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Abstract. This paper introduces an accelerated algorithm for evaluat-
ing criteria for comparing the spectral similarity of color, Bidirectional
Texture Functions (BTF), and hyperspectral textures. The criteria credi-
bly compare texture pixels by simultaneously considering the pixels with
similar values and their mutual ratios. Such a comparison can determine
the optimal modeling or acquisition setup by comparing the original data
with their synthetic simulations. Other applications of the criteria can be
spectral-based texture retrieval or classification. Together with existing
alternatives, the suggested methods were extensively tested and compared
on a wide variety of color, BTF, and hyper-spectral textures. The methods’
performance quality was examined in a long series of specially designed
experiments where proposed ones outperform all tested alternatives.

Keywords: Texture spectral similarity criterion · Bidirectional
texture function · Hyperspectral data · Texture modeling

1 Introduction

A fully automatic texture, or more generally image, quality assessment, i.e.,
mutual similarity evaluation of two or more of them, presents a fundamental but
still unsolved complex problem. The validation of the state-of-the-art image and
texture fidelity criteria on the web-based benchmark (http://tfa.utia.cas.cz) has
demonstrated that none of the published criteria, e.g., CW-SSIM [26], STSIM-1,
STSIM-2, STSIM-M [30], ζ [14] can be reliably used for this task [6]. Reliable crite-
rion would support texture model development by comparing the original texture
with a synthesized or reconstructed one to select optimal parameter settings of
such a model. Such similarity metrics could also play an essential role in efficient
content-based image retrieval, e.g., digital libraries or multimedia databases.

Methods based on various textural features developed and applied for texture
categorization, such as Haralick’s features [8], Run-Length features [2], Laws’ fil-
ters [16], Gabor features [18], LBP [21], and many others cannot rank textures
according to their visual similarity. These features are not descriptive, and thus
they are helpful only for binary decisions: two mono-spectral textures are identi-
cal or not. Markovian textural features [7] are the rare exception. Many existing
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approaches are limited to mono-spectral images, which is a significant disadvan-
tage as color is arguably the most significant visual feature.

The psychophysical evaluations [4], i.e., quality assessments performed by
humans, currently represent the only reliable option. This approach requires a
time-demanding experiment design setup, strictly controlled laboratory condi-
tions, and representative sets of testers, i.e., sufficient numbers of individuals,
ideally from the public, naive concerning the purpose and design of the exper-
iment. Thus, such assessing is generally demanding, expensive, and unsuitable
for daily routine practice, not feasible on demand. Moreover, human perception
methods are inapplicable for hyper-spectral data due to human vision’s limited
tri-chromatic nature.

In this article, we assume that visual data be independent sets of pixels. The
pixel values are compared as vectors while their position in the image is not
considered. This restriction is called a spectral similarity comparison in the rest
of the paper. It deals with the appearance and amount of pixels that occur in
only one of the compared images and the ratio of pixels ratio appearing in both
images to express their spectral composition difference.

The rest of the paper is organized as follows: Section 2 briefly presents
published alternatives to solve image spectral similarity comparison, including
some based on modifications of techniques developed for slightly different pur-
poses. Section 3 explains in detail our approach and its optimization. Section 5
described the performed validation experiments and used test data. Section 6
shows the achieved results. Section 7 summarizes the paper with a discussion
and compares our proposed criteria with the existing alternatives.

2 Related Work

Dealing with color images, i.e., containing three spectral channels, encourages
using a three-dimensional (3-D) histogram or local histogram [28], which approx-
imates the image color distribution. The most intuitive way is to compute the 3-D
histogram difference (ΔH). Several other possibilities for 3-D histogram com-
parison have been suggested, such as the histogram intersection (∩H) [24], the
squared chord (dsc) [13], and the Canberra metric (dcan) [13]. The information-
theoretic measures can also be considered for evaluating the histogram difference,
e.g., Jeffrey divergence (J) [22] or measure based on the χ2 statistic (χ2) [29].

Another possibility is represented by Earth Mover’s Distance (EMD) or
Wasserstein method [23] which can evaluate dissimilarity between two multi-
dimensional distributions in some feature space. However, it turned out that the
EMD is limited to tiny images, as demonstrated on average computing times of
individual methods showed in Table 1.

The generalized colour moments (GCM) [19] and cosine distance (dcos) [20,
29] suit well to the spectral similarity comparison problem. Different set-theoretic
measures can serve as criteria as well, e.g., the Jaccard index (JI) [12] or the
Sørensen-Dice index (SDI) [1].
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Another alternative may be a modified criterion developed for texture com-
parison as the spectral similarity comparison might be considered an exceptional
case of this task. It is possible to modify the structural similarity metric (SSIM)
[25] by removing structure-related terms to obtain reduced SSIM [9].

