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Abstract—The Prague texture segmentation data-generator and benchmark (mosaic.utia.cas.cz) is a web-based service designed to

mutually compare and rank (recently nearly 200) different static and dynamic texture and image segmenters, to find optimal

parametrization of a segmenter and support the development of new segmentation and classification methods. The benchmark verifies

segmenter performance characteristics on potentially unlimited monospectral, multispectral, satellite, and bidirectional texture function

(BTF) data using an extensive set of over forty prevalent criteria. It also enables us to test for noise robustness and scale, rotation, or

illumination invariance. It can be used in other applications, such as feature selection, image compression, query by pictorial example,

etc. The benchmark’s functionalities are demonstrated in evaluating several examples of leading previously published unsupervised

and supervised image segmentation algorithms. However, they are used to illustrate the benchmark functionality and not review the

recent image segmentation state-of-the-art.

Index Terms—Benchmark, image segmentation, texture segmentation, (Un)supervised segmentation, segmentation criteria, scale, rotation

and illumination invariants

Ç

1 INTRODUCTION

UNSUPERVISED or supervised texture segmentation is the
prerequisite for successful content-based image retrieval,

scene analysis, automatic acquisition of virtual models, image
interpretation, quality control, security, medical, and many
other applications. Although more than a thousand different
methods have already been published [1], [8], [23], [24], [48],
[57], [60], [70], [72], this ill-defined problem is still far from
being solved; it cannot even be solved in its full generality. In
addition to that, very little is known about the properties and
behavior of already published segmentation methods and
their potential user is left to select fromamong them randomly
due to the absence of infallible counseling. This problem is,
among others, due to the missing reliable performance com-
parison between different techniques because the insufficient
effort has been given to developing suitable quantitative
measures of segmentation quality that could be used to evalu-
ate and compare segmentation algorithms. Rather than ad-
vancing the most promising image segmentation approaches,
researchers suggesting novel algorithms are often satisfied
with them just being sufficiently different from the previously
published ones. Furthermore, the methods are tested on only
a few carefully selected positive examples. The similarly
tricky problem is that of finding optimal parametrization for a
given method, especially for those segmenters that have tens
of parameters to be set. The most common method for evalu-
ating the effectiveness of a segmentation method is still sub-
jective evaluation [82], where humans visually compare

segmentation results for the tested segmenters on some popu-
lar datasets, e.g., [10], [12], [19], [47], [86]. However, many
datasets have a limited number of classes and objects per
image, e.g., [12], [19], they have less than three instances and
two categories per image on average. Such tedious and expen-
sive evaluation is inherently restricted to a small number of
predetermined test images and has a very limited and ques-
tionable generalizing value. The optimal alternative, namely,
checking several variants of a developed method on a large
number of test images and carefully comparing the results
with the state-of-the-art in this area is practically impossible
because most methods are too complicated and insufficiently
described to be implemented in an acceptable amount of time.
Although no theoretical property of a method can be proven
experimentally, such an experimental set can indicate its per-
formance and ranking in comparison with alternative algo-
rithms. Because there is no available benchmark fully
supporting segmentation method development, we imple-
mented a solution in the form of a web-based data generator
and benchmark software. Proper testing and robust learning
of performance characteristics require large test sets and
objective ground truth, which is unfeasible for natural images.
Thus, inevitably all such image sets, such as the Berkeley
benchmark [49] and several other proposed approaches [11],
[18], [61], [75], [78], [82], [85], share the same drawbacks – sub-
jectively and costly generated ground truth regions and a lim-
ited extent, which is very difficult and expensive to enlarge.

These problems motivate our preference for random
mosaics with randomly filled textures even if they only
approximate natural image scenes. A profitable feature of this
trade-off is the unlimited number of different test images
with the corresponding objective and the free ground truth
map available for each of them.

Zhang [84] differentiates between two types of segmenta-
tion evaluation – inter-techniques for ranking the perfor-
mance of different techniques in segmenting the same type
of images, and intra-techniques for recognizing the behavior
of the considered technique in segmenting various kinds of
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images. Our benchmark is capable of supporting both of
these evaluation types.

The segmentation results can be judged [82] either by using
manually segmented images as reference (discrepancy meth-
ods) [45] possibly with the help of some annotating tool ([16],
or by visually comparing them with the original images [57],
or just by applying qualitymeasures corresponding to human
intuition (goodness methods, unsupervised evaluation) [6],
[7], [11], [45], [46], [57], [65], [82], [83]. However, it is challeng-
ing to propose general-purpose goodness criteria and to avoid
subjective ranking conclusions byusing any of the approaches
mentioned above on limited test databases. Goodness criteria
often suffer from artificial assumptions, e.g., simple, not rag-
ged boundaries, simple interiors [33], intra-region grey-level
uniformity [46], or with improper behavior, such as bias
towardsmeaningless single region segmentation [83], etc. The
authors [82] have established that amajority of their test good-
ness measures strongly favored machine segmentations over
human segmentations.

Prior work on the segmentation benchmark is the Berkeley
benchmark (BSDS300) presented by Martin et al. [49]. This
benchmark contains more than a thousand various natural
images (300 in its public version) from the Corel database,
each of which is manually processed by a group of people to
get the ground-truth segmentation in the form of the parti-
tioning of the image into a set of disjoint segments. Without
any specific guidance, such manual segmentations reflect the
subjective human perception, and therefore, different people
usually construct different ground truths on the same image.
The Berkeley benchmark suffers from several drawbacks.
Apart from the subjective ground truth, its performance crite-
ria, i.e., global consistency error (GCE) and local consistency
error (LCE), tolerate the ground truth’s unreasonable refine-
ment. Over-segmented machine segmentations always have
zero consistency error, i.e., theywrongly suggest an ideal seg-
mentation. The benchmark comparison is based on region
borders hence different border localization from the human-
based drawing can handicap otherwise correct scene segmen-
tation. The enlarged version of this benchmark (BSDS500, [3])
uses the original BSDS300 database for training and novel 200
images for testing.

Another segmentation benchmark, Minerva [69], contains
448 color and greyscale images of natural scenes. They are
segmented using four different segmenters, the segmented
regions are manually labeled and different textural features
can be learned from these regions and subsequently used by
the kNN supervised classifier. This approach suffers from
erroneous ground truth resulting from an imperfect seg-
menter, manual labeling, and inadequate textural feature
learning from small regions.

Outex Texture Database [56] provides a public repository
for three types of empirical texture evaluation test suites. It
contains 14 classification test suites, one unsupervised seg-
mentation test suite, which is formed by 100 texture mosaics,
and finally, one texture retrieval test suite. All mosaics use the
same simple regular ground truth template. The test suites
are publicly available on the website (www.outex.oulu.fi),
which allows for searching, browsing and downloading the
test image databases. Outex currently provides a limited test
repository but does not allow for result evaluation or ranking
of single algorithms.

A psycho-visual evaluation of segmentation algorithms
using human observers was proposed in [68]. The test was
designed to visually compare two segmentations in each
step and answer whether the best segmentation consensus
exists. While such human judgment indeed allows for
meaningful evaluation, this approach is too demanding to
be applicable in image segmentation research.

The next section describes the basic functionality of our
benchmark, the data used, and the benchmark generation
algorithm. The following sections present the benchmark
performance criteria (3), ranking stability (4), verification on
real images (5), examples of different benchmark data with
detailed evaluation of ten recently published segmentation
methods (6), and conclusions (7).

