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Abstract. This paper introduces and compares three approaches for
automatic archaeological heritage site detection hidden under soil cover
from public aerial images. The methods use low quality public aerial RGB
spectral data restricted by the land-use map to agricultural regions in
the vegetation season to detect underground structures influencing plants
growing on the surface soil layer.
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1 Introduction

Earth regions settled for thousands of years with numerous ancient cultures are
rich in historical artifacts or their remains. Many of them are not visible, hidden
under soil or vegetation cover for centuries. European countries are among the
wealthiest archeological locations. The area of the former Bohemian kingdom,
now the Czech Republic, is among them. Its location in the middle of Europe
means close contact with many cultures and the site of many war conflicts that
have destroyed many immovable monuments, the remains of which are often
preserved only under a layer of protective soil. They are Celtic oppida, medieval
fortresses, castles, gothic or baroque era fortifications, or commoners’ houses.

Unless we have written historical records or other preserved references to
such monuments, their discovery by archaeologists is a common question of
chance. Modern remote sensing satellite or aerial sensors, however, offer tools
that could significantly change this situation. It can be the ground penetrating
radars or even simple spectral cameras because underneath materials influence
plant growth on the surface due to locally change the subsoil layer’s chemical
composition and structure. The changes in vegetation coverage are caused by
humidity and organic material content differences, and they appear as subtle
spatial discontinuities or variations in the reflectance values (i.e., tones or col-
ors) of vegetation and soil surface. Such features can be complemented with
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additional characteristics, such as the geometric pattern of the expected under-
ground target. Fully automatic detection of hidden archeological heritage sites
would be a solution to this problem. Furthermore, a reliable method would sup-
port a country-wide survey of unknown archeological sites, which is crucial for
archeological heritage preservation and authorization of new construction and
location development sites.

This article assumes only visible spectra, publicly available and low-quality
aerial visual images, and land use maps, allowing us to process only meadows or
cornfields and avoid irrelevant regions such as urban areas and forests. The rest of
the paper is organized as follows: Sect. 2 briefly presents published alternatives to
solve the automatic aerial heritage site detection. Section 3 explains in detail our
approach and its optimization. Section 4 describes the performed validation exper-
iments and used test data. Section 5 shows the achieved results. Section 6 summa-
rizes the paper with a discussion and proposes some future research alternatives.

2 Related Work

For a brief history of 80 years of remote sensing application in archeology, see [5].
A more detailed overview of the European archeological remote sensing research
literature can be found in [1]. The number of relevant publications is linearly
growing during the reported 16 years.

Giardino [4] argues that multispectral and hyperspectral satellite data have
provided important information for the discovery, delineation, and analysis of
archaeological sites worldwide. Savage et al. [9] studied the application of hyper-
spectral (196 calibrated narrow bands in visible and shortwave infrared spectra)
Hyperion satellite images for archeological applications. Although hyperspectral
data are helpful to detect metallurgy production in the Faynan region of Jordan,
their drawback is low spatial resolution. Zingman et al. [12,13] presents a method
based on local Hough transform to detect approximately rectangular remains of
livestock enclosures structures in panchromaticGeoEye1 satellite imageswhile tol-
erating deviations from a perfect rectangular shape and incomplete or fragmented
rectangles. High-resolution airborne hyperspectral images with 65–105 spectral
bands between 400 nmand 1000 nmwere used in [3] to detect remains of theRoman
townofCarnuntum.They foundbeneficial hyperspectral imaging, especially at the
beginning of the vegetation mark season or in a wet growing season. Lasaponara et
al. [6] automatically detect buried archaeological remains of the UNESCO World
HeritageGreek&Roman site atHierapolis from theQuickBird-2 satellite panchro-
matic, multispectral bands. The rough regions are obtained by the K-means clus-
tering followed by a supervised classifier, and the results were validated using
the ground-penetrating radar. Lock and Pouncett [7] stresses the importance of
GIS as the essential tools for data integration, manipulation and analysis, and
spatial analysis for automatic site detection. Hidden linear ancient cultural relics
visual detection from enhanced historical aerial photographs in the alluvial plain of
Eastern Henan province is presented in [8]. Buried Roman archaeological remains
detection in Llanera (Spain) using RGB and NIR cameras on the Unmanned Aerial
Vehicle (UAV), multispectral (8 bands with 2 m resolution) WorldView-2 satellite
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data, and LiDAR data is investigated in [2]. They evaluate maps computed from
various spectral indices. Stott et al. [10] proposes an automatic search for Viking
age fortresses using airborne laser scanning data and Hough circle transformations
and template matching.

