction
on the number of constant symbols present in the formulas
in question), generalizing the result in [29], and draws some
meaningful corollaries. In Section V, we introduce a variant
of the central result, using a more complicated notion of
unsupported types, which allows us to drop the restriction on
the number of constants. Finally, Section VI ends the paper
with some concluding remarks.

II. PRELIMINARIES

In this section we introduce the object of our study, fuzzy
first-order models, and several necessary related notions for the
development of the paper. For comprehensive information on
the subject, one may consult the Handbook of Mathematical
Fuzzy Logic [32].

We choose, as the underlying propositional basis for the
first-order setting, the class of residuated uninorm-based log-
ics [33]. This class contains most of the well-studied particular
systems of fuzzy logic that can be found in the literature
and has been recently proposed as a suitable framework for
reasoning with graded predicates in [20]. These logics retain
important properties, such as associativity and commutativity

of the residuated conjunction, that will be used to obtain the
results of this paper.

The algebraic semantics of such logics is based on UL-
algebras [32, Definition 2.1.5], that is, algebraic structures in
the language L = {∧,∨,&,→, 0, 1,⊥,>} of the form A =

〈A,∧A,∨A,&A,→A, 0
A
, 1

A
,⊥A,>A〉 such that

• 〈A,∧A,∨A,⊥A,>A〉 is a bounded lattice,
• 〈A,&A, 1

A〉 is a commutative monoid,
• for each a, b, c ∈ A, we have:

a&A b ≤ c iff b ≤ a→A c, (res)

((a→A b) ∧ 1
A

) ∨A ((b→A a) ∧A 1
A

) = 1
A

(lin)

The presence of constant 0 in the language and its corre-
sponding distinguished element 0

A might look a bit puzzling
because it comes without any specific assumption in the
definition. However, it plays the role of defining negation
(as ¬Aa = a →A 0

A) which allows to obtain important
extensions of UL, such as those that require an involutive nega-
tion. Also, in extensions such as MTL stronger logics 0 and
1 become the smallest and largest truth-values, respectively.
Observe that in the extension given by Gödel algebras [34,
Definition 1.3.5], the mapping sending 0 to 0 and every x > 0
to 1 is a homomorphism of the algebra of truth functions.
Hence, there is no formula ϕ(p) of L which is true iff p < 1.
So the property of a formula failing simpliciter is not definable,
in general, by a formula of our language.
A is called a UL-chain if its underlying lattice is linearly

ordered. Standard UL-chains are those defined over the real
unit interval [0, 1] with its usual order; in that case the
operation &A is a residuated uninorm, that is, a left-continuous
binary associative commutative monotonic operation with a
neutral element 1

A (which, by the way, need not coincide
with the value 1).

Let FmL denote the set of propositional formulas written
in the language of UL-algebras with a denumerable set of
variables and let FmL be the absolutely free algebra de-
fined on such set. Given a UL-algebra A, we say that an
A-evaluation is a homomorphism from FmL to A. The
logic of all UL-algebras is defined by establishing, for each
Γ ∪ {ϕ} ⊆ FmL, Γ |= ϕ if and only if, for each UL-algebra
A and each A-evaluation e, we have e(ϕ) ≥ 1

A, whenever
e(ψ) ≥ 1

A for each ψ ∈ Γ. The logic UL is, hence, defined
as preservation of truth over all UL-algebras, where the notion
of truth is given by the set of designated elements, or filter,
FA = {a ∈ A | a ≥ 1

A}. The standard completeness theorem
of UL proves that the logic is also complete with respect to its
intended semantics: the class of UL-chains defined over [0, 1]
by residuated uninorms (the standard UL-chains); this justifies
the name of UL (uninorm logic).

Most well-known propositional fuzzy logics can be obtained
by extending UL with additional axioms and rules (in a
possibly expanded language). Important examples are Gödel–
Dummett logic G and Łukasiewicz logic �.

A predicate signature P is a triple 〈P,F,ar〉, where P is a
non-empty set of predicate symbols, F is a set of function
symbols, and ar is a function assigning to each symbol
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a natural number called the arity of the symbol. Let us
further fix a denumerable set V whose elements are called
object variables. The sets of P-terms, atomic P-formulas,
and 〈L,P〉-formulas are defined as in classical logic. A P-
structure M is a pair 〈A,M〉 where A is a UL-chain and
M = 〈M, 〈PM〉P∈P , 〈FM〉F∈F〉, where M is a non-empty
domain; PM is a function Mn → A, for each n-ary predicate
symbol P ∈ P; and FM is a function Mn → M for each
n-ary function symbol F ∈ F. An M-evaluation of the object
variables is a mapping v : V →M ; by v[x→a] we denote the
M-evaluation where v[x→a](x) = a and v[x→a](y) = v(y)
for each object variable y 6= x. We define the values of the
terms and the truth values of the formulas as (where for ◦
stands for any n-ary connective in L):

‖x‖Mv = v(x),

‖F (t1, . . . , tn)‖Mv = FM(‖t1‖Mv , . . . , ‖tn‖
M
v ),

‖P (t1, . . . , tn)‖Mv = PM(‖t1‖Mv , . . . , ‖tn‖
M
v ),

‖◦(ϕ1, . . . , ϕn)‖Mv = ◦A(‖ϕ1‖Mv , . . . , ‖ϕn‖Mv ),

‖(∀x)ϕ‖Mv = inf≤A
{‖ϕ‖Mv[x→m] | m ∈M},

‖(∃x)ϕ‖Mv = sup≤A
{‖ϕ‖Mv[x→m] | m ∈M}.