2 BENCHMARK

The Prague texture segmentation data-generator and bench-
mark has been a web-based (mosaic.utia.cas.cz) service
already for fourteen years. Although the benchmark has con-
tinuously and significantly been upgraded and new features
have been appended during this period, it has maintained its
backward compatibility and various segmenters tested dur-
ing these years can still be mutually compared. The goal of
the benchmark is to produce a score, performance, and qual-
ity measures for an algorithm’s performance for two main
reasons: different algorithms can be compared to each other,
and the progress toward human-level segmentation perfor-
mance can be tracked andmeasured over time. A good exper-
imental evaluation should allow for comparison of the
current algorithmwith several leading alternative algorithms,
using as many test images as possible and employing several
evaluation measures for such comparison (in the absence of
one clearly optimal measure). Our benchmark possesses all of
these features.

Single textures and the mosaics generation approaches
have been chosen purposefully, namely, to produce unusu-
ally complicated tests to provide a space for future segmen-
tation algorithm improvement.

This benchmark allows us to evaluate numerous
segmenter’s performance characteristics on a virtually
unlimited extent of data. However, the number of tested
features requires careful consideration to include only the
most important ones. Otherwise, the evaluation tables
would be fragmented into many specialized sub-tables with
few comparative results, and the benchmark would lose its
chief purpose.

All test regions are created from naturally measured
textures (stochastic, regular, and near-regular, indoor or
outdoor); hence they obey the fundamental texture prop-
erty – homogeneity at least to a certain degree. Textures
may limit the validity of the evaluation results on entirely
different (textureless) visual data types, for example, seg-
mentation of drawings, cartoons, cartographic maps,
documents, range maps, characters, or 3D scenes with
significant geometric distortions. Luckily, most existing
images, such as outdoor or indoor photographs, aerial or
satellite images [28], [67], material samples [27], [31] or
medical images [32] are reasonably approximated by these
mosaics, and the benchmark ascertainments are informa-
tive for them as well.
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Our benchmark operates either in the full mode for regis-
tered users (unrestricted mode – U) or in a restricted mode.
The major differences between both working modes are that
the restricted operational mode does not permanently store
visitor data (results, algorithm details, etc.) into its online
database and does not allow custom mosaic creation. To be
able to use the full-unrestricted benchmark functionalities,
the user is required to be registered (on the registration page).

The benchmark allows:

� To obtain customized experimental texture mosaics
and their corresponding ground truths (U);

� To obtain the comparative benchmark texture mosaic
setswith their corresponding ground truths;

� To evaluate visitor’s working segmentation results and
compare themwith the state-of-the-art algorithms;

� To update the benchmark database (U) with an algo-
rithm (reference, abstract, benchmark results, and
code) and use it for subsequent benchmarking of
other algorithms;

� To grade the noise, scale, rotation, spectral, illumina-
tion, border localization, or benchmark size endur-
ance of an algorithm;

� To check single mosaic evaluation details (criteria
values and the resulting thematic maps);

� To rank segmentation algorithms according to the
most common benchmark criteria;

� To rank segmentation algorithms according to the
weighted meta-criteria of any criteria subset (U);

� To obtain LaTeX or MATLAB coded resulting crite-
ria tables (U) and sensitivity graphs.

2.1 Image Database

The generated texture mosaics, as well as the benchmarks,
are composed of the following texture types:

1) Color textures.
2) Monospectral textures (derived from the corre-

sponding color textures).
3) Dynamic color textures (Fig. 1 – right).
4) Hyperspectral (10 spectral bands, 30 m resolution)

satellite textures.
5) High-resolution (up to 0.41 m) three-spectral satellite

textures.
6) BTF (bidirectional texture function) textures (variable

light and viewing angles; variable light and fixed
viewing angles; fixed light and variable viewing
angles; BTF mapped on variable surface mosaic Fig. 1
– left).

7) Rotation invariant texture set.
8) Scale-invariant texture set.
9) Illumination invariant texture set.

10) Several invariant combinations (rotation & scale,
rotation & illumination, scale & illumination, rota-
tion & scale & illumination).

It is thus possible to evaluate how a segmenter’s perfor-
mance depends on the texture scale, illumination and viewing
angles, spectral bands, resolution, time, noise, border type, or
rotation. The benchmark uses color textures from our large
(more than 2000 high resolution color textures categorized
into 14 thematic classes and 20 subclasses) Prague color tex-
ture database. All these textures are natural textures or man-
madematerial textures, which are only approximately homo-
geneous (i.e., the local statistics for single textures are similar
but not identical). Hard natural textures were deliberately
chosen rather than homogeneous synthesized (for example,
using Markov random field models) ones because they are
significantly more difficult to be correctly segmented by seg-
mentation methods. The benchmark uses cut-outs from the
original textures (1/6 approximately), either in the original
resolution or a sub-sampled version. The remaining texture
parts are used for the separate test/training sets in the bench-
mark-supervised mode. The benchmarks use 114 color/grey-
scale textures from 10 classes. These textures were selected
deliberately to be difficult for the segmenters. We believe that
only under challenging conditions we can obtain knowledge
useful for improving segmentation algorithms. The bench-
mark has a large margin for improvement for unsupervised
segmenters even after fourteen years of service to the commu-
nity. However, approaching the benchmark limits, a more
complex new texture set can be easily introduced without
influencing the benchmark concept or its implementation.
The BTFmeasurements [66] are provided courtesy of the Uni-
versity of Bonn, or they are from our UTIA BTF database [26].
Dynamic textures are from the DynTex database [62] and the
remote sensing data are either from hyperspectral ALI EO-1
[17] or very-high-resolutionGeoEye [25] satellites.

2.2 Benchmark Generation

Benchmark datasets are computer-generated 512� 512 (256�
256 – BonnBTF, 1024� 1024 –UTIABTF, 720� 576 – dynamic
textures) pixel random mosaics filled with randomly selected
textures. The randommosaics are generated by using the Vor-
onoi polygon randomgenerator [71]. It first creates aDelaunay
triangulation, then it determines the circumscribe centers of its
triangles, and finally, it interconnects these points according to
the neighborhood relations between the triangles. The result-
ing Voronoi polygons can further be modified, if required, by
inserting additional border points into each polygon line.
Alternatively, to piece-wise linear borders, it is possible to gen-
erate spline defined borders or suppressed borders using bor-
der area morphing. We make use of the fact that segmenting
smaller, unequal size and irregular objects is more difficult
than segmenting bigger and regular objects, such as obligatory
squares or circles. BTF mosaics are created by BTF wood spe-
cies measurements mapped on 3D spline surfaces fitted into
random height lattice coordinates. Dynamic texture mosaics
have varying layouts, and each variable cell is filled with a
dynamic color texture from the Dyntex database [62]. The

Fig. 1. Sample mosaics with BTF (left) and dynamic (right) textures.
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layout is generated from randomly placed control points,
which are subsequently randomly shifted between key-frames
and interpolated for five frames between two successive key-
frames. The area and location of each class region are thus
dynamically changed. Invariant mosaics are generated by
applying the corresponding transformations, i.e., rotation,
scaling, illumination, and variable lighting or viewing angle.

