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1 Introduction

In the last years we can see an extreme increase of communication possibilities. The most relevant
feature of the new technical means like internet and social networks is the world-wide individual
access to the communication space. Nearly everybody may present messages, news, opinions,
artworks or other materials to the public networks in a way that makes them immediately accessible
to a large community of users. Nonetheless, this new wonderful communication freedom is often
disturbed by the bad quality and controversial background of the published content. There is
an obvious need to identify fake news and to remove xenophobe, illegal or aggressive materials.
Unfortunately, the problem is not solvable without limitations of the communication freedom and
for this purpose we are missing legal authorities with desirable rights and responsibility.

In this paper we discuss a simple way to evaluate the messages in social networks automatically,
without any special content analysis or external intervention. We presume, that a large number
of social network participants is capable of a relatively reliable evaluation of materials presented
in the network. Considering a simple binary evaluation scheme (like/dislike), we propose a trans-
parent algorithm with the aim to increase the voting power of reliable network members by means
of weights. The algorithm supports the votes which correlate with the more reliable weighted
majority and, in turn, the modified weights improve the quality of the weighted majority voting.
In this sense the weighting is controlled only by a general coincidence of voting members while the
specific content of messages is unimportant. The iterative optimization procedure is unsupervised
and does not require any external intervention with only one exception, as discussed in Sec. 5.2 .

In simulation experiments the algorithm nearly exactly identifies the reliable members by
means of weights. Using the reinforced weights we can compute for a new message the weighted
sum of votes as a quantitative measure of its positive or negative nature. In this way any fake
news can be recognized as negative and indicated as controversial. The accuracy of the resulting
weighted decision making was essentially higher than a simple majority voting and has been
considerably robust with respect to possible external manipulations.

There is an extensive literature concerning weighted decision making. Most of the references
relate to s.c. crowdsourcing systems (cf. e.g. [3]) or to learning with multiple labels (cf. e.g. [4]).
The crowdsourcing systems usually assume a fixed set of simple tasks electronically distributed
to numerous differently reliable piece-workers. The answers of workers are weighted according to
their credibility with the aim to get the best possible solutions of the tasks [5], [3]. In case of
multiple (noisy) labels the system evaluates the reliability of different annotators in order to get
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the best estimates of the actual hidden labels [6], [4]. There are different modifications of the
above problems [1] but, unlike the weighted vote, the solution of underlying tasks is always of
essential meaning and the accuracy of resulting answers or estimated labels is the primary goal.

The main motivation of the proposed algorithm is its application in a large social network. The
content of evaluated messages is unimportant, only the related decision making of participants is
registered and compared with the weighted vote with the aim to identify the most reliable voters.
A large number of participants and communicated messages should enable to design a reliable
and robust weighted voting scheme. Ideally the resulting weighted vote should provide a generally
acceptable emotional feedback for network participants and could be used to indicate positive or
controversial news in a suitably chosen quantitative way. The optimization algorithm has to be
simple, transparent and intuitive to make the weighted vote well acceptable as a general evaluation
tool.

2 Evaluation of Messages by Majority Voting

We consider a social network of arbitrary technical background unifying a large number of partic-
ipants x ∈ X and offering very general communication possibilities. In particular, the members of
social network may present arbitrary objects a ∈ A in the network being visible to other members.
We assume various types of communicated content like assertion, information, news or messages
and the members are supposed to have the possibility of a simple binary evaluation of the pre-
sented objects. Formally, the objects can be evaluated by the network members as positive or
negative in a general sense.

We denote x(a) ∈ {−1,+1} the binary evaluation of a message a ∈ A by the network member
x ∈ X , briefly a vote, whereby x(a) = 1 stands for like, agree, support and x(a) = −1 is
understood e.g. as dislike, disagree or refuse. Simultaneously, we distinguish two basic types
of messages, positive or negative, in accordance with the assumed binary voting. If we denote
ξ(a) ∈ {−1,+1} the unknown (hidden) type of the message a ∈ A, then the correct evaluation of
the message implies the equality x(a) = ξ(a) or, equivalently, x(a)ξ(a) = 1. In case of incorrect
evaluation we have x(a) = −ξ(a) or, equivalently, x(a)ξ(a) = −1.