If the infimum or supremum does not exist, the corresponding
truth-value is undefined and, hence, the formula would not
have one. Since we want to avoid this scenario, we restrict
our attention to so called safe structures, where this never
happens. We say that M is safe if ‖ϕ‖Mv is defined for each
P-formula ϕ and each M-evaluation v. Formulas without free
variables are called sentences and a set of sentences is called
a theory. Observe that if ϕ is a sentence, then its value does
not depend on a particular M-evaluation; we denote its value
as ‖ϕ‖AM. If ϕ has free variables among {x1, . . . , xn} we will
denote it as ϕ(x1, . . . , xn); then the value of the formula under
a certain evaluation v depends only on the values given to
the free variables; if v(xi) = di ∈ M we denote ‖ϕ‖Mv as
‖ϕ(d1, . . . , dn)‖AM. We say that M is a model of a theory T ,
in symbols M |= T , if it is safe and for each ϕ ∈ T , ‖ϕ‖AM ≥
1
A. We can introduce (local) logical consequence between sets

of formulas and formulas in the natural way (lifting it from the
propositional case): Γ � ϕ if for every model M, ‖ψ‖Mv ≥ 1

A

for every ψ ∈ Γ only if ‖ϕ‖Mv ≥ 1
A. This notion is denoted

as �l in [29].
Such first-order logics satisfy some important properties

(see e.g. [35]), for each theory T ∪ {ϕ,ψ, χ} (inductively
defining for each formula α: α0 = 1, and for each natural
n, αn+1 = αn & α):

1) Local deduction theorem: T, ϕ |= ψ if, and only if, there
is a natural number n such that T |= (ϕ ∧ 1)n → ψ.

2) Proof by cases: If T, ϕ |= χ and T, ψ |= χ, then
T, ϕ ∨ ψ |= χ.

3) Consequence compactness: If T � ϕ, then for some
finite T0 ⊆ T , T0 � ϕ.

Observe that, alternatively, we could have introduced calculi
and a corresponding notion of deduction ` for these logics,
but we prefer to keep the focus of the paper on the semantics.

Finally, we need a general convention for this paper: we will
restrict our study to models that are filter-witnessed. A filter-
witnessed model is a structure M = 〈A,M〉 satisfying the
following property: if ‖(∃x)ϕ‖Mv ≥ 1

A, then ‖ϕ‖Mv[x→m] ≥
1
A, for some m ∈M . Henceforth, by a model we will always

mean one such model.
Given a model M = 〈A,M〉 and a collection D ⊆ M ,

we denote by ThD(M) the theory of M relative to D, that
is, the collection of all sentences ϕ in a language obtained
by augmenting with a list of constants to denote the elements
from D such that ‖ϕ‖AM ≥ 1

A. On the other hand,
−→
ThD(M)

will simply denote the set-theoretic complement of ThD(M).

III. TABLEAUX AND SPACES OF TYPES

A tableau is a pair 〈T,U〉 such that T and U are sets of
formulas. A tableau 〈T0, U0〉 is called a subtableau of 〈T,U〉
if T0 ⊆ T and U0 ⊆ U . If both sets are singletons, we simply
write 〈ϕ,ϕ′〉 instead of 〈{ϕ}, {ϕ′}〉. 〈T,U〉 is satisfied by a
model M = 〈A,M〉, if there is an M-evaluation v such that
for each ϕ ∈ T , ‖ϕ‖Mv ≥ 1

A, and for all ψ ∈ U , ‖ψ‖Mv < 1
A.

Also, we write 〈T,U〉 |= ϕ meaning that for any model and
evaluation that satisfies 〈T,U〉, the model and the evaluation
must make ϕ true as well. A tableau 〈T,U〉 is said to be
consistent if T |=

∨
U0 for no finite U0 ⊆ U . In the extreme

case, we define
∨
∅ as ⊥.

Following [16], we say that a set of sentences T is a ∃-
Henkin theory if, whenever T |= (∃x)ϕ(x), there is a constant
c such that T |= ϕ(c). T is a Henkin theory if T 6|= (∀x)ϕ(x)
implies that there is a constant c such that T 6|= ϕ(c). T is
doubly Henkin if it is both ∃-Henkin and Henkin. T is a linear
theory if for any pair of sentences ϕ,ψ either T |= ϕ→ ψ or
T |= ψ → ϕ.

The following result (proved in [31] using local deduction
theorem, proof by cases, and consequence compactness) en-
sures that each consistent tableau has a model, which will be
necessary in the remainder.

Theorem 1. (Model Existence Theorem) Let 〈T,U〉 be
a consistent tableau. Then there is a model that satisfies
〈T,U〉. Furthermore, if the language is countable the model
is countable as well.

We can already introduce the general notion of type with
respect to a given tableau.

Definition 1. A tableau 〈p, p′〉 in some free variables is a type
of a tableau 〈T,U〉 if 〈T ∪ p, U ∪ p′〉 is satisfiable. We call
〈p, p′〉 an n-type to signify that p ∪ p′ has n free variables.
Finally, 〈p, p′〉 is called complete if for any ϕ, either ϕ ∈ p
or ϕ ∈ p′.

Let Sn(T,U) be the collection of all complete n-types of
the tableau 〈T,U〉. This is the space of prime filter-ideal pairs
of the n-Lindenbaum algebra of our logic with the quotient
algebra constructed by the relation ϕ ≡ ψ iff 〈T,U〉 � ϕ↔ ψ.

Given formulas σ and θ, we define [〈σ, θ〉] = {〈p, p′〉 ∈
Sn(T,U) | σ ∈ p, θ ∈ p′}. Consider now the collection B =
{[〈φ, ψ〉] | φ, ψ are formulas}. Intuitively, this simply contains
all the sets of pairs of theories where φ is expected to be true
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while ψ is expected to fail, for any two formulas φ and ψ. B
is the base for a topology on Sn(T,U) since it clearly covers
the space and it is closed under finite intersections, namely we
have that [〈φ, ψ〉] ∩ [〈φ′, ψ′〉] = [〈φ ∧ φ′, ψ ∨ ψ′〉] ∈ B (here
we use that models are evaluated on a UL-chain). Then, there
is a topology on Sn(T,U) such that every open set is just the
union of a collection of sets from B.

Definition 2. We will say that a type 〈p, p′〉 is generated if
{〈p, p′〉} = [〈ϕ,ϕ′〉] for some formulas ϕ,ϕ′.

The next proposition shows that generated types coincide
with isolated points of the topology for a particular choice of
tableau and, moreover, have a useful characterization.