Color and greyscale benchmarks are generated upon
request in three quantities (normal = 20, large = 80, huge = 180
test mosaics). BTF and satellite benchmarks have halved
quantities. But if required, it is easy to generate any number
automatically of such mosaics (e.g., hundreds or even thou-
sands). The benchmark archive, either in the compressed tar
or in zip formats, contains images in the PNG format and the
data.xml file with detailed descriptions of all mosaics (num-
ber of regions, source component textures, size, etc.). For each
texture mosaic, the corresponding ground truth and mask
images are also included. The supervised version of each
benchmark additionally contains independent (i.e., holdout
test estimate) training images for every texture class involved.
The test mosaic layouts and each cell texture membership are
pseudo-randomly generated but with identical initialization
of the corresponding random generators, so the requested
benchmark sets (for the same size and type) are identical for
every visitor.

2.2.1 Noise Corruption

Noise is an important attribute that affects the performance
of learning or segmenting algorithms. In real-world applica-
tions, noise is an integral part of measurements, and the
noise level is usually unknown. The benchmark enables us
to test the noise robustness of single segmenters. The bench-
mark mosaics can be corrupted during their generation
with additive Gaussian noise in several signal-to-noise ratio
(SNR) steps, Poisson, or salt & pepper noise. The user can
choose between ten SNR steps for the additive Gaussian
(h�10; 35i dB) noise or ten steps for the salt & pepper noise
(noise probabilities h0:5; 0:01i).

2.2.2 Custom Mosaics

Registered users can benefit from all functions of the under-
lying benchmark engine. They can design their custom
mosaics by specifying the image size, number of cells, num-
ber, and type of the textures to be used as well as the type of
cell borders (straight lines, piecewise linear, splines, or
attenuated borders).

2.2.3 Comparative Methods

For each compared algorithm, there is a concise description
available. Each method can contain hyperlinks to further
information (author, algorithm details, BIB entry, and
WWW external page). Working versions of a segmenter can
be compared in the restricted mode. Uploaded temporal
results and data in this mode are stored in the database for
a limited time only, and they are deleted after its expiration.

3 PERFORMANCE CRITERIA

The submitted benchmark results are evaluated and stored
(U) in the server database and used for the algorithm ranking

according to a chosen criterion or the weighted meta-crite-
ria. These user-specified ranking weights allow modifying
the relative criteria importance. We have implemented
the forty-two (up to now) most frequent evaluation
criteria categorized into seven groups: region-based (five
criteria with the standard threshold + five performance
curves Fig. 5 and five performance integrals (1) through all
threshold settings Fig. 5, 12 pixel-wise, four consistency
measures, five clustering comparison, three information,
seven set criteria, and one boundary criterion. The perfor-
mance criteria mutually compare the ground truth image
regions (or another segmentation) with the corresponding
machine segmented regions. The implemented criteria dif-
fer in their properties. The subset of informative criteria
depends on an application, type of data, or properties the
user needs to study. Some criteria are highly correlated
(JC, DC); thus, their simultaneous usage has no informa-
tion value. Some implemented criteria have metric proper-
ties (DHD, M, VD, VI), some are bounded mostly between
0 and 1 (BCE, BGM, C, CA, CC, CI, CO, DC, EA, F, FMI,
GBCE, GCE, I, II, JC, L, LCE, NMI, O, RI, NBDE) or from
one side only (ARI, RM). Ideally, the criteria should be
monotonic, symmetric (BCE, BGM, DC, FMI, GBCE, GCE,
JC, LCE, M, MI, NMI, VD, VI), independent of the number
of pixels (AVI) or segments, and applicable for both super-
vised or unsupervised segmentation regardless of the
number of segments. Segmentation performance can be
alternatively or additionally based on boundary matching
[23], [36], but these measures are intolerant to sampling,
scaling, compression, over-segmentation, and only loosely
correspond to human perception of segmentation quality.
The benchmark allows us to evaluate and compare single
algorithms border precision using either the NBDE crite-
rion or the correct detection (CS) performance curve (Sec-
tion 3.1) close to the highest evaluated threshold (Fig. 5;
t ¼ 0:975) which is a robust criterion for the boundary
detection precision.

Symbols " = # further denote the trend of the correspond-
ing criterion value for the better segmenter, i.e., values "
higher or # lower than those achieved by an inferior
method. All criteria are available on two levels:

� averaged over the corresponding benchmark;
� averaged over benchmark subsets (mosaics sharing

the same generation parameters; for normal size, it is
only a single mosaic).

The basic region-based criteria available are correct,
over-segmentation, under-segmentation, missed, and noise.
All these criteria are available either for a single threshold
parameter setting or as the performance curves and their
integrals. Our pixel-wise criteria group contains the most
frequent classification criteria, such as the omission and
commission errors, class accuracy, recall, precision, map-
ping score, etc. The consistency criteria group incorporates
the global and local consistency errors. The clustering com-
parison group contains five criteria while the information
criteria group has three criteria. Seven criteria are imple-
mented in the set group. Finally, the last criterion set con-
tains the boundary displacement error. The evaluation table
is reordered according to the chosen criterion by clicking on
a required criterion or the meta-criterion.
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3.1 Region-Based Criteria

The region-based criteria [35] mutually compare the
machine segmented regions Ri i ¼ 1; . . . ;M with the correct
ground truth (or another segmentation) regions ~Rj j ¼
1; . . . ; N where jRj is the corresponding set cardinality. The
regions overlap acceptance is controlled by the threshold
t ¼ 0:75. Single region-based criteria are defined as follows:

"CS (correct detection) : fRk; ~R~kg iff
1) jRk \ ~R~kj � t jRkj ,
2) jRk \ ~R~kj � t j ~R~kj .
The ideal segmentation has the same number of correctly

detected (CS) regions with very similar shapes and loca-
tions (for the required 75 percent overlap) as the ground
truth map. Ideally, neither ground truth region should be
over-segmented, nor should any machine segmented region
contain more than one corresponding ground truth region
(under-segmentation).

#OS (over-segmentation) : fRk1 ; . . . ; Rkx ;
~R~kg; 2 � x � M

iff

1) 8i 2 h1; xi; jRki \ ~R~kj � t jRki j ,
2)

Px
i¼1 jRki \ ~R~kj � t j ~R~kj .

#US (under-segmentation) : fRk; ~R~k1
; . . . ; ~R~kx

g; 2 � x � N
iff

1)
Px

i¼1 jRk \ ~R~ki
j � t jRkj ,

2) 8i 2 h1; xi; jRk \ ~R~ki
j � t j ~R~ki

j .
The missed regions are the ground truth regions that have
not been detected in any of the categories mentioned above
(CS, OS, US).

#ME (missed error) : f ~R~kg iff ~R~k =2 CS, ~R~k =2 OS, ~R~k =2 US.
Similarly, the noise regions are the machine segmented

regions which do not belong to any of the CS, OS, or US
categories.

#NE (noise error) : fRkg iff Rk =2 CS, Rk =2 OS, Rk =2 US.
Single region-based criteria are also available as the cor-

responding performance curves, see Fig. 5 CSðtÞ, OSðtÞ,
USðtÞ,MEðtÞ, NEðtÞ. These curves allow us to compare sen-
sitivity of different segmenters to the changing threshold
value (t 2 h0:5; 1i). Finally, the last five region criteria are
approximations of the performance curve integrals

�f ¼ 2

Z 1

0:5

fðtÞ dt ; (1)

where fðtÞ is a curve from {CSðtÞ, OSðtÞ, USðtÞ, MEðtÞ,
NEðtÞ}. These integral criteria can be found in the parenthe-
ses (Fig. 5) next to the algorithm color symbol, but not in the
results comparison tables’ page.