If we assume the knowledge of the true types ξ(a) of the messages in the simulation experiments,
then we can compute the mean decision accuracy (correct evaluation rate) px of the network
members by Eq.

px =
1

|A|
∑
a∈A

[ξ(a)x(a) + 1]

2
, 0 ≤ px ≤ 1, x ∈ X . (1)

For simplicity we assume that all members x ∈ X evaluate all objects a ∈ A, the number of
elements in the sets will be denoted by |A|, |X |. In a practical situation the simplifying assumptions
are not necessary, as discussed in Sec. 6.

Asymptotically, for a large number of messages, the value px can be interpreted as the proba-
bility of correct decision of the member x ∈ X and Eq. (1) can be rewritten in the form:

1

|A|
∑
a∈A

ξ(a)x(a) = px − (1− px) = 2px − 1, x ∈ X . (2)
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Considering all network members x ∈ X we can compute the corresponding more reliable mean
vote:

s(a) =
1

|X |
∑
x∈X

x(a), −1 ≤ s(a) ≤ 1, a ∈ A. (3)

The mean vote s(a) naturally implies a simple majority decision d(a) of the network members:

s(a) ≥ 0 ⇒ d(a) = 1, s(a) < 0 ⇒ d(a) = −1, ⇒ d(a) = sign(s(a)), a ∈ A.

In analogy with (1) we can compute the mean accuracy of majority voting (correct decision rate
of the simple majority vote):

α =
1

|A|
∑
a∈A

[ξ(a)d(a) + 1]

2
, 0 ≤ α ≤ 1. (4)

The mean ”gain” of majority voting, defined by Eq.

s̄ =
1

|A|
∑
a∈A

ξ(a)s(a), (5)

can be interpreted as the mean difference between the correct (ξ(a)x(a) = 1) and incorrect
(ξ(a)x(a) = −1) votes and refers to the reliability of majority voting. For a large number of
messages a ∈ A the value of mean gain is related to the mean reliability of network members.
Making substitution (3):

s̄ =
1

|A|
∑
a∈A

ξ(a)

 1

|X |
∑
x∈X

x(a)

 =
1

|X |
∑
x∈X

[
1

|A|
∑
a∈A

ξ(a)x(a)

]
, (6)

we can write by Eq. (2):

s̄ =
1

|X |
∑
x∈X

[2px − 1] = 2

 1

|X |
∑
x∈X

px

− 1 = 2p̄− 1, p̄ =
1

|X |
∑
x∈X

px. (7)

3 Weighted Evaluation of Messages

The main idea of the paper is to differentiate the influence of network members according to the
reliability of their votes. For this purpose we first introduce fixed voting weights vx with the aim to
increase the influence of reliable voters. Intuitively the fixed voting weight should be proportional
to the probability of correct decision px of the member x ∈ X :

vx ≈ px, ⇒ vx =
px∑

x∈X px
, 0 ≤ vx ≤ 1, (

∑
x∈X

vx = 1), x ∈ X . (8)

3



By means of the weights vx we can compute the weighted evaluation of a message a ∈ A by the
network members x ∈ X , in analogy with the mean vote of Eq. (3):

σv(a) =
∑
x∈X

vxx(a), −1 ≤ σv(a) ≤ 1, a ∈ A, (9)

and by using the weighted sum σv(a) we define the corresponding weighted majority decision
(weighted vote) δv(a):

σv(a) ≥ 0 ⇒ δv(a) = 1, σv(a) < 0 ⇒ δv(a) = −1, δv(a) = sign(σv(a)). (10)