Given a model M = 〈A,M〉 and a collection D ⊆M , we
denote by ThD(M) the theory of M relative to D, that is, the
collection of all sentences ϕ in the language augmented with
constants to denote the elements from D such that ‖ϕ‖AM ≥
1
A. On the other hand, ThD(M) will simply denote the set-

theoretic complement of ThD(M).

Proposition 2. Let 〈p, p′〉 ∈ Sn(ThD(B,M),ThD(B,M))
for some model 〈B,M〉 and D ⊆ M , with the topology
described above. Then, the following are equivalent:
(i) 〈p, p′〉 is an isolated point.

(ii) 〈p, p′〉 is generated.
(iii) There are formulas ϕ ∈ p and ϕ′ ∈ p′ such that for each

pair of formulas ψ and ψ′ we have:
ψ ∈ p and ψ′ ∈ p′ iff
〈ThD(B,M) ∪ {ϕ},ThD(B,M) ∪ {ϕ′}〉 � 〈ψ,ψ′〉.

Proof. (i) =⇒ (ii): This is clear since, in any topology, an
open singleton belongs to every base.

(ii) =⇒ (i): Obvious.
(ii) =⇒ (iii): Suppose that {〈p, p′〉} = [〈ϕ,ϕ′〉]. Take a

model 〈C,N〉 where some sequence of individuals
−→
d sat-

isfies 〈ThD(B,M) ∪ {ϕ},ThD(B,M) ∪ {ϕ′}〉. But then the
complete type pair of

−→
d is in Sn(ThD(B,M),ThD(B,M)),

and moreover, in [〈ϕ,ϕ′〉], so it must be identical to 〈p, p′〉.
For the other direction suppose that

〈ThD(B,M) ∪ {ϕ},ThD(B,M) ∪ {ϕ′}〉 � 〈ψ,ψ′〉.

But, since 〈p, p′〉 is complete, we have that, indeed, ψ ∈ p and
ψ′ ∈ p′.

(iii) =⇒ (ii): We claim that {〈p, p′〉} = [〈ϕ,ϕ′〉]. Let
〈q, q′〉 ∈ [〈ϕ,ϕ′〉]. If ψ ∈ p, ψ′ ∈ p′, then

〈ThD(B,M) ∪ {ϕ},ThD(B,M) ∪ {ϕ′}〉 � 〈ψ,ψ′〉.

Thus, in the model for 〈q, q′〉 we must also have that 〈ψ,ψ′〉,
which by the completeness of 〈q, q′〉, gives that ψ ∈ q, ψ′ ∈ q′.
On the other hand, if ψ /∈ p and ψ′ /∈ p′, by the completeness
of 〈p, p′〉, in fact, ψ′ ∈ p, ψ ∈ p′. Consequently, as before,
ψ′ ∈ q and ψ ∈ q′, which, by the completeness of 〈q, q′〉
means that ψ /∈ q and ψ′ /∈ q′.

A topological space is said to be strongly S-closed if every
family of open sets with the finite intersection property has
a non-empty intersection [36]. Moreover, we will say that
a space is almost strongly S-closed if every family of basic

open sets with the finite intersection property has a non-empty
intersection.

Using the model existence theorem (Theorem 1), we can
easily establish the following.

Proposition 3. (Tableaux almost strong S-closedness) Let
〈T,U〉 be a tableau. If every 〈T0, U0〉, with |T0|, |U0| finite
and T0 ⊆ T and U0 ⊆ U , is satisfiable, then 〈T,U〉 is satisfied
in some model. Furthermore, if the language is countable the
model is countable as well.

Corollary 4. Sn(T,U) is almost strongly S-closed.

In fact, we have that tableaux almost strong S-closedness
is equivalent to the almost strong S-closedness of our spaces
of types. It turns out that defining an appropriate subbase,
by Alexander Subbase Theorem, we can also establish the
compactness of the space. However, in general, given that
strong S-closedness implies almost strong S-closedness, and
that S-closedness is known to be independent of compactness (
[36]), we cannot claim that almost strong S-closedness implies
compactness as a matter of topology.

We need to emphasize that almost strong S-closedness for
tableaux and compactness of the usual topological space where
we consider simply theories instead of tableaux are not the
same. The usual compactness property would state that any
set of formulas T that fails to have a model has a finite
T0 ⊆ T that also fails to have a model. If we look at Ł with
the standard algebra [0, 1]Ł, it has compactness in this weaker
sense. However, it is well known that tableaux almost strong
S-closedness would fail (the reader can adapt the argument
from Remark 3.2.14 from [37]).

Now we will explore a generalization of the notion of
generation to possibly incomplete types. First, we will begin
by quoting some definitions from [29] (pp. 274-275):

Let T be a theory and Σ a set of formulas with the
free variables −→x = 〈x1, . . . , xn〉. We call Σ an n-
type over T if T ∪ Σ is satisfiable, i.e., Σ 6�l 0. We
say that a model M of T

1) realizes Σ if M |= Σ(−→m) for some −→m ∈Mn;
2) omits Σ if M does not realize Σ.

Definition 4: An n-type Σ is isolated in T if there
are formulas ϕ(−→x ,−→y ) and τ(−→x ,−→y ) such that

1) T, ϕ(−→x ,−→y ) 6�l τ(−→x ,−→y );
2) T, ϕ(−→x ,−→y ) �l σ(−→x ) ∨ τ(−→x ,−→y ) for all

σ(−→x ) ∈ Σ.

These definitions can be rewritten in our setting as follows.
First, Σ is a type 〈Σ, ∅〉 and T is a tableau 〈T, ∅〉. 1) means that
〈T ∪ {ϕ(−→x ,−→y )}, {τ(−→x ,−→y ) ∪ ∅}〉 is satisfiable. Moreover, 2)
means that 〈T ∪ {ϕ(−→x ,−→y )}, {τ(−→x ,−→y )} ∪ ∅〉 � 〈{σ(−→x )}, ∅〉
for every σ(−→x ) ∈ Σ. Next, we generalize this idea by allowing
to have sets of formulas where we used to have the empty set.