3.2 Pixel-Wise Weighted Average Criteria

The pixel-wise criteria were originally developed for the
supervised classifiers evaluation. We also generalized them
for the unsupervised (i.e., unknown class-separate training
sets and number of classes) applications, where their direct
application is prevented due to the unknown mutual corre-
spondence between the segmented and ground truth regions,
as well as the different cardinalities of both these region sets.
Themutual assignment of themachine segmented and ground

truth regions for the pixel-wise criteria evaluation is solved by
using theMunkre’s assignment algorithm [55] which finds the
minimal cost assignment g : A 7! B,

P
a2A fða; gðaÞÞ between

sets A, B, jAj ¼ jBj ¼ n given by the cost function fða;bÞ, a 2
A;b 2 B. The algorithm has polynomial complexity instead of
exponential for the exhaustive search.

Let us denote ni;� ¼
PN

j¼1 ni;j , and n�;i ¼
PM

j¼1 nj;i ,
where N;M are the correct number of classes and the inter-
preted number of classes (or regions), respectively. n is the
number of pixels in the test set, K ¼ maxfM;Ng, ni;j is the
number of pixels interpreted as the ith class but belonging
into the jth class. The error matrix ðfni;jgÞ extended into
K �K is obtained by padding missing entries with zeros.
Here {̂ is either i for supervised tests or mapping of the ith
class ground truth into an interpretation segment based on
the Munkres algorithm (for an unsupervised test). The fol-
lowing pixel-wise criteria were implemented:

The overall ratio of the wrongly interpreted pixels #O
(omission error)

O ¼ med
Oi

n�;i

� �N

i¼1

¼ med 1� n{̂;i

n�;i

� �N

i¼1

h0; 1i ;

where Oi is the ith class omission error. The overall ratio of
the wrongly assigned pixels #C (commission error)

C ¼ med
Ci

n{̂;�

� �M

{̂¼1

¼ med 1� n{̂;i

n{̂;�

� �M

{̂¼1

h0; 1i ;

where Ci is the ith class commission error.
"CA (the weighted average class accuracy)

CA ¼ 1

n

XK
i¼1

n{̂;i n�;i
n�;i þ n{̂;� � n{̂;i

h0; 1i ;

"CO (recall, the weighted average correct assignment)

CO ¼ 1

n

XK
i¼1

n�;i COi ¼ 1

n

XK
i¼1

n{̂;ih0; 1i ;

"CC (precision, object accuracy, overall accuracy)

CC ¼ 1

n

XK
i¼1

n�;i CCi ¼ 1

n

XK
i¼1

n{̂;i n�;i
n{̂;�

h0; 1i ;

#I: (type I error, the weighted probability of wrong assign-
ment of classes pixels)

I ¼ 1

n

XK
i¼1

n�;i � n{̂;i

� � ¼ 1� COh0; 1i ;

#II: (type II error, the weighted probability of commission
error)

II ¼ 1

n

XK
i¼1

n{̂;� n�;i � n{̂;i n�;i
n� n�;i

h0; 1i ;

"EA (mean class accuracy estimate)

EA ¼ 1

n

XK
i¼1

2n{̂;i n�;i
n�;i þ n{̂;�

h0; 1i :
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The " F measure curve

F ðgÞ ¼ 1

n

XK
i¼1

n�;i
CCi COi

gCOi þ ð1� gÞCCi
h0; 1i ;

where g 2 h0; 1i . F ð0:5Þ ¼ EA, F ð0Þ ¼ CO, F ð1Þ ¼ CC.
The mapping score "MS emphasizes the error of not rec-

ognizing the test data

MS ¼ 1

n

XK
i¼1

1:5n{̂;i � 0:5n{̂;�
� �h�0:5; 1i :

The root mean square proportion estimation error #RM

RM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

K

XK
i¼1

n{̂;� � n�;i
n

� �2vuut � 0

indicates an unbalance between the omission Oi and com-
mission Ci errors, respectively. The comparison index "CI
includes both these types of errors

CI ¼ 1

n

XK
i¼1

n{̂;i

ffiffiffiffiffiffiffi
n�;i
n{̂;�

r
¼ 1

n

XK
i¼1

n�;i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CCiCOi

p
h0; 1i ;

where CCi; COi are the object precision and recall. CI
reaches its maximum either for the ideal segmentation or
for equal commission and omission errors for every region
(class).

3.3 Consistency Error Criteria

Let S; ~S be two segmentations, Rp the set of pixels corre-
sponding to a region in the S segmentation and containing
the pixel p, jRj the set cardinality andnthe set difference. A
refinement tolerant measure error was defined [49] at each
pixel p

"pðS; ~SÞ ¼ jRpn ~Rpj
jRpj :

This non-symmetric local error measure encodes a measure
of refinement in one direction only. Two symmetric error
measures for the entire image, based on the theory of the
human perceptual organization, are defined: Global Consis-
tency Error (#GCE) forces all local refinements to be in the
same direction while Local Consistency Error (#LCE)
allows refinement in both directions

GCEðS; ~SÞ ¼ 1

n
min

X
p

"pðS; ~SÞ;
X
p

"pð ~S; SÞ
( )

;

LCEðS; ~SÞ ¼ 1

n

X
p

min "pðS; ~SÞ; "pð ~S; SÞ
	 


;

LCE;GCE 2 h0; 1i ; LCE � GCE :

The major problem with these consistency measures is
their tolerance to incorrect over-segmentation of the ground
truth. If the segmentation is an over-segmented version of
the ground truth or vice versa, the segmentation error is
always zero. Thus the trivial segmentations with either all

regions containing just one pixel or the whole image being a
single region are the ideal segmentations LCE ¼ GCE ¼ 0
according to both consistency criteria. To overcome this
problem, Martin proposed [50] Bidirectional Consistency
Error (#BCE) and further �Sruba�r [73] Global Bidirectional
Consistency Error (#GBCE)

BCEðS; ~SÞ ¼ 1

n

X
p

max "pðS; ~SÞ; "pð ~S; SÞ
	 


;

GBCEðS; ~SÞ ¼ 1

n
max

X
p

"pðS; ~SÞ;
X
p

"pð ~S; SÞ
( )

;

BCE;GBCE 2 h0; 1i :

3.4 Clustering Comparison Criteria

Several clustering comparison criteria – BGM, SC, SSC,
VD, L are implemented in the benchmark. Denote nk;~k the
number of points in the intersection nk;~k ¼ jRk \ ~R~kj, nk ¼
jRkj, n~k ¼ j ~Rkj .

"BGM (bipartite graph matching [42])

BGMðS; ~SÞ ¼ w

n
h0; 1i ;

where w is the sum of a maximum-weight bipartite graph
matching. The nodes are clusters of S and ~S, while the edges
are between each pair of nodes ðk; ~kÞ having the weight nk;~k.
Similarly #VD the bounded n-invariant, symmetric Van
Dongen metric evaluates only intersections using Direc-
tional Hamming Distances #DHD as defined in [36].