Detection of archaeological sites previously occupied by farming commu-
nities in the Shashi-Limpopo Confluence Area of southern Africa from very
high-resolution satellite WorldView-2 images is presented in [11]. They applied
random forest and SVM classifiers to discriminate between bare soil, savannah
woody vegetation, irrigated agricultural fields, archaeological sites with vitrified
dung, and non-vitrified dung deposits.

Fig. 1. The flowchart of our proposed methods. The left thread (green) represents the
corner-based method (LHC/OHC), the middle thread (red) the line segment-based
(RE) method, and the right thread (blue) is the template-based method. (Color figure
online)
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3 Proposed Approach

Three presented alternative methods together with their main functional parts
are illustrated in Fig. 1. We selected the SVM and random forest classifiers to
use comparable techniques standard in this application area (e.g., [11]), but the
classifiers are less critical for successful archeological structures detection than
the appropriate features and optimal data preprocessing.

P̌C1, contrast enhanced Enhanced image Hough transform input

Fig. 2. Image preprocessing using the Sect. 3.3 method. Ctiněves site.

3.1 Corner Detection Based Method

Underground remains of approximately rectangular shapes can be detected using
the grayscale Harris corner detector for crop mark corner extraction and sub-
sequent geometric constraints. We propose two algorithms, each applied to a
grayscale image corresponding to the first principal component of PCA applied
to the original color image. Image contrast is enhanced, and a bilateral smooth-
ing filter is applied to remove minor artifacts in our input data while preserving
substantial edges. Finally, we apply the Harris corner detector to the processed,
land use filtered image.

The LHC algorithm requires all four corners of a rectangular crop mark to
be detected. Appropriate configurations of four corner structures, adhering to
similar line length, line parallelism, and perpendicularity constraints, are con-
sidered further filtered if a line between two corners does not correspond to even
a heavily fragmented edge in the original image.

In our second approach, the OHC algorithm requires finding at least three
corners of an object, thus aims to overcome the issue of one undetected corner
by using implicit parallelism, a similar length of these parallel lines, and the
corner orientation constraint. This constraint ensures that neighboring corner
orientations differ by roughly 90◦ moreover that the angles of corners forming a
diagonal are roughly opposite.
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3.2 Line Segment Based Method

The line segment-based detection referred to as the RE detection algorithm is
adapted from Zingman et al., initially presented in [13] and later improved upon
and reintroduced in [12]. We apply the algorithm to the grayscale, contrast-
enhanced image corresponding to the first principal component (PC1) of PCA
applied to the original color image. The image is prefiltered with a land-use
map, a white top hat operator is applied, and the result of the operation is
subtracted from the processed image to effectively suppress minor noisy arti-
facts such as watermarks and plough furrows. The following method, see [13],
can be summarized in the following steps - black top hat operator to extract
dark regions corresponding to required crop marks and other positive features
in the image, thresholding, followed by morphological closing transformations,
and finally, ridge extraction, is applied by selecting a point-wise maximum from
morphological openings with linear structuring element of a set minimal line
length at different orientations. This sequence enhances linear features in the
image and suppresses background texture.

The line extraction starts with possible candidate point detection using
Euclidean distance transformation, skeletonization, and candidate point sam-
pling. Possible lines are detected using a local Hough transformation centered at
each candidate point, followed by a graph construction where we consider each
detected segment S, with length l, orientation θ and distance r from candidate
point p0, to be a node in a graph G. Only configurations with at least three
sides, forming � – like shapes and adhering to the angle and convexity con-
straints, see [12], are considered valid. Only the maximal cliques of each graph
G we keep. The resulting rectangularity fR (1), structure size fS (2) measures,
our proposed compactness measure fD (3) together with the number of segments
in the configuration form the feature vector used in the kernel SVM classifier.

fR(G) = (
E(G)∑

Sk,Sj

lkljf90(βk,j)fcv(τk,j) ·
E(G)∑

Sk,Sj

lkljf180(βk,j)fcv(τk,j))
1
4 , (1)

fS(G) =

∑
j ljrj∑
j lj

, (2)

fD(G) =
2
∑

j lj∑
j dist(p0j , p1j ) + dist(p0j , p2j )