Definition 3. A type 〈p, p′〉 over 〈T,U〉 in the
free variables −→x = 〈x1, . . . , xn〉 is supported if
there are formulas ϕ(−→x ,−→y ), ϕ′(−→x ,−→y ) such that
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〈T ∪ {ϕ(−→x ,−→y )}, U ∪ {ϕ′(−→x ,−→y )}〉 is satisfiable1 and,
for every ψ(−→x ) ∈ p and ψ′(−→x ) ∈ p′, we have that
〈T ∪ {ϕ(−→x ,−→y )}, U ∪ {ϕ′(−→x ,−→y )}〉 � 〈ψ(−→x ), ψ′(−→x )〉.

As in [29] (Remark 5, p. 275), we can observe that this
notion collapses with the standard notion in the case of
classical first-order logic. This means, a fortiori, that any
examples of the classical definitions are also examples of ours.

We end this section with the two additional useful defini-
tions of principal and unsuppported type.

Definition 4. A supported type 〈p, p′〉 is principal if there are
ϕ, ϕ′ as previously described such that ∃−→y ϕ(x̄,−→y ) ∈ p and
∀−→y ϕ′(x̄,−→y ) ∈ p′.

Definition 5. A type 〈p, p′〉 of 〈T,U〉 in the free vari-
ables −→x = 〈x1, . . . , xn〉 is unsupported if for any
formulas ϕ(−→x ,−→y ), ϕ′(−→x ,−→y ) (possibly with new vari-
ables) such that 〈T ∪ {ϕ(−→x ,−→y )}, U ∪ {ϕ′(−→x ,−→y )}〉 is sat-
isfiable, there are ψ(−→x ) ∈ p, ψ′(−→x ) ∈ p′ such
that 〈T ∪ {ϕ(−→x ,−→y )}, U ∪ {ϕ′(−→x ,−→y )}〉 2 ψ(−→x ) or
〈T ∪ {ϕ(−→x ,−→y ), ψ′(−→x )}, U ∪ {ϕ′(−→x ,−→y )}〉 is satisfiable.

Observe that the definition of an unsupported type is simply
a convenient restatement of the negation of the definition of a
supported type.

Now we provide an example (Example 7.2.1 from [8]) of
the definitions in the setting of classical two-valued logic
(the particular case when the UL-algebra is simply the two-
element chain). We consider the tableau 〈T, ∅〉 in a language
with only the unary relations Pn (n ∈ ω) where T is
the set of sentences ∃xP0(x),∃x(P0(x) → ⊥), ∃x(P0(x) ∧
P1(x)),∃x(P0(x) ∧ (P1(x) → ⊥)),∃x(P1(x) ∧ (P0(x) →
⊥)), etc., for all possible combinations of the predicates.
All models of this tableau make exactly the same sen-
tences true (i.e. take value ≥ 1

A) in the language under
consideration [8, Exercise 16, p. 341]. For any s ⊆ ω,
we can define the tableau 〈{Pi(x) | i ∈ s}, {Pi(x) | i /∈ s}〉,
which is a type of 〈T, ∅〉 (this follows by an application
of Proposition 3). Clearly, since 〈T, ∅〉 also has a countable
model by Proposition 3, in this model, for some s′ ⊆ ω,
the tableau 〈{Pi(x) | i ∈ s′}, {Pi(x) | i /∈ s′}〉 will be omit-
ted. But then the tableau for s′ must be unsupported. Oth-
erwise, there are formulas ϕ(x,−→y ), ϕ′(x,−→y ) such that
〈T ∪ {ϕ(x,−→y )}, {ϕ′(x,−→y )}〉 is satisfiable and, for every
ψ(x) ∈ {Pi(x) | i ∈ s′} and ψ′(x) ∈ {Pi(x) | i /∈ s′},
we have that 〈T ∪ {ϕ(x),−→y )}, {ϕ′(x,−→y )}〉 � 〈ψ(x), ψ′(x)〉.
Since we are working with the two-element chain as
background, 〈T ∪ {ϕ(x,−→y )}, {ϕ′(x,−→y )}〉 can be rewritten
equivalently as 〈T ∪ {∃x−→y (ϕ(x,−→y ) ∧ (ϕ′(x,−→y )→ ⊥))}〉.
But then any model of 〈T, ∅〉 would also have to satisfy
〈T ∪ {ϕ(x,−→y )}, {ϕ′(x,−→y )}〉, which is a contradiction.

IV. OMITTING TYPES

Before providing our theorem, we recall the main result
from [29]:

1Observe that if we dispense with this hypothesis in the definition, every
type would be supported because certainly 〈T ∪ {⊥}, U ∪ {>}〉 � ψ and
〈T ∪ {⊥, ψ′}, U ∪ {>}〉 is not satisfiable.

Theorem 7 (Omitting types theorem): Let P be a
countable predicate language, T be a consistent
theory such that at most finitely many of its elements
involve object constants, and Σ be a nonisolated n-
type over T . Then, there is a countable model of T
that omits Σ.

Our more general version of this result is next. The reason
for the hypothesis in the theorem regarding the number of
constants involved will be explained at the appropriate point
in the proof.

Theorem 5. (Omitting types) Let 〈T,U〉 be a tableau, such
that at most finitely many of its elements involve object
constants, realized by some model and 〈p, p′〉 an unsupported
n-type of 〈T,U〉. Then there is a model satisfying 〈T,U〉 which
omits 〈p, p′〉.

Proof. We start by getting rid of the constants. Let T ∗ and
U∗ be the subsets of T and U , respectively, that contain the
finitely many formulas involving constants. Let us say that
O is the collection of constants used in T ∗ and U∗. We can
form sentences

∧
T ∗ and

∨
U∗ by the finiteness of T ∗ and

U∗. Replacing all constants by variables in a uniform way we
can obtain formulas

∧
T ∗(−→x ) and

∨
U∗(−→y ), possibly with

some common free variables.
We add a countable set C of new constants to the language.

Let us enumerate as ϕ0, ϕ1, ϕ2, . . . all the formulas of the
expanded language, as 〈θ0, ψ0〉, 〈θ1, ψ1〉, 〈θ2, ψ2〉, . . . all pairs
of formulas and as

−→
d0,
−→
d1,
−→
d2, . . . all n-tuples of new constants.