Another method of this group computes set differences.
For this purpose, maximal intersections are removed. First,
we define Directional Hamming Distance from segmenta-
tion S to segmentation ~S [36]

DHDðS; ~SÞ ¼
X
~k

X
k

nk;~k �maxknk;~k

 !
;

VDðS; ~SÞ ¼ DHDðS; ~SÞ þDHDð ~S; SÞ
2n

;

VDðS; ~SÞ ¼ 1�
X
k

max~knk;~k �
X
~k

maxknk;~k

 !.
2n :

"L (Larsen [44] asymmetric criterion)

LðS; ~SÞ ¼ 1

nk

X
k

max~k

2nk;~k

nk þ n~k

h0; 1i ;

two directional segmentation covering "SC

SCðS; ~SÞ ¼ 1

n

X
k

nkmax~k

nk;~k

nk þ n~k � nk;~k

h0; 1i ;

and "SSC

SSCðS; ~SÞ ¼ SCð ~S; SÞh0; 1i :
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3.5 Information Criteria

We have implemented three normalized information-based
criteria derived from the variation of information VI and
the mutual informationMI. Let denote the entropy as

HðSÞ ¼ �
X
k

nk

n
log 2

nk

n

and "MI (the symmetric mutual information)

MIðS; ~SÞ ¼
X
k

X
~k

nk;~k

n
log 2

nk;~k n

nk n~k

is bounded by entropies 0 � MIðS; ~SÞ � minfHðSÞ; Hð ~SÞg.
Then the variation of information #VI (is a metric) not

bounded by a constant value defined [51]:

VIðS; ~SÞ ¼ HðSÞ þHð ~SÞ � 2MIðS; ~SÞh0; log 2ni :

It is possible to show that the variation of information
complies with symmetry, additivity w.r.t. refinement, addi-
tivity w.r.t. join, convex additivity and scale properties (see
the details in [51]).

#AVI (VI normalized w.r.t. number of pixels)

AVIðS; ~SÞ ¼ VI

log 2ðnÞ
h0; 1i :

#NVI (VI normalized w.r.t. number of classes/regions)

NVIðS; ~SÞ ¼ VI

2log 2ðmaxfK; ~KgÞ ;

where NVIðS; ~SÞ 2 0; log 2n

2log 2ðmaxfK; ~KgÞ

D E
.

"NMI (normalized mutual information [74])

NMIðS; ~SÞ ¼ MIðS; ~SÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HðSÞHð ~SÞ

q h0; 1i :

3.6 Set Criteria

Set measures are based on counting pixel pairs [42], [76]
which are either in the same regions in both partitions S
and ~S – N11, different regions in both partitions – N00, the
same regions in S but different regions in ~S – N10, and dif-
ferent regions in S but the same regions in ~S – N01. These
criteria are symmetric with the exception of WI and WII cri-
teria. Note that the count of pairs in ðN11 þN00Þ represents
the agreement whereas the count of pairs in ðN10 þN01Þ
represents the disagreement between the two partitions.

N11 ¼
X
k

X
~k

nk;~k

2

� �

N10 ¼
X
k

nk

2

� �
�N11

N01 ¼
X
~k

n~k

2

� �
�N11

N00 ¼ n

2

� �
�N11 �N10 �N01

"JC (Jaccard coefficient [41])

JCðS; ~SÞ ¼ N11

N11 þN10 þN01
h0; 1i :

"DC (Dice coefficient [15])

DCðS; ~SÞ ¼ N11

N11 þ ðN10 þN01Þ=2 h0; 1i :

The Dice coefficient can be computed from the Jaccard coef-
ficient:

DCðS; ~SÞ ¼ 2JCðS; ~SÞ
1þ JCðS; ~SÞ ;

DCðS; ~SÞ � JCðS; ~SÞ, thus it provides the identical ranking.
"FMI (Fowlkes and Mallows index [21])

FMIðS; ~SÞ ¼ N11ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN11 þN10ÞðN11 þN01Þ
p h0; 1i :

FMI has high value for small number of cluster even for
independent partitions.

"ARI (adjusted RI [38]) is based on Rand index [64]:

RIðS; ~SÞ ¼ 2ðN11 þN00Þ
nðn� 1Þ h0; 1i :

The Rand index is dependent on the number of clusters and
elements. RI converges to 1 as the number of clusters
increases in independent clusterings [21] and its adjuste-
ment is:

ARI ¼ RI � ExpectedIndex

MaxIndex�ExpectedIndex
� 1:

ARI ¼
P

k;~k
n
k;~k
2

� �
� P

k
nk
2

� �P
~k

n~k
2

� �h i
n
2

� �
1
2

P
k

nk
2

� �þP~k
n~k
2

� �h i
� P

k
nk
2

� �P
~k

n~k
2

� �h i
n
2

� �
ARI problematic assumptions is a generalized hypergeo-
metric distribution for null hypothesis [38] and possible
negative index values [51].

"WI;WII (Wallace [77])

WIðS; ~SÞ ¼ N11

N11 þN01
h0; 1i ;

WIIðS; ~SÞ ¼ N11

N11 þN10
h0; 1i :

Criteria WI;WII;DC are the same as Pr;Rr; Fr in [63] and
symmetric FMI is the geometrical mean of asymetric crite-

riaWI;WII, i.e., FMIðS; ~SÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WIðS; ~SÞWIIðS; ~SÞ

q
.

The Mirkin metric #M is defined:

MðS; ~SÞ ¼ 2ðN01 þN10Þ
nðn� 1Þ � 0 ;

MðS; ~SÞ ¼ 1�RIðS; ~SÞ
. n

2

� �
:
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The Mirkin metric is sensitive to cluster sizes and wrongly
prefers clusterings with identical cluster’s cardinality [76].

3.7 Boundary Criterion

#BDE (boundary displacement error) [79] measures the
average displacement error of boundary pixels between
two segmentation results. Mean absolute surface distance
(MASD) measures the average minimum distance between
two boundaries. BDE is elsewhere called MASD. We use
normalized version of this criterion

dðr; B2Þ ¼ mins2B2
kr� sk

BDEðB1; B2Þ ¼ 1

2

X
r2B1

dðr; B2Þ
jB1j þ

X
r2B2

dðr; B1Þ
jB2j

 !
;

where dðr; B2Þ is the euclidean distance of a boundary point
r 2 B1 to the boundary set B2.

#NBDE (normalized boundary displacement error)

NBDEðB1; B2Þ ¼ 2

maxðw; hÞBDEðB1; B2Þh0; 1i ;

where w; h is the width and the height of the image.

3.8 Meta-Criteria

The meta-criteria serve for fast ranking of segmenters using
any subset of the implemented benchmark criteria. This cri-
teria can have either identical influence ðwc ¼ 1

jCj ; RANKm 2
h1; jMjiÞ or their importance can be individually selected. C
is a chosen criteria set, and the criteria trend is dc 2 f"; #g.
M is a given set of methods / results and the user selected
criteria weights are wc, where W ¼Pc2C wc. All criteria val-
ues xm

c are multiplied by one hundred (�100), where m 2
M, c 2 C:

Xc ¼ fxm
c j m 2 Mg;

rmc ¼ rankðxm
c ;XcÞ;

vmc ¼ xm
c ; for dc ¼"

100� xm
c ; for dc ¼#

�
;

zmc ¼ xm
c � mc

rc
; mc ¼ EðXcÞ; rc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðXcÞ

p
;

sc ¼ fþ1 for dc ¼";�1 for dc ¼#g:

#RANK (weighted average of ranks)

RANKm ¼ 1

W

X
c2C

wcr
m
c

"AVG (weighted average of values)

AVGm ¼ 1

W

X
c2C

wcv
m
c

"NORM (weighted average of z-scores)

NORMm ¼ 1

W

X
c2C

wcscz
m
c :

3.9 Criteria Relationship

A natural question arises with these many evaluation crite-
ria used by different researchers: are they all really needed?
An optimal criterion depends on the intended application
and varying classification priorities, which is the reason
why so many criteria are used. The unsupervised segment-
ers in Table 1 illustrate this observation: there is no seg-
menter scoring best for all of the evaluated criteria.
Applications that cannot tolerate over-segmentation cannot
use consistency measures or under-segmentation. Security
applications and defect detectors should, on the other hand,
guarantee low under-segmentation; thus the commission
error or Van Dongen metric are not the best criteria to con-
sult. Region-based criteria are robust and appropriate for
the majority of applications where precise border location is
not of primary interest. For this reason, the benchmark does
not prefer any criterion. A user can click on any criterion to
reorder the evaluation table according to an intended appli-
cation or a tested performance characteristic or use the
meta-criteria over a subset of criteria.