, (3)

where each tuple Sk, Sj is counted only once in Eq. 1, βk,j is the angle between
two line segments, τk,j is a pair-wise convexity measure, p1, p2 are the end point
coordinates of a segment, and dist(.) denotes the Euclidean distance between two
points. Functions fcv(), f90(), f180() are used to weight the differences in rotation
and convexity from the ideal state (segments Sk, Sj are either parallel or form a
perfect corner) to the allowed angle and convexity deviation thresholds, and are
further described in [12].
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3.3 Template Based Method

Structures with irregular but anticipated approximately circular or rectangular
shapes can be detected with the generalized Hough transform. The image pre-
processing, referred to as the crop mark enhancement, is applied to the PCA-
based grayscale and contrast-enhanced image. Next, the white top hat is applied
to extract white noise from the image as in Sect. 3.2. Median smoothing filter,
adaptive thresholding, color inversion, and erosion operator are then applied,
and eventually, we discard the remaining small blob-like features. The resulting
image is filtered with a binary mask of land use to retrieve only relevant regions.
The Gaussian filter is applied to the crop mark enhanced image to smooth the
edges of the resulting contours, and the Canny edge detector is run on the
smoothed image, resulting in more continuous, flat lines.

In template matching based on generalized Hough transform, we used the
perfect rectangular and circular shapes of variable sizes and wall thickness. For
each region localized with the generalized Hough transform, we extracted sev-
eral features. The ratio of white pixels in the localized region of the crop mark
enhanced image, the overlap and difference of the enhanced image and the filled
out template image, the template scale, shape, and the Hough accumulator value
form a feature vector used in the random forest classifier.

4 Validation

The proposed methods have been tested on the experimental sites described
in Sect. 4.1 to investigate how our method’s parts are affected by the quality
of available images. However, this small number of known, visually detected
Bohemian archeological sites can only suggest the possible large-scale perfor-
mance of the automatic underneath archeological site detection method.

4.1 Test Heritage Sites

Suggested methods were validated and mutually compared on ten unique types
of sites provided by courtesy of prof. Martin Gojda. Single RGB orthorecti-
fied aerial images were acquired during the vegetation season in the 2004–2016
period. Thus they have uneven illumination and had either 0.5 or 0.25 [m] reso-
lution. The resulting crop mark dimensions are between 54 and 279 pixels, and
their wall thickness ranges from 4 to 12 pixels in each image of size 1024 × 1024
pixels. The set contains 7 elliptical shapes, including 5 well defined crop marks
of circular shape and two significantly fragmented crop marks of elongated ellip-
soids, and 7 crop marks of approximately rectangular shape. Unfortunately, this
validation set is too restrictive to propose a definitive, fully automated solution,
but it can suggest further investigation (Fig. 3).

– Ledčice, district Mělńık (N 50◦ 20′0.02, E 14◦ 16′42.21)
– Ctiněves, district Litoměřice (N 50◦ 22′33.29, E 14◦ 18′30.77)
– Černouček, district Litoměřice (N 50◦ 21′24.59, E 14◦ 18′2.88)
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Černouček Straškova Ctiněves

Ledčice Březnoa Ćıtov

Fig. 3. Validation archeological sites.

– Straškova, district Litoměřice (N 50◦ 21′45.26, E 14◦ 15′18.77)
– Straškovb, district Litoměřice (N 50◦ 21′55.86, E 14◦ 15′26.54)
– Březnoa, district Mladá Boleslav (N 50◦ 21′59.72, E 13◦ 45′1.73)
– Březnob, district Mladá Boleslav (N 50◦ 22′27.57, E 13◦ 44′8.04)
– Ćıtov, district Mělńık (N 50◦ 22′7.94, E 14◦ 24′7.37)
– Vražkova, district Litoměřice (N 50◦ 22′46.08, E 14◦ 15′7.65)
– Vražkovb, district Litoměřice (N 50◦ 22′37.15, E 14◦ 15′51.94)

5 Results

The results achieved using the corner-based method (Sect. 3.1) tested on the
single spectral first principal component images (Fig. 4). The four corners detec-
tion requirement (LHC version) was less reliable than the three corner version
(OHC) because well-defined corners are sparsely present in our data. The LHC
algorithm consistently detected only two crop marks1 with one parameter setting
and the OHC consistently detected three crop marks2. The method is suscepti-
ble to noise and extensive parameter tuning and generates many false-positive
results otherwise. The minimal and maximal line length between corners was set
1 Černouček and Ctiněves or Černouček and Březnob sites.
2 Černouček and Ctiněves and Březnob sites.
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Table 1. Corner-based methods: retrieval
rates for most successful experimentally
found parameter setting.