The strategy is to build a sequence 〈T0, U0〉, 〈T1, U1〉, . . . of
tableaux such that T0 ⊆ T1 ⊆ . . . and U0 ⊆ U1 ⊆ . . . , and
for which Ti 2 Ui,

⋃
i<ω Ti is a linear doubly Henkin theory,⋃

i<ω Ui is directed and for each i < ω, 〈Ti, Ui〉 is satisfiable.
Moreover, we need to guarantee that for each

−→
di there is some

ϕ ∈ p that will be false for
−→
di in the canonical model of the

tableau 〈
⋃

i<ω Ti,
⋃

i<ω Ui〉. We will imitate the proof of the
model existence theorem obtained in [31].

STAGE 0 : Simply let T0 = (T \ T ∗) ∪ {
∧
T ∗(−→c )} and

U0 = (U \ U∗) ∪ {
∨
U∗(
−→
d )}, where −→c and

−→
d are fresh

sequences of constants from C, possibly with some elements
in common. In the final (canonical) model that we will build,
constants from O will be interpreted using the fresh constants
just mentioned.

STAGE s+1 = 4i+1 : At this stage, we make sure that our
final theory will be Henkin. If ϕi is not of the form ∀xχ(x),
then let Ts+1 = Ts and Us+1 = Us. So suppose that ϕi =
∀xχ(x). There are two cases to consider:
(i) There is U ′s ⊆ Us such that Ts � (

∨
U ′s) ∨ ∀xχ(x), then

we let Ts+1 = Ts ∪ {∀xχ(x)} and Us+1 = Us.
(ii) Otherwise, let Ts+1 = Ts and Us+1 = Us∪{χ(c)} (where

c is the first unused constant from C).
The fact that in case (i), 〈Ts+1, Us+1〉 has a model follows

easily. Take any model of 〈Ts, Us〉. Obviously, (
∨
U ′s) ∨

∀xχ(x) for some finite U ′s ⊆ Us would have to hold in that
model, but this means that ∀xχ(x) must hold there (that is, it
must get value ≥ 1

A) given that
∨
U ′s does not (i.e., it gets

some value < 1
A).
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Now we have to show that in case (ii), 〈Ts+1, Us+1〉 has
a model as well. This is obtained by tableaux almost strong
S-closedness. For take any finite U ′s+1 ⊆ Us+1. Then we must
have that Ts 2 (

∨
U ′s+1)∨∀xχ(x). Take some model 〈A,M〉

witnessing this fact. Since in such model∥∥∥(
∨
U ′s+1) ∨ ∀xχ(x)

∥∥∥A
M
< 1

A
,

we get that in fact it is a model of 〈Ts+1, U
′
s+1 ∪ {χ(c)}〉

interpreting c appropriately.
STAGE s + 1 = 4i + 2 : At this stage we make sure that

we will eventually get an ∃-Henkin theory. If ϕi is not of the
form ∃xχ(x) , then let Ts+1 = Ts and Us+1 = Us. Otherwise,
as in Lemma 2 (2) from [16] we have two cases to consider:
(i) There is U ′s ⊆ Us such that Ts ∪ {ϕi} �

∨
U ′s, then we

let Ts+1 = Ts and Us+1 = Us.
(ii) Otherwise, let Ts+1 = Ts ∪ {χ(c)} (where c is the first

unused constant from C) and Us+1 = Us.
In case (i), 〈Ts+1, Us+1〉 has a model by inductive hy-

pothesis. Now, in case (ii), we again use tableaux almost
strong S-closedness. For take any finite U ′s+1 ⊆ Us+1. Then
Ts ∪ ϕi 2

∨
U ′s+1, so there is a Henkin model witnessing

this fact, which in turn models 〈Ts+1, U
′
s+1〉 by interpreting c

appropriately.
STAGE s+ 1 = 4i+ 3 : At this stage we need to guarantee

that our resulting model will omit 〈p, p′〉. So given
−→
di , we may

write Ts\T as a conjunction of formulas θ (recall that we have
only added finitely many formulas to T at each stage of our
construction). Let θ′ come from replacing the sequence

−→
di in θ

by a sequence of free variables −→v , and replacing all constants
appearing in θ not in

−→
di by new variables. Similarly, express

Us \ U as a disjunction τ (this can be done since we only
added finitely many members to U during our construction)
and get τ ′ from τ using new variables replacing constants
not among

−→
di but in a way consistent with what we did

in θ′. Any variables in τ ′ and θ′ not replacing elements in
the intersection of the witnesses appearing in θ and τ can
be bounded by existential quantifiers and universal quantifiers
respectively. For instance, say that say that −→c is a sequence
of constants from C, and

θ =
∧
j≤n

ϕj(d̄i, c̄, f̄)

and
τ =

∨
j≤m

ψj(d̄i, c̄, ē),

we can then say that

θ′ = ∃y
∧
j≤n

ϕj(v̄i, x̄, ȳ)

and
τ ′ = ∀y

∨
j≤m

ψj(v̄i, x̄, ȳ).

Since 〈Ts, Us〉 has a model by construction,
〈T ∪ {θ′}, U ∪ {τ ′}〉 certainly has a model.

Then, since 〈p, p′〉 is an unsupported type of 〈T,U〉,
for any formulas ψ, ψ′ (possibly with new variables) such

that 〈T ∪ {ψ}, U ∪ {ψ′}〉 is satisfiable, there are ϕ ∈ p
and ϕ′ ∈ p′ such that 〈T ∪ {ψ}, U ∪ {ψ′}〉 2 ϕ or
〈T ∪ {ψ,ϕ′}, U ∪ {ψ′}〉 is satisfiable. In particular, we must
have some ϕ ∈ p, ϕ′ ∈ p′ such that
(i) 〈T ∪ {θ′}, U ∪ {τ ′}〉 2 ϕ, or

(ii) 〈T ∪ {θ′, ϕ′}, U ∪ {τ ′}〉 is satisfiable.
If (i) holds, we let Ts+1 = Ts and Us+1 = Us ∪
{ϕ(
−→
di )}. 〈Ts+1, Us+1〉 thus defined is consistent (in fact,

it has a model). The model 〈B,M〉 provided by the fact
〈T ∪ {θ′}, U ∪ {τ ′}〉 2 ϕ is a model of 〈Ts+1, Us+1〉 in-
terpreting constants in the appropriate way by looking at
the elements that witness the quantifiers. Here we use the
assumption that our models are filter-witnessed.