3.9.1 Pearson Correlation

Fig. 2 presents color-coded Pearson correlation analysis1 for
thirty-six segmentation criteria computed for seventeen
unsupervised segmentation algorithms, which were evalu-
ated using our 180 color benchmark test mosaics. While
strong correlation between I, CO and EA, CA can be
expected, a high correlation betweenME,NE or CI,MS cri-
teria is less obvious. In this experiment three mutually posi-
tively correlated groups of criteria g1; g2; g3 emerged

g1 ¼ CS;EA;CA;CI;MS;CO; FMI;f
JC;DC; SSC;ARI;BGM;SCg

g2 ¼ fGCE;LCE;ME;NEg
g3 ¼ I; BCE;GBCE; VD;f

AVI;NVI;M;RM;Og:

The g3 group is simultaneously negatively correlated
with the group g1. The lowest mutual correlation with
others occurs for the OS over-segmentatiuon criterion. The
same analysis on the Berkeley data set [49] confirms g1; g2
positive correlation, but only gBSDS

3 ¼ fI;Mg and g1 nega-
tive correlation with gBSDS

4 ¼ fM;VD; Ig. Although such
analysis suggests that it is sufficient to use only one repre-
sentative criterion per correlated criterion’s group for the
concise evaluation of an algorithm, it is not the case. Single
criteria correlation depends on data classes, the number of
test mosaics, and a specific classifier. Even one of the most
stable correlation values between NE and ME weaker for
two methods (DBM [30] and VRA [58]). Thus a detailed
analysis of a method’s properties is required to study all of
our criteria.

3.9.2 Spearman Rank Correlation

Criteria relationship was also analyzed using the Spearman
rank correlation for all mutual combinations (630) of 36 cri-
teria using the significance level 0.01. The rank correlation

1. For further graphs see mosaic.utia.cas.cz/PAMI.
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was computed from 180 segmentation results on the Prague
texture benchmark color mosaics and 180 segmentations on
the Berkeley data set. The Spearman rank correlation agrees
well with the Berkeley data set and the Prague texture
benchmark and confirms the Pearson correlation results in
the previous section. The least rank correlated criteria on
the both combined test sets are successive OS, US, O, NE,
ME, NBDE, .... The OS criterion is, for example, uncorre-
lated with the following criteria:

CA;CO; I;MS;BCE;GBCE;BGM;SC; SSC; VD;

AVI;NVI;NMI;ARI; JC;DC; FMI;NBDE

on both sets and uncorrelated on separate sets on several
other criteria.

4 RANKING STABILITY

Image segmentation papers, with a few honorable exceptions,
present their methods on insufficient number of test images.
Therefore, their results have a negligible information value.
Fig. 3 – left (dotted lines) illustrates this problem on seven
well-known segmenters1 Blobword [5], DBM [30], EDISON
[9], HGS (W) [34], SEG [13], EGBIS [20], TBES [54]) using the
over-segmentation (OS) criterion performance on nine differ-
ent test mosaic sets, each set having 20mosaics. None of these
segmenters has stable performance on all of these test sets.
The OS criterion performance changes from 8 percent differ-
ence for the HGS (W) method [34] to 24 percent difference for
JSEG [13] between different sets of 20 mosaics with the mean
difference over six methods being 15 percent and standard

TABLE 1
Color Benchmark Results for *EWT-FCNT, *FCNT, yFCNT, A3M, PCA-MS, GRPNMF, CMS, LGG, IGMRF, yRS

Benchmark criteria (�100): CS = correct segmentation; OS = over-segmentation; US = under-segmentation; ME = missed error; NE = noise error;
O = omission error; C = commission error; CA = class accuracy; CO = recall - correct assignment; CC = precision - object accuracy; I = type I error;
II = type II error; EA = mean class accuracy estimate; MS = mapping score; RM = root mean square proportion estimation error; CI = comparison
index; GCE = global consistency error; LCE = local consistency error; BCE = bidirectional consistency error; GBCE = global bidirectional consis-
tency error; BGM = bipartite graph matching; SC = segmentation covering; SSC = segmentation covering 2; VD = Van Dongen metric; L = Larsen
metric; AVI = adjusted variation of information; NVI = normalized variation of information; NMI = normalized mutual information; M = Mirkin
metric; ARI = adjusted Rand index; JC = Jaccard coefficient; DC = Dice coefficient; FMI = Fowlkes-Mallow index; WI = Wallace discrepancy I;
WII =Wallace discrepancy II; NBDE = normalized boundary displacement error; superscripts = ranks; RANK, AVG, NORM =meta-criteria; values
in bold are the best while italic values are the worst.
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deviation 5 percent. The correct detection (CS) changes from 7
percent difference for the EDISON method [9] to 18 percent
difference for HGS (W) with the mean difference over six
methods being 13 percent and the standard deviation 3 per-
cent. The CS, OS, ME, NE, O, C, and MS criteria vary the
most. The HGS (W) method has the largest variations for ten
criteria, while TBES [54] has thirteen smallest criteria varia-
tions. The consequence is an unstable quality ranking
between DBM [30] and Blobword [5] or JSEG and EDISON.
Fig. 3 – right confirms this typical behavior – rank swapping
using the over-segmentation (OS) criterion. Fig. 3 (solid lines)
presents a typical segmenter behavior; the single quality crite-
ria and the corresponding algorithm’s ranking become stable

only after at least eighty test images. Thus any segmenter vali-
dation is faithful only for large test sets. Small test sets can just
suggest a possible behavior and its approximate ranking.

5 MOSAICS VERSUS REAL IMAGES

Another natural question is how realistic such extensive per-
formance evaluation is on computer assembled textural
mosaics. Visual scenes contain objects from variousmaterials;
these materials are typically represented as visual textures
[28], [40] mapped on the corresponding object shapes. Thus
any real image can be represented as a textural mosaic. How-
ever, a material’s appearance predominantly depends on the
viewing, illumination, and shape properties, among other
[28]. The viewing and illumination conditions are somewhat
varied for each texture in the test mosaic, the viewing direc-
tion follows the surface normal, and all textures have correct
natural illumination. This illumination is mostly solar and
only approximately consistent between different textures of
the mosaic. The test data are roughly planar and as such they
only approximate a real visual scene with general object
shapes with geometrically distortedmaterial surface textures.
However, they allow us to make use of the exact ideal and
non-subjective segmentation, and to generate test sets of
any size we wish. But, most importantly, the ranking of the

Fig. 2. Correlation between 36 segmentation criteria (mean correlation over 17 methods and 180 segmentation results each). A rectangle’s color and
size correspond to the correlation value and standard deviation, respectively.