Algorithm FP TP

LHC 20 2

OHC 3 3

Table 2. Template-based method:
retrieval rates with all features included.

Template type τ FP TP

Rectangular 1.1 3 7

Circular 0.8 22 6

to 30 and 240 pixels for the LHC method. The maximum allowed deviation from
line parallelism was set 25◦ and at 15◦ for deviation from line perpendicularity.
At least 60% of an edge between two corners must be intact for a line to be
considered valid. In the OHC algorithm, the minimal and maximal line length
between corners was set to 30 and 270 pixels, and the maximum allowed devi-
ation of corner orientation from the orientation of the presumed diagonal was
set at 30◦, as it is understood that more elongated rectangles may deviate more.
The maximum allowed deviation for line perpendicularity was set at 20◦. At least
85% of an edge between two corners must be intact. From our testings, the con-
straint placed on the completeness of the two adjacent edges was very effective
in reducing false positives. The frequent limitation of the corner-based method
is remaining irrelevant structures such as trees or furrows—this method requires
sophisticated pre and post-processing to decrease the amount of retrieved false
positives. The OHC version performs slightly better than LHC, results shown in
Table 1, but the detected corner orientation precision requires further improve-
ment. Of the three approaches, this method was the worst-performing on the
tested images. From the site examples with rectangular crop marks only correct
results are Černouček, Ctiněves, and Březnob shown in Fig. 4. The remaining
pictured results containing high number of false-positives are more typical for
this method, as Harris corner detection results in many redundant salient points,
generating rectangular configurations that remain unfiltered by the algorithms.

The line segment based method (Sect. 3.2) used in the pre-processing steps
the white top hat square SE size 4 × 4 pixels, the black top hat was applied
with square SE of size 15× 15 pixels. The pixels with an intensity lower than 20
are suppressed to 0 with thresholding. The morphological closing square size SEs
were set to 2×2 pixels for dilation and 3×3 pixels for erosion. The MFC operator
was applied with structuring elements of size 3×3 and 10×10 pixels. The linear
segments were enhanced by the composite opening with linear SE set to 30 pixels
and rotated in increments of 5◦ the threshold set for valid ridge extraction was
set to 60. The candidate points were sampled with the sampling rate five, and
the window multiplier parameter was set to 1.8 see [12], all candidate points
having a distance smaller than ten or greater than 170 pixels were discarded.
The minimum line length for the line segment extraction was set to 20 pixels.
The threshold values for angle constraint applied to βk,j is set to 15◦ and the
convexity constraint τk,j threshold is 0.4.
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Černouček Straškova Ctiněves

Ledčice Straškovb Březnob

Fig. 4. Detected rectangular shapes using the Sect. 3.1 method.

Similar to [12], the method was evaluated based on the feature’s ability to
discriminate crop marks from irrelevant structures. We conducted this experi-
ment by setting the parameter class weight on the SVM classifier, and results are
included in Table 3. The results include some duplicity due to candidate point
oversampling for significant crop marks, the unique true positives denoted as
TPu. Overall, the RE method successfully detected all seven unique rectangular
crop marks across our validation data.

The methods limiting factor is its high sensitivity to noise. We encountered
significantly more noise in the processed data than the original paper [12] sug-
gested, perhaps as a result of arable land photographed at high resolution con-
taining many more linear structures such as furrows than the original satellite
data. Our modification of the original RE method, the introduced compactness
measure, according to our validation, improved the ability to discriminate irrele-
vant structures further. However, additional improvements are needed. Another
limitation of the RE method is its inability to generalize detection for other
shapes than imperfect rectangles.

The template-based method (Sect. 3.3) uses in the pre-processing steps the
following experimentally found parameters. First, the white top hat is square SE
is set to size 4 × 4 pixels. Next, a median filter is applied with kernel size 5 × 5
pixels. Adaptive threshold of size 37 × 37 pixels and constant C = 7 is used,
and the then inverted image is eroded with square SE of 2 × 2 pixels. Finally,
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Černouček Straškova Ctiněves

Ledčice Březnoa Ćıtov

Fig. 5. Detected rectangular shapes using the Sect. 3.3 method.

blobs with an area smaller than 50 pixels are removed. Then, the crop mark
enhanced image is smoothed with Gaussian filter kernel of size 9 × 9 pixels, and
σ = 1.6 the Canny edge detector is applied with Sobel operator size set to 3× 3
pixels and the lower and upper hysteresis thresholds are set to 40 and 70. The
constitutive steps of pre-processing are shown in Fig. 2.