On the other hand, if (ii) holds, we let Ts+1 = Ts∪{ϕ′(
−→
di )}

and Us+1 = Us. Everything we need to verify for this case
follows easily as well.

Observe that if we had allowed infinitely many constants
in our original tableau, then, of course, they would have
had to be listed in our enumeration of n-tuples of constants−→
d0,
−→
d1,
−→
d2, . . . . Then, if either θ or τ contained any of these old

constants, the argument offered above for the consistency of
〈Ts+1, Us+1〉 would break down. The problem is that the inter-
pretation of such constant might be fixed by 〈T,U〉 in a given
model. Hence, we could not have managed to turn, say, the
model 〈B,M〉 provided by the fact 〈T ∪ {θ′}, U ∪ {τ ′}〉 2 ϕ
into a model of 〈Ts+1, Us+1〉. In the presence of equality, this
would not become a problem because stage s + 1 = 4i + 2
would guarantee that every term of the old language is
identical to one of the new constants, which means that it
would have sufficed to list only the n-tuples of new constants
to make sure that the type is omitted in the final model.

STAGE s + 1 = 4i + 4 : At this stage we work to ensure
that our final theory will be linear. So given the pair 〈θi, ψi〉
proceed as in Lemma 2 (3) from [16]. That is, we start from the
assumption that 〈Ts, Us〉 is consistent and letting Us+1 = Us

we look to add one of θi → ψi or ψi → θi to Ts to obtain Ts+1

while making the resulting tableau 〈Ts+1, Us+1〉 consistent.
Note that if Ts ∪ {θi → ψi} |=

∨
U ′s+1 and Ts ∪ {ψi →

θi} |=
∨
U ′′s+1, then Ts ∪ {θi → ψi} |= (

∨
U ′s+1)∨ (

∨
U ′′s+1)

and Ts ∪ {ψi → θi} |= (
∨
U ′s+1) ∨ (

∨
U ′′s+1). Hence, Ts ∪

{(ψi → θi) ∨ (θi → ψi)} |= (
∨
U ′s+1) ∨ (

∨
U ′′s+1) by proof

by cases, and since |= (ψi → θi) ∨ (θi → ψi), we obtain that
Ts |= (

∨
U ′s+1) ∨ (

∨
U ′′s+1), a contradiction.

Theorem 6. (Omitting countably many types) Let 〈T,U〉 be a
tableau, such that at most finitely many of its elements involve
object constants, realized by some model and 〈pi, p′i〉(i < ω)
a sequence of unsupported n-types of 〈T,U〉. Then there is a
model satisfying 〈T,U〉 which omits 〈pi, p′i〉(i < ω).

Proof. First consider a bijection f : ω×ω −→ ω and all pairs
〈
−→
d k, 〈pj , p′j〉〉(k, j < ω). Now, at the stage 4i+3 in the proof

of the omitting types we look at the pair f−1(i), say it is
〈
−→
d k, 〈pj , p′j〉〉. We make sure that

−→
d k fails to satisfy 〈pj , p′j〉

in our final canonical model.

The countability of the language is necessary provided that
the language has some binary predicate R. To see this, we
adapt a classical counterexample. Take disjoint sets of unary
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predicates C and D such that |C| > ω and |D| = ω. Now
consider the tableaux

〈{∀xR(x, x)}∪

{∃x, y((Px ∧Qy) ∧ (R(x, y)→ ⊥)) | P,Q ∈ C,P 6= Q}, ∅〉

and
〈{∃x(Tx ∧ (R(v, x)→ ⊥)) | T ∈ D}, ∅〉.

The latter is a type of the former because any model of the
former (in particular, the model of this tableau where R is the
real crisp equality) will have uncountably many individuals
and, hence, the tableau

〈{∃x(Tx ∧ (R(v, x)→ ⊥)) | T ∈ D}, ∅〉.

would certainly be satisfiable on that model. Next take any
ϕ,ϕ′ and model 〈B,M〉 where some e ∈M satisfies

〈{∀xR(x, x)} ∪

{∃x, y((Px ∧Qy) ∧ (R(x, y)→ ⊥)) | P,Q ∈ C,P 6= Q}∪

{ϕ(v)}, {ϕ′(v)}〉.

By changing the extension of the first T ∈ D not appearing in
either ϕ nor ϕ′ to the crisp set {e} we obtain a model where
〈T,U〉 is satisfied by e for

T = {∀xR(x, x)} ∪ {ϕ(v)} ∪

{∃x, y((Px ∧Qy) ∧ (R(x, y)→ ⊥)) | P,Q ∈ C,P 6= Q}

U = {ϕ′(v)} ∪ {∃x(Tx ∧ (R(v, x)→ ⊥)) | T ∈ D}.

Hence,

〈{∃x(Tx ∧ (R(v, x)→ ⊥)) | T ∈ D}, ∅〉

is unsupported but there are no models of

〈{∀xR(x, x)} ∪

{∃x, y((Px ∧Qy) ∧ (R(x, y)→ ⊥)) | P,Q ∈ C,P 6= Q}, ∅〉

omitting it!
Next we provide an application of the proof of the omitting

types theorem. We will show the existence of certain pairs
of different models whose only realized complete types are
principal.

Theorem 7. Fix a countable predicate language P . Let 〈T,U〉
be a tableau such that at most finitely many of its elements
involve object constants, with an infinite model. Then there
are two different countable models 〈B1,M1〉 and 〈B2,M2〉
of 〈T,U〉 with the property that if 〈p, p′〉 is a complete type
which is realized by tuples in M1 and M2, then 〈p, p′〉 is
principal.