It can be seen, that the resulting weighted vote δv(a) is more strongly influenced by the reliable
members playing a dominant role in the weighted sum σv(a). By Eq. (1) we can compute the
accuracy of weighted voting (correct weighted vote rate):

αv =
1

|A|
∑
a∈A

[ξ(a)δv(a) + 1]

2
. (11)

In analogy with Eq. (5) the mean ”gain” of weighted voting is defined by Eq. :

qv =
1

|A|
∑
a∈A

ξ(a)σv(a), (12)

and can be interpreted as a mean difference between the correct and incorrect weighted vote.
Again, the mean gain qv is related to the weighted mean reliability of members:

qv =
∑
x∈X

vx[
1

|A|
∑
a∈A

ξ(a)x(a)] =
∑
x∈X

vx [2px − 1] = 2

∑
x∈X

vxpx

− 1 = 2p̄v − 1, (13)

defined by

p̄v =
∑
x∈X

vxpx. (14)

4 Unsupervised Estimation of Voting Weights

In real-life situations, like e.g. in social networks, the true nature of messages is unknown. Conse-
quently, the decision accuracy px is not available and has to be replaced in the definition of voting
weights vx by some other information. In order to optimize the ”unsupervised” voting weights w̃x

we construct a weighted sum σw(a) analogous to σv(a):

σw(a) =
∑
x∈X

w̃xx(a), −1 ≤ σw(a) ≤ 1, a ∈ A. (15)
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By using the weighted sum σw(a) we can define the corresponding weighted majority decision
(weighted vote) δw(a) in analogy to (10):

σw(a) ≥ 0 ⇒ δw(a) = 1, σw(a) < 0 ⇒ δw(a) = −1, δw(a) = sign(σw(a)), (16)

and the corresponding accuracy αw, cf. (11):

αw =
1

|A|
∑
a∈A

[ξ(a)δw(a) + 1]

2
. (17)

According to the main idea of the present approach, the unsupervised voting weight wx of a
network member x ∈ X should reflect the long term conformity of his decision making with the
weighted majority vote. In this sense we define the weight wx as a mean product of the vote x(a)
with the weighted sum σw(a):

wx =
1

|A|
∑
a∈A

x(a)σw(a), −1 ≤ wx ≤ 1, x ∈ X . (18)

In Eq. (18) the contribution x(a)σw(a) is positive if the vote x(a) coincides with the weighted
vote δw(a) and it is negative if they are different. Simultaneously the value of the weighted sum
σw(a) differentiates between weak or strong coincidence or difference.

The formula (18) naturally implies the possibility of a negative weight wx < 0 if the vote x(a)
frequently differs from the weighted vote δw(a). As the weights wx may be negative, we use the
norming by the absolute values |wx|:

w̃x =
wx∑

x∈X |wx|
, −1 ≤ w̃x ≤ 1,

∑
x∈X
|w̃x| = 1, x ∈ X . (19)

Let us remark that, by means of the negative weights wx, we can utilize even reliably incorrect
voters (”protest voters”) to improve the accuracy of weighted majority voting.

In simulation experiments, when the true types of messages are available, we can compute the
mean gain of the weighted vote δw by Eq.

qw =
1

|A|
∑
a∈A

ξ(a)σw(a) =
1

|A|
∑
a∈A

ξ(a)[
∑
x∈X

w̃xx(a)], (20)

qw =
∑
x∈X

w̃x[
1

|A|
∑
a∈A

ξ(a)x(a)] =
∑
x∈X

w̃x [2px − 1] . (21)