Fig. 3. Stability (dotted line averaged 20 test mosaics, solid line increas-
ing test size from 20 to 180 mosaics) graphs for seven segmenters and
the over-segmentation criterion.
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segmentationmethods correlatewell with the experiments on
real natural scenes, as we have verified on the Berkeley test
database [49], and the unlimited size of the test is crucial to
obtain stable performance ranking. The Berkeley test database
has up to five different subjective ground truth for each
image; we thus compare the average correlation over all these
alternatives with ourmosaic results for numerous benchmark
segmenters. The average Pearson’s correlation between the
Berkeley and our benchmark test sets is 0.87 (for seventeen
unsupervised segmenters, 36 test criteria, and 180 test images
in both databases). Similarly, the Spearman rank correlation
agrees in 83 percent between the Berkeley data set and the
Prague texture benchmark (for significance level 0.01, 36 test
criteria, and 180 test images in both databases). Fig. 4 – top
illustrates1 this similarity for the EDISON method. Most of
the 36 criteria curves have similar appearances on the pre-
sented benchmark data and on the Berkeley data set. The
FSEG curves (Fig. 4 – bottom) significantly differ due to
each method’s tuning to the contest data [30]. All these
experiments suggest that our benchmark is a robust image
segmentation algorithm’s evaluation tool. It simultaneously
outperforms alternative benchmarks with its major superior-
ity features - an unlimited number of user-controlled (e.g.,
number of regions, border shapes, noise content) test images
and the objective ground truth. Such crucial properties cannot
be achieved with any real image test sets such as BSDS500 [3]
or Outex Texture Database [56].

6 EXAMPLES

Detailed analysis of single methods is beyond the scope of this
article due to the nearly 200 different segmentation methods
and several thousand test results recently present in the

benchmark. The benchmark’s functionalities are demonstrated
in the evaluation of ten previously published examples of
unsupervised or supervised image segmentation methods.
However, they are used to illustrate the benchmark functional-
ity and not to review the recent image segmentation state-of-
the-art. Themajority of segmentationmethods are tested in the
benchmark by their authors, which guarantees their evalua-
tion objectivity, and every author can freely decide whether to
keep his or her method’s results in the benchmark database.
Wewitnessed variousmethods ofwithdrawal fromour bench-
mark often when the corresponding method’s performance
was only average and thus potentially endangering its possible
publication. The following examples detail color textures/
images because the vast majority of image segmenters aim for
these data. Nevertheless, analogical analysis can be easily
done for other types of data, only briefly discussed in the fol-
lowing subsections. All the corresponding details, both
numerical and visual, in this section can be checked on the
benchmark web and some comments on Table 1 results can be
checked in [30]. We only discuss specific results for further
study.

6.1 BTF Textures

BTF mosaics are created by BTF wood species measurements
mapped on artificially created 3D surfaces. Each surface
triangle is mapped with a physically correct wood material
measurement which precisely corresponds to the local illumi-
nation and viewing conditions, and as such it represents the
state-of-the-art realistic material visual representation [28]
and eliminates most of the benchmark approximations (Sec-
tion 5) in comparison with real visual scenes. It is simulta-
neously the only existing BTF segmentation benchmark. The

Fig. 4. Criteria comparison for EDISON [9] and FSEG [80] methods on benchmark contest (PTSD&B) [30] and Berkeley data sets (BSDS) for
increasing test size from 20 to 180 images or mosaics. Arrow direction suggests the required criterion direction.
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two best methods out of the nine tested on this benchmark are
VRA-PMCFA andMW3AR8 [31], [58].

6.2 Hyperspectral Remote Sensing Textures

The remote sensing benchmark [53] uses the ten spectral
bands (0.048–2.35 ½mm�) Advanced Land Imager (ALI) [17]
and the high-resolution (up to 0.41 m, three spectral bands)
GeoEye observations [25]. The benchmark uses 31 multispec-
tral ALI and 52 GeoEye color textures categorized into
twelve thematic classes. These satellite mosaics are verified
onnumerous unsupervised, supervised, and several commer-
cial remote sensing classifiers (for details check [53] ormosaic.
utia.cas.cz/?act = view_res&bid = 18). A detailed evaluation
shows the importance of the state-of-the-art textural features
for good classifier performance or the Gaussian-mixture-
model-based clustering over more straightforward standard
clustering metrics. High-resolution data are particularly chal-
lenging, and all the benchmarked techniques perform uni-
formlyworse than on the ALI dataset.

6.3 Dynamic Textures

Color dynamic textures have two types of dynamics – vari-
able regions both in shape and location and single dynamic
regional textures from the DynTex database [62]. This
benchmark recently contains a comparison of 4 methods
[29] and six modifications of one of them. A detailed evalua-
tion is available in the benchmark (mosaic.utia.cas.cz/?act =
view_res&dyn = 1).

6.4 Color Textures

The benchmark performance is demonstrated by comparing
six unsupervised and four supervised (where *, y denote
either using supplemented training data or manually added
learning information) segmentation algorithms in Table 1 -
these ten recently published methods are CMS [59], yRS
[81], IGMRF [14], LGG [79], PCA-MS [52], GRPNMF [4],
two *;yFCNT variants [2], A3M [43], and *EWT-FCNT [37].
The performance details of numerous other methods and
further details (performance criteria, curves, all test mosaics
segmentations, etc.) can be found on the benchmark server.

Almost every algorithm has several parameters to be
tuned (e.g., weights, thresholds, seeds, and some other) and
they often significantly influence its segmentation perfor-
mance and the corresponding quality criteria. All segmenta-
tion results stored in the benchmark were produced either
with a default parameter setting suggested by their authors
or with the best parameters set tuned to the benchmark
data. However, the benchmark criteria are computed from
at least 20 experimental segmentations, so it is not easy to
artificially tune parameters to produce atypically outstand-
ing results and thus a biased ranking of a preferred method.

The unsupervised k-means clustering method [14] IGMRF
uses a texture descriptor named local parameter histograms.
These features are computed from Gaussian Markov random
fields (GMRF) local estimates. IGMRF addresses the inconsis-
tencies arising in localized parameter estimation by applying
generalized inverse, regularization, and an estimation win-
dow size selection criterion.

The supervised segmentation method yRS [81] uses the
least square solution of the linear regression model. yRS uses

local spectral histograms as the feature vectors. These vectors
consist of histograms of the intensity filter, two LoG (Lapla-
cian of Gaussian) filters with the scale values of 0.2 and 0.5,
and four Gabor filter responses. The filterbanks and integra-
tion scales are givenmanually. Themethod is limited to small
grayscale images due to the linear regression over the whole
image and all features.

An unsupervised LGG method [79] is a global/local
affinity sparse graph-cut image segmentation over super-
pixels. Global grouping is achieved using medium-sized
superpixels through a sparse representation of superpixel’s
features. Small- and large-sized superpixels are then used
to achieve local smoothness through an adjacent graph in a
given color histogram, LBP, and SIFT feature space. Differ-
ent graphs are heuristically fused. The method is prolonged.
It needs 31 minutes to segment a single Berkely image.

An A3M segmenter [43] is a framework to learn convolu-
tional features based on the piecewise constant Mumford-
Shah model for unsupervised texture segmentation when
no training data is available. The underlying idea is to learn
suitable filters in a way such that their responses (after
applying the non-linearity) on the segments is approxi-
mately constant.