Proof. This is as the proof of the omitting types theo-
rem with two changes. First, we build simultaneously two
tableaux that will give two different models in the end.
To this purpose, we build sequences 〈T0, T ′0〉, 〈T1, T ′1〉, . . .
and 〈S0, S

′
0〉, 〈S1, S

′
1〉, . . . , the first one corresponding to the

model 〈B1,M1〉 and the second one to 〈B2,M2〉. Second, we
leave out the stage of the construction guaranteeing that a type

will be omitted and replace it with a stage making sure that for
all sequences of distinct witnesses c̄, d̄, if ā, b̄ are the tuples
denoted by c̄, d̄ in 〈B1,M1〉 and 〈B2,M2〉 respectively, and
〈p, p′〉, 〈q, q′〉 are the complete types of ā and b̄ in 〈B1,M1〉
and 〈B2,M2〉 respectively, then either 〈p, p′〉 6= 〈q, q′〉 or
〈p, p′〉 is principal.

STAGE s+ 1 = 4i+ 3 : Consider

〈
∧

(Ts \ T )(c̄, ē),
∨

(T ′s \ U)(c̄, ē)〉

and
〈
∧

(Ss \ T )(d̄, f̄),
∨

(S′s \ U)(d̄, f̄)〉,

where ē denotes the witnesses different from c̄ in the construc-
tion of 〈Ts, T ′s〉 and similarly with f̄ , d̄ and 〈Ss, S

′
s〉.

We have to consider two possibilities. First, suppose that

〈
∧

(Ts \ T )(c̄, x̄),
∨

(T ′s \ U)(c̄, ȳ)〉

is a support over 〈T,U〉 of a complete type 〈p, p′〉. Then
〈p, p′〉 is principal (because if 〈p, p′〉 is complete, 〈θ, θ′〉 is
a support of 〈p, p′〉 iff it generates (p, p′)). So we can put in
our construction

Ts+1 = Ts T ′s+1 = T ′s

Ss+1 = Ss S′s+1 = S′s.

Second, suppose that

〈
∧

(Ts \ T )(c̄, x̄),
∨

(T ′s \ U)(c̄, ȳ)〉

is not a support of a type over 〈T,U〉. Then there are at least
two complete types 〈p1, p′1〉, 〈p2, p′2〉 containing the above as a
subtableau. Take an arbitrary complete type 〈q, q′〉 containing
the following as a subtableau

〈
∧

(Ss \ T )(d̄, x̄),
∨

(S′s \ U)(d̄, ȳ)〉.

One of 〈p1, p′1〉, 〈p2, p′2〉 has to be different from 〈q, q′〉, call it
〈p, p′〉. Then there is a formula θ(x̄) that lives in the left-hand
side of one of these two types and in the right-hand side of the
other. Say that θ(x̄) ∈ p and θ(x̄) ∈ q′ (the other possibilities
are symmetric). Then we put

Ts+1 = Ts ∪ {θ(c̄)} T ′s+1 = T ′s

Ss+1 = Ss S′s+1 = S′s ∪ {θ(d̄)}.
Strengthening the property of the previous result, we will

say that a model is atomic if every type it realizes is principal,
i.e. every type is reducible to some of its own formulas. Next,
we provide a sufficient condition for a tableau to have an
atomic model, which, under certain conditions, can be also
be seen to be necessary.

Theorem 8. Let P be a countable predicate language and
〈T,U〉 be a tableau, such that at most finitely many of its
elements involve object constants, with infinite models. Then
(i) =⇒ (ii) for
(i) For every finite tableau 〈S0, S1〉 which has model in

common with 〈T,U〉, there is a principal type of 〈T,U〉
containing 〈S0, S1〉 as a subtableau.

(ii) 〈T,U〉 has an atomic model.
Moreover, if all models of 〈T,U〉 satisfy the same finite
tableaux, then (i) and (ii) are equivalent.
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Proof. (i) =⇒ (ii): This is again a modification of the proof
of the omitting types theorem.

STAGE s+ 1 = 4i+ 3 : Consider

〈
∧

(Ts \ T )(c̄),
∨

(T ′s \ U)(c̄)〉

where c̄ is the sequence of finitely many new witnesses
appearing so far in the construction of 〈Ts, T ′s〉. Now by (i),
we can find a type 〈p, p′〉 of 〈T,U〉 containing

〈
∧

(Ts \ T )(x̄),
∨

(T ′s \ U)(x̄)〉

generated by a pair 〈ϕ(x̄, ȳ), ϕ′(x̄, ȳ)〉.
So we can put in our construction

Ts+1 = Ts ∪ {ϕ(c̄, d̄)} T ′s+1 = T ′s ∪ {ϕ′(c̄, d̄)},

where d̄ is a finite sequence of new constants. The
tableau 〈Ts+1, T

′
s+1〉 is consistent given the consistency of

〈p ∪ {ϕ(x̄, ȳ)}, p′ ∪ {ϕ′(x̄, ȳ)}〉. This step of the construction
guarantees that c̄ will realize the type 〈p, p′〉 in the final Henkin
model. Since any sequence d̄ of elements of the Henkin model
will live in some sequence c̄ appearing at some stage 4i + 3
of the construction, d̄ will also realize a principal type in the
final model (the same 〈ϕ(x̄, ȳ), ϕ′(x̄, ȳ)〉 which generates the
type 〈p, p′〉 of c̄ will a fortiori generate the type of d̄).

For the second part of the result, it suffices to establish
the converse under the assumption that all models of 〈T,U〉
satisfy the same finite tableaux.

(ii) =⇒ (i): If 〈T ∪ {ϕ}, U ∪ {ϕ′}〉 has a model, then
〈{ϕ}, {ϕ′}〉 is realized in the atomic model of 〈T,U〉 as
well, say by a finite sequence of elements ā. Now consider
the complete type in the atomic model of ā: it contains
〈{ϕ}, {ϕ′}〉 and is principal by definition. Hence, we have
established what we desired.

V. REMOVING THE RESTRICTION ON CONSTANTS

One might wonder about the possibility of lifting the
restriction on the number of constants in the main result of
Section IV. Due to the difficulties of equality-free settings,
this can be done only by complicating matters in regards to the
notion of unsupported type (see [38] for the classical account).
In this section, we briefly deal with this problem.