The value of mean gain qw can be interpreted as an additional criterion of the weighted vote
reliability. Roughly speaking, a high positive value of qw implies that the correct weighted voting
was well justified in the mean. On the other hand, the mean gain qw near zero suggests the
occurrence of both correct and incorrect weighted votes. The last Eq. (21) also illustrates the
effect of negative weights w̃x. In case of a protest voter the probability px is less than 0.5 and the
expression (2px − 1) is negative but the negative weight w̃x makes the contribution w̃x(2px − 1)
positive.
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It can be seen, that the above equations are iterative. Given the weights w̃x, x ∈ X we
can compute the weighted sums σw(a) for the set of messages a ∈ A and by Eqs. (18), (19), we
obtain the new values of the weights w̃x. In this way the algorithm combines the decision abilities of
network members to get a more reliable weighted vote δw and, in turn, the underlying weighted sum
σw is used to reinforce the weights w̃x of reliably voting members. Roughly speaking, the procedure
is similar to a spontaneously arising public opinion (crowd wisdom) based on multiple information
exchange in a community. We recall that the Eqs. (15), (18) do not use the knowledge ξ(a) of
the true type of messages and therefore the optimization is unsupervised, the specific content of
messages need not be analyzed. Let us remark that the intuitive idea of the proposed unsupervised
learning is similar to a theoretically justified solution based on EM algorithm (cf. [2], Eq. (26)).

5 Simulation Experiments

The main goal of the simulation experiments is to demonstrate the possibility of unsupervised
identification of reliable participants in a network and to realize a reliable weighted voting scheme.
For this purpose we first generate a set of network participants with randomly specified reliability.
According to Eq. (1) we denote by px the hidden probability of correct evaluation of messages by
the member x ∈ X :

px = P{x(a) = ξ(a)} a ∈ A, (0 ≤ px ≤ 1), x ∈ X . (22)

In other words, px is the hidden reliability of the network member x ∈ X , with the following
meaning: px = 1 means reliably correct evaluation, px = 0 implies reliably incorrect evaluation
(”protest” voting) and px = 0.5 corresponds to completely random evaluation (random voting).

During the simulation experiment we generate a sequence of messages a ∈ A of randomly
specified type ξ(a). Given a random number r, (0 ≤ r ≤ 1), we define the type of the message
a ∈ A as negative or positive with equal probability:

r ≤ 0.5 ⇒ ξ(a) = 1, r > 0.5 ⇒ ξ(a) = −1, a ∈ A.

Nevertheless, the proportion of negative and positive messages is irrelevant because the algorithm
reflects only the coincidence of individual votes with the weighted majority.

Given a message of the type ξ(a) we have to simulate the evaluation of the message by network
participants randomly, according to the hidden probabilities px. In particular, given a random
number r, the vote x(a) is generated as correct if r ≤ px, (⇒ x(a) = ξ(a)), or incorrect if
r > px, (⇒ x(a) = −ξ(a)).

At the beginning of the experiment we only need to specify the initial voting weights, e.g. as
uniform: wx = 1/|X |, x ∈ X . The adaptation of wx based on the correlation of x(a) with the
weighted sum of votes σw(a) is performed sequentially after each new message a ∈ A by Eqs.

σw(a) =
∑
x∈X

w̃xx(a), a ∈ A, w̃x =
wx∑

x∈X |wx|
, (23)

w′
x =

1

|A|
∑
a∈A

x(a)σw(a), x ∈ X . (24)
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The sequential optimization is motivated mainly by practical viewpoints, since otherwise it would
be necessary to store the voting history and, consequently, the complexity and storage requirements
could become prohibitive for a large number of messages and participants (cf. Sec. 6).

5.1 Standard Community of Network Participants

In the first experiment we assume rather sceptically the reliability px of 1000 standard participants
to be slightly below the mean (px = 0.45), with only small subset being greater (px > 0.45) or
even smaller (px < 0.45). In particular, we set first px = 0.45 for all x ∈ X , (|X | = 1000)
and generate for about 30% of participants the increased probabilities px randomly according
to random numbers 0 ≤ r ≤ 1 by Eq. px = 0.45 + 0.15r. Similarly we generate the decreased
probabilities by Eq. px = 0.45−0.15r for about 15% of participants. The resulting mean reliability
of voters is p̄ = 0.46 (cf. (7)). The probabilities px are displayed as black columns in Fig. 1 in
descending order, for better insight. The dot line indicates the value px = 0.5.