Table 3. RE: retrieval rates with all features included.

(fR, fS , fD) (fR, fS)

Dataset Class weight FP TP TPu FP TP TPu

PC1 0.99 16 18 7 30 18 7

PC1 0.98 1 16 7 15 15 7

PC1 0.95 0 10 6 4 13 6

We experimented with double-edged templates of rectangular and circu-
lar shapes. For the rectangular templates, the side length ratios were set to
{0.6, 0.7, 0.8, 0.9, 1.0}. The rectangular shapes were rotated in three degrees steps
size in the range 〈0◦, 180◦〉, and the width between the template edges is set to
be between 4 and 6 pixels. The total number of scales between the maximum
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Černouček Straškova Ctiněves

Ledčice Březnoa Ćıtov

Fig. 6. Detected circular shapes using the Sect. 3.3 method.

and minimum template dimensions was set to 40 for both template types. The
Hough transform threshold influences the precision-recall trade-off. Our goal was
to retrieve as many crop marks as possible while allowing for a higher rate of false
positives to be retrieved and later filtered out in the classification stage. Even-
tually, we set the value threshold value τ = 1.1 for rectangular template shapes.
For circular shapes, τ = 1.0 proved to be a good value for crop marks that were
almost entirely intact, like the two in site Černouček. The threshold needed to
be lowered to 0.8 to retrieve fragmented shapes like the one in Vražkovb. The
random forest classifier was trained with 50 estimators with a maximum depth
set to 3 and a class weight parameter set to 0.98. Eventually, we trained the
model for each template type separately, as mixing the two led to significantly
worse results.

The template-based algorithm is by a significant margin the most successful
method, with seven rectangular and six circular crop marks detected and only a
limited number of false positives, included in Table 2. Figure 5 illustrates the rect-
angular detection results with one erroneous detection on the Březnoa image while
correctly missing any false negative on the Ćıtov image. The circular template
results in Fig. 6 are worse, as the Hough transformation with a lower threshold
retrieves substantially more false positives. Černouček site has two correct detec-
tions and one wrong; Straškova, Ctiněves, and Ledčice have false positives, and
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only Březnoa and Ćıtov contain correct results. However, many circular erroneous
results are true archeological sites but with rectangular shapes.

The significant advantage of the template-based approach is its capability to
generalize to a wider variety of shapes. Our validation experiment shows that
a lack of prior knowledge of a detected crop mark’s exact shape and size can
be compensated for with a more extensive template set. However, this approach
inevitably leads to increased computational complexity, which needs to be fur-
ther mitigated with parallelization.

6 Conclusions

We present the algorithms for automatic archaeological heritage recognition hid-
den under the soil cover from aerial images. Three alternative methods can detect
underground remains of buildings or other construction artifacts based on vege-
tation cover changes due to locally changed the subsoil layer’s chemical compo-
sition and structure. As such, they have the potential to significantly speed up
the complex and time-consuming visual detection of aerial photographs. Despite
this restriction, these methods can assist in hidden archeological or construction
site detections and impact the cataloging of the hitherto unknown archaeological
sites.

The performance quality of the algorithms was mutually compared, verified,
and demonstrated on the ten known, visually detected Bohemian archeologi-
cal sites. The generalized Hough transform-based method is the most versatile
and reliable approach to detect hidden archeological or construction sites below-
ground, provided they are not occluded by modern structures above. Multimodal
and better quality data, combined with radar satellite images, interferometry,
and lidar, could significantly improve detection results. Although new multi-
spectral and high-resolution remote sensors acquire the ever-growing amount of
high-quality information from a distance, the weak point is the ground truth
verification of the results for calibration of the instruments or improvements of
existing algorithms.

Acknowledgments. The Czech Science Foundation project GAČR 19-12340S sup-
ported this research. The archeological sites suggestion was provided by courtesy of
prof. Martin Gojda from the Institute of Archaeology of the Czech Academy of Sci-
ences, Prague.

References

1. Agapiou, A., Lysandrou, V.: Remote sensing archaeology: tracking and mapping
evolution in european scientific literature from 1999 to 2015. J. Archaeol. Sci. Rep.
4, 192–200 (2015). https://doi.org/10.1016/j.jasrep.2015.09.010

2. Calleja, J.F., et al.: Detection of buried archaeological remains with the combined
use of satellite multispectral data and UAV data. Int. J. Appl. Earth Obs. Geoinf.
73, 555–573 (2018)

https://doi.org/10.1016/j.jasrep.2015.09.010
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