Following [38, Definition 4.1], we may modify the notion
of unsupported type as follows:

Definition 6. A type 〈p, p′〉 of 〈T,U〉 in the free variables
−→x = 〈x1, . . . , xn〉 is Keisler–Miller unsupported if for any
formulas ϕ(−→z ,−→y ), ϕ′(−→z ,−→y ) in at least the m free variables
−→z (possibly with new variables −→y ) and n-tuple of terms −→σ
in at most the variables −→z (so any other term in −→σ would
be a constant) such that 〈T ∪ {ϕ(−→z ,−→y )}, U ∪ {ϕ′(−→z ,−→y )}〉
is satisfiable, there are ψ(−→x ) ∈ p and ψ′(−→x ) ∈ p′

such that 〈T ∪ {ϕ(−→x ,−→y )}, U ∪ {ϕ′(−→x ,−→y )}〉 2 ψ(−→σ ) or
〈T ∪ {ϕ(−→x ,−→y ), ψ′(−→σ )}, U ∪ {ϕ′(−→x ,−→y )}〉 is satisfiable.

Now we can modify the proof of the omitting types theorem
above to obtain the next result.

Theorem 9. (Keisler–Miller Omitting types) Let 〈T,U〉 be a
tableau realized by some model and 〈p, p′〉 a Keisler–Miller

unsupported n-type of 〈T,U〉. Then there is a model satisfying
〈T,U〉 which omits 〈p, p′〉.

Proof. The proof mostly follows the general lines of the pre-
vious theorem. Now, however, the enumeration

−→
d0,
−→
d1,
−→
d2, . . .

contains all n-tuples of constants (new and old). The only new
action will happen at stage s+ 1 = 4i+ 3.

STAGE s+ 1 = 4i+ 3 : At this stage we need to guarantee
that our resulting model will omit 〈p, p′〉. So, given

−→
di , we

may write Ts \ T as a conjunction of formulas θ (recall that
we have only added finitely many formulas to T at each stage
of our construction). The tuple

−→
di can be partitioned into two

parts,
−→
di
′−→di ′′, where the first has all the constants of

−→
di from

the new list C, whereas the second has all the constants of
−→
di

that were in the original language. Let θ′ come from replacing
the sequence

−→
di
′ in θ by a sequence of free variables −→v ,

and replacing all constants from C appearing in θ but not
in
−→
di
′ by new variables. Similarly, let τ be the disjunction

of all formulas in Us \ U (this can be done since we only
added finitely many members to U during our construction).
Then, we get τ ′ from τ by introducing the sequence of free
variables −→v to replace

−→
di
′, and using new variables replacing

constants in C not among
−→
di
′ but in a way consistent with

what we did in θ′. Any variables in τ ′ and θ′ not replacing
elements in the intersection of the witnesses appearing in θ
and τ can be bounded by existential quantifiers and universal
quantifiers respectively. For instance, say that −→c is a sequence
of constants from C, and

θ =
∧
j≤n

ϕj(
−→
di
′,
−→
di
′′, c̄, f̄)

and
τ =

∨
j≤m

ψj(
−→
di
′,
−→
di
′′, c̄, ē),

we can then say that

θ′ = ∃y
∧
j≤n

ϕj(v̄i,
−→
di
′′, x̄, ȳ)

and
τ ′ = ∀y

∨
j≤m

ψj(v̄i,
−→
di
′′, x̄, ȳ).

Since 〈Ts, Us〉 has a model by construction,
〈T ∪ {θ′}, U ∪ {τ ′}〉 certainly has a model.

But 〈p, p′〉 is a Keisler–Miller unsupported type of 〈T,U〉.
So for any formulas ψ(−→z ,−→y ), ψ′(−→z ,−→y ) in at least the m
free variables −→z (possibly with new variables −→y ) and n-tuple
of terms −→σ in at most the variables −→z (so any other term in
−→σ would be a constant) such that

〈T ∪ {ψ(−→z ,−→y )}, U ∪ {ψ′(−→z ,−→y )}〉

is satisfiable, there are ϕ(−→x ) ∈ p, ϕ′(−→x ) ∈ p′ such that

〈T ∪ {ψ(−→x ,−→y )}, U ∪ {ψ′(−→x ,−→y )}〉 2 ϕ(−→σ )

or
〈T ∪ {ψ(−→x ,−→y ), ϕ′(−→σ )}, U ∪ {ψ′(−→x ,−→y )}〉

is satisfiable.
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In particular, there must be ϕ ∈ p and ϕ′ ∈ p′ such that
(i) 〈T ∪ {θ′}, U ∪ {τ ′}〉 2 ϕ(v̄i,

−→
di
′′), or

(ii) 〈T ∪ {θ′, ϕ′(v̄i,
−→
di
′′)}, U ∪ {τ ′}〉 is satisfiable.

If (i) holds, we let Ts+1 = Ts and Us+1 = Us ∪
{ϕ(
−→
di )}. 〈Ts+1, Us+1〉 thus defined is consistent (in fact,

it has a model). The model 〈B,M〉 provided by the fact
〈T ∪ {θ′}, U ∪ {τ ′}〉 2 ϕ(v̄i,

−→
di
′′) is a model of 〈Ts+1, Us+1〉

interpreting constants in the appropriate way by looking at
the elements that witness the quantifiers. Here we use the
assumption that our models are filter-witnessed.

On the other hand, if (ii) holds, we let Ts+1 = Ts∪{ϕ′(
−→
di )}

and Us+1 = Us. Everything we need to verify for this case
follows easily as well.

VI. CONCLUSION

In this paper we have shown the existence of models
realizing very few types, which, as in classical model theory,
is accomplished by means of an omitting types theorem. The
result has been presented for the wide class of logics based
on uninorms. We proved it in the general framework of UL
logic but it follows for any of its axiomatic extensions such as
MTL or BL since they are based on particular kinds of UL-
chains. Some work had already been started along these lines
in the context of mathematical fuzzy logic in [18], [27], [29],
that have focused on one-sided types with respect to a theory.
We have provided a generalization of the result in [29] to the
context of tableaux with types as pairs, with the clear benefit of
higher expressivity. Our immediate future research plans will
concentrate on going the opposite direction by constructing
saturated models that satisfy as many (two-sided) types as
possible, building on our preliminary results published in [31].
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