*;yFCNT [2] is a supervised segmentation method which
uses a fully convolutional FCN8 network with four convolu-
tional layers. Moreover, it combines the response to filter
banks at various depths. The region boundaries are local-
ized by combining local and global information in the
deconvolution layers. yFCNT uses the A3M segmenter to
obtain learning data.

The supervised segmentation method *EWT-FCNT [37]
uses a fully convolutional network. The texture features are
extracted from images using an empirical curvelet transform.
Each image has its own set of curvelet filters. These features
are subsequently fed into a fully convolutional network.

The unsupervised PCA-MS [52] segmentation utilizes the
multi-phase Mumford-Shah model. The high-dimensional
textural features in the form of local spectral histograms of
Gabor features are projected onto a low-dimensional space
using the principle component analysis.

An unsupervised graph clustering and image segmenta-
tion algorithm GRPNMF [4] uses the projective nonnegative
matrix factorization to lessen the representation dimension-
ality of the Lab color and Gabor filter bank on five scales
and eight orientation features.

The unsupervised method CMS is based on the coopera-
tive region merging [59].

Fig. 6 – the first column and odd rows show three selected
512� 512 mosaics from the color benchmark created from
three to ten natural color textures and the even rows contain
their corresponding ground truth, i.e., the ideal segmentation.
The last five subsequent columns in Fig. 6 demonstrate com-
parative results from ten alternative algorithms – *EWT-
FCNT, *FCNT, yFCNT, A3M, PCA-MS, GRPNMF, CMS,
LGG, IGMRF, and yRS. The visual comparison suggests the
inclination for IGMRF over-segmentation and, to less extent,
also in yRS, and largelymissed and noise errors in LGG.

LGG (Table 1) indicates the worst both missed and noise
errors. The *EWT-FCNT method has the best average rank
from all compared methods as well as the best performing
criteria (all presented 36). A3M has the best average rank
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from unsupervised methods and thirty performing criteria
better than the remaining five unsupervised methods and
even the worst performing the supervised yRS method,
which has only the OS criterion better.

Fig. 6 – the second and fifth columns (odd rows) demon-
strate robust behavior of the *EWT-FCNT supervised and
A3M unsupervised segmenters but also infrequent A3M fail-
ures caused by producing over-segmented thematic maps for

Fig. 5. Performance curves and the corresponding performance integrals for *EWT-FCNT, *FCNT, yFCNT, A3M, PCA-MS, GRPNMF, GRPNMF,
Cooperative Mum-Shah (CMS), Local Global Graph Cut (LGG), Improved GMRF (IGMRF), yRS methods averaged over 20 or 80 mosaics and
increasing threshold ðt 2 h0:525; 0:975iÞ.
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some textures. Amore elaborate post-processing step can cor-
rect such failures. The PCA-MS, GRPNMF, CMS, LGG,
IGMRF, and yRS algorithms performed steadily worse on the
benchmark data, which can also be checked in Table 1.

The integrated numerical results over the whole color
benchmark (20/80 different mosaics) in Fig. 5 confirm these
observations. *EWT-FCNT (A3M unsupervised) produces
the best correct segmentation, followed by *FCNT and
yFCNT, while yRS is the worst. PCA-MS, CMS, and
GRPNMF (Table 1) have strong over-segmentation (OS) ten-
dency though lower ME, NE errors for PCA-MS. A3M con-
firms the best inter-region border localization of these

unsupervised methods. However, A3M has slightly less
precisely located borders than the best *EWT-FCNT super-
vised method. yRS has strong under-segmentation (US)
performance.

The performance curves show the sensitivity to threshold
parameter for the CMS, yRS, IGMRF, LGG, PCA-MS,
GRPNMF, two *;yFCNT variants, A3M, and *EWT-FCNT
methods in Fig. 5. Similarly, their integrals (Fig. 5 in all graphs
for all methods) confirm for the best methods from Table 1
that their behavior is not too sensitive concerning the region-
based criteria threshold. Fig. 5 (CS) simultaneously shows the
most precise regions border localization of the *EWT-FCNT

Fig. 6. Three selected texture mosaics from the benchmark with the corresponding ground-truth, and segmentation results for *EWT-FCNT, *FCNT,
yFCNT, A3M, PCA-MS, GRPNMF, Cooperative Mum-Shah (CMS), Local Global Graph Cut (LGG), Improved GMRF (IGMRF), yRS, respectively.
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supervised (A3M unsupervised) method, similar precision of
the PCA-MSmethod, and finally, the worst localization of the
IGMRF, yRS methods. As expected, this threshold mainly
affects the inter-region border localization. The localization
error difference between the best and the worst method has
been only slightly diminished over thewhole threshold range.
The pixel-wise criteria (omission error, recall, etc.) further
confirm the superiority of both *EWT-FCNT and A3M meth-
ods in their categories. PCA-MS leads over A3M with a small
ratio of noise error (NE) and in theO, C,AVI, and LCE criteria.

The overall conclusion supports the superiority of the
*EWT-FCNT and A3M methods over the remaing tested
methods in their corresponding categories. The algorithms
evaluation can be further supplemented with other important
attributes such as the noise sensitivity, processing speed and
difficulties by their corresponding parameter setting.

7 CONCLUSION

The implemented supervised/unsupervised segmentation
benchmark is a fully automatic web application, which ena-
bles us to compare mutually image segmentation algorithms
and to assist in developing new segmentation methods. The
comparison can be made for finalized algorithms with
results, descriptions, and references stored permanently in
the benchmark database and used for subsequent compari-
son with other algorithms or for a working version of a seg-
menter. Segmenters can be ranked based on a chosen
criterion from the set of over forty region, pixel, consistency,
set, information, border, or clustering based criteria or any
subset with user stated criteria relative importance. The test
mosaics, as well as the ground truths, are computer-gener-
ated, which guarantees the evaluation objectivity and allows
for easy generation of extensive test sets which are otherwise
unfeasible to arrange. The benchmark enables us to test sin-
gle algorithms on monospectral, multispectral, BTF or
dynamic texture data and to test their noise robustness. Fur-
ther on, it is possible to test scale, rotation and illumination
algorithm invariance or any combination of these properties,
so that the researchers can quickly, objectively, and effec-
tively compare their novel algorithms and verify their per-
formance characteristics.

Among important aspects which are not currently tested
is mainly the resilience against complex geometric distor-
tions (e.g., foreshortening) and segmentation speed, which
cannot be tested because the benchmark only analyzes the
uploaded segmentation results, which were achieved on a
wide range of varied computer architectures by various
developers worldwide. Only a subset of the method’s
results was submitted together with their original code. The
most segmentation methods in the benchmark are inserted
by their authors, which guarantees their evaluation objectiv-
ity and every author can freely decide whether to keep his
or her method’s results in the benchmark database or not.
Thus some methods may even disappear either due to their
inferior performance or because their authors prefer to
release these results in some later publication.

Although the benchmark is primarily designed for texture
segmenters, it gives helpful performance insight for any gen-
eral image segmenter. The evaluation part of the benchmark
is also modified to utilize user-defined ground truth, such as

hand segmented natural images. However, such results will
not be stored in the benchmark database, and hence they will
not be available for comparison to other users. Other possible
applications, such as machine learning methods evaluation,
the wrapper of filter-based feature selection method compari-
son, image compression testing, query by pictorial example
method evaluation and some others can easily benefit from
the benchmark services aswell.

The usefulness of the benchmark is acknowledged in
over a hundred publications using the benchmark results.
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