The adaptation of weights is shown in Fig. 1 at five stages of the sequential iteration process.
Convergence of the voting weights is illustrated by 100 participants (every tenth), number of
evaluated messages is IT=5000. The black columns correspond to the hidden reliability of the
participants and the green columns to the corresponding voting weights. After 5000 iterations the
optimized weights are higher for more reliable voters (px > 0.5) and nearly zero for less reliable
voters (px ≈ 0.5). The negative weights identify the ”protest” voters (px < 0.5). Let us note
that, in view of the definition of the weighted sum (15), the ”reliable” protest voters with negative
weights help to improve the decision accuracy. After 5000 iterations the resulting weighted voting
achieves the accuracy 99%, which is essentially higher than that of simple majority (0.7%). The
low accuracy of simple majority voting corresponds to the related mean gain s̄ = −0.0747, cf. (5),
(7).

5.2 Global Inversion of Voting Weights

The only principle of the proposed unsupervised optimization of voting weights is the conformity of
the individual voting of participants with the arising weighted majority voting. The optimization
procedure doesn’t require any external intervention with only one exception: if at the beginning
the weighted majority decisions are strange or incorrect, e.g. because of unsuitable initial weights,
then the optimized weights will reinforce the incorrect weighted majority voting, up to the extreme
form. There is no internal mechanism to recognize the incorrect optimization. The only way is the
external check of the obvious malfunction and inversion of the optimization process by changing
the sign of all voting weights. As a result the weighted sum σw will change the sign in the next
steps and the change will be reinforced by the correctly continuing optimization process.

In the simulation experiment we have the possibility to recognize the incorrect optimization
by the negative gain of weighted voting qw, cf. (20). Fig. 2 illustrates the situation with the
initial incorrect weighted voting caused by initial parameters. At the beginning the accuracy of
the weighted vote is zero, the weights of more reliable voters are negative (cf. IT=200, IT=500)
and the weights of ”protest” voters are positive. The sign of all weights is changed at iteration
IT=1000 by external intervention. After this change the mean accuracy of the weighted vote
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slowly increases up to 80% at IT=5000. The final weights again correctly identify the reliable
voters. On the other hand, the low accuracy of the simple majority vote (about 0.7%) is not
influenced by the changing weights.

5.3 Coordinated Attempt to Change Voting

In the third experiment we illustrate the stability of weighted voting from the first example (Fig.
1) in case of coordinated attempt of a group of participants to invert the voting scheme. For this
purpose we assume that after 1500 iterations a fixed group of 600 participants changes the voting
properties towards protest voters with the aim to ”switch” the optimization process. Formally,
we set the corresponding 600 hidden probabilities to px = 0.1 at iteration IT=1500. Despite this
change the mean accuracy of weighted vote does not decrease since the algorithm quickly identifies
the protest voters by negative weights (cf. IT=2000, IT=5000) and the resulting accuracy is about
99% again.

Another possibility would be a coordinated attempt of a group of voters to influence a single
evaluation of a given message. Theoretically the attempt could succeed, however in case of a
real network the optimized weighted vote is supposed to be based on a very large anonymous
community of participants and therefore any realistic number of coordinated protest voters would
be probably insufficient.

6 Practical Implementation of Weighted Voting

In a real life situation like social network we have to assume that only a small subset of participants
evaluates a particular message. We denote X a the set of participants who evaluated a message
a ∈ A and Ax the set of messages evaluated by the participant x ∈ X . In order to avoid less
relevant weighted votes we should restrict ourselves only to sufficiently ”popular” messages a ∈ A
satisfying a reasonable condition |X a| > N0, i.e. with the number of voters greater than a suitable
threshold N0. For the sake of evaluation of a given message a ∈ A we have to store for every voter
x ∈ X a the vote x(a), its current weight wx and the number of evaluated messages |Ax|. At any
time these data can be used to compute the weighted sum

σw(a) =
∑
x∈X a

w̃xx(a), w̃x =
wx∑

x∈X a
|wx|

. (25)

and the corresponding updates of weights (cf. (23)) for all participants x ∈ X a:

w′
x =

1

(|A′
x|)

∑
a∈A′

x

x(a)σw(a) =
1

(|Ax|+ 1)
(|Ax|wx + x(a)σw(a)), x ∈ X a. (26)

Obviously the evaluation of multiple messages can proceed sequentially, in parallel, for a number
of messages and stopped when the number of voters |X a| is large enough. Repeated evaluation of
messages is questionable because of possible noisy feedback.

Figure 4 shows the changing weights in case ”realistic” simulation. In comparison with the Sec.
5.1 the only difference is the number of voting participants. Every voter is included into evaluation
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of a particular message randomly, with the probability 0.5. There are no apparent differences in
both experiments since the number of randomly chosen voters (about 500) is obviously sufficient
to guarantee a reasonable convergence.

7 Conclusion

Weighted voting should never replace the standard democratic voting principle based on equal
votes. However, in some situations, the weighted voting could facilitate quick and valuable feed-
back between official institutions and public opinion. For example, there is a great area of popular
cultural activities undesirably dominated by financial profit. For good reasons any censorship is
not applicable in these cases but a well functioning weighted voting system could be applied to
recognize and support high quality cultural products, e.g. by decreased taxes.
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Figure 1: Convergence of the voting weights for 1000 members (only every tenth member is shown)
number of evaluated messages is IT=5000. The black columns correspond to the hidden reliability of
voters (0 < px < 1), the dot line indicates the value px = 0.5. The green columns correspond to the
estimated weights. The probabilities px are generated randomly but they are ordered in descending way
to make the relation to changing weights more apparent. The resulting weights are higher for more
reliable voters (px > 0.5) and nearly zero for less reliable voters (px ≈ 0.5). The negative weights identify
the ”protest” voters (px � 0.5). We recall that, in view of Eq. (15), the ”reliable” protest voters actually
help to improve the decision quality. After 5000 iterations the resulting weighted voting achieves the
accuracy 99%, which is essentially higher than that of simple majority (0.7%).10



Figure 2: The Figure illustrates the situation with the initial incorrect weighted voting. The incorrect
weights may arise if we change the initial parameters. In this figure the reliability of participants from
the first experiment is slightly decreased. At the beginning the accuracy of the weighted vote is zero and
the weights of more reliable voters tend to be negative. The sign of all weights is changed at iteration
IT=1000 by external intervention. After this change the accuracy of the weighted vote slowly increases
up to 80% at IT=5000. The final weights again correctly identify the reliable voters or protest voters.
On the other hand, the accuracy of the simple majority vote corresponds to the decreased reliability of
voters without any possibility to improve spontaneously.
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Figure 3: In the third experiment we illustrate the stability of weighted voting from the first example
(Fig. 1) in case of coordinated attempt of a group of participants to change the resulting vote. For this
purpose we assume that after 1500 iterations a fixed group of 60% of participants changes the voting
properties towards protest voters. Formally, we set the corresponding hidden probabilities to px = 0.1.
The accuracy of weighted vote does not decrease, as it can be seen, the algorithm quickly identifies
the protest voters by negative weights and the resulting accuracy 99.88% is even higher. On the other
hand, the accuracy of the simple majority vote starts at the value about 2%, and after the coordinated
intervention decreases to 0.2%.
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Figure 4: The fourth experiment shows the changing weights in case ”realistic” simulation (cf. Sec. 6).
In comparison with the Sec. 5.1 the only difference is the number of voting participants. Every voter is
included into evaluation of a particular message randomly, with the probability 0.5, i.e. the number of
voters is about 500. There are no apparent differences in both experiments since the number of voters is
obviously sufficient to guarantee a reasonable convergence.
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