The 3-D histogram-based criteria cannot be easily generalized to hyper-
spectral data, i.e., the data having more than three spectral channels, due to
the impossibility of reliably estimating such histograms from limited sample
data. GCM could be used for hyperspectral image comparison, but the number
of multiplication terms to be integrated significantly increases, and so does the
range of possible values of the criterion. Set-theoretic, rSSIM and dcos based
criteria can handle the hyper-spectral data with no restriction. A more detailed
overview can be found in [10].

3 Computation of MEMD

A new criterion for spectral similarity comparison was proposed - the mean
exhaustive minimum distance (MEMD) [10]:

↓ ζ(A,B) =
1
M

∑

(r1,r2)∈〈A〉
min

(s1,s2)∈U

{
ρ

(
Y A

r1,r2,•, Y
B
s1,s2,•

)} ≥ 0 , (1)

where Y A
r1,r2,• represents the pixel at location (r1, r2) in the image A, • denotes

all the corresponding spectral indices, and similarly for Y B
s1,s2,•. Further, ρ is an

arbitrary vector metric. U is the set of unprocessed pixel indices of B (explained
in detail below), M = min { �{A}, �{B}}, �{A} is the number of pixels in A,
and similarly for �{B} and min {∅} = 0.

The term ζ(A,B) is evaluated using raster scanning of A. The algorithm
examines the pixels of A, from the upper left corner. Each pixel searches for
the index in the set U for which the corresponding pixel is the closest one, in
the sense of the used metric ρ. U contains all spatial indices of the image B at
the beginning of the process. When such a pixel is identified at (s1, s2) ∈ U ,
the distance between this pixel and the scanned one from A, measured by ρ, is
added to the sum and the index (s1, s2) is removed from the set U . The algorithm
proceeds to the right bottom of the image A and stops when either all pixels of
A are examined, or U becomes an empty set.

The criterion ζ(A,B) is not symmetrical, but can be easily symmetrized as
[10]: ζS(A,B) = 1

2 (ζ(A,B) + ζ(B,A)) if needed. Another analytical properties
of (1) are [10]: ζ(A,B) = 0 ↔ A = B (equality), ζ(A,A) = 0 (reflexivity),
ζ(A,B) ≤ ζ(A,B

′
) for B

′ ⊂ B (set cardinality dependence).
Two modifications of (1), which take into account color differences just notice-

able by color psychometric methods in the CIE Lab color space [27], were sug-
gested [10]:

↓ ζ2(A,B) =
1
M

∑

(r1,r2)∈〈A〉
κ(r1, r2) ≥ 0 ,
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κ(r1, r2) =
{

1, ρ∗ > 2.3,
0, otherwise,

ρ∗ = min
(s1,s2)∈N

{
ρCIE

(
Y A

r1,r2,•, Y
B
s1,s2,•

)}
, (2)

where the threshold 2.3 was determined in [17] and ρCIE is the Euclidean dis-
tance from pixel Y A

r1,r2,• to pixel Y B
s1,s2,• in the CIE Lab color space. Finally, the

last suggested criterion is the weighted average of the just-noticeable differences
[10]:

↓ ζ3(A,B) =
1
M

∑

(r1,r2)∈A

κ(r1, r2) ρ∗ ≥ 0 . (3)

The terms ζ2 and ζ3 are evaluated the same way as the term ζ. Notice that
the proposed criterion ζ applies to any number of spectral bands, not only for
the usual three spectral bands of the standard color images, while ζ2 and ζ3 are
applicable for the images defined on CIE Lab color space.

4 Optimization

The criterion (1) and its modifications (2), (3) have been optimized to reduce
time requirements without significantly increasing memory requirements while
maintaining their quality. The pixels of the images to be compared are stored in
the same ordered set in the optimized algorithm variant. Thus, each element of
that set is assigned a variable identifying the pixel’s source image. The data in
the set are sorted using quicksort [11] sorting algorithm.

Table 1. The average evaluation time, on Pentium-2.8 GHz-equivalent CPU, depending
on the size of compared images for individual criteria.

8 × 8 16 × 16 32 × 32 64 × 64

ΔH, ∩H, dsc, dcan, J , χ2 0.7 s 0.7 s 0.7 s 0.7 s

EMD 1.8 ms 85.6 ms 5.7 s 7.6 min

ΔGCM111
00 67.0µs 0.1 ms 0.2 ms 0.5 ms

dcos 32.0µs 88.0µs 93.0µs 0.6 ms

JI , SDI 0.3 ms 4.0 ms 9.0 ms 48.0 ms

rSSIM 31.0µs 0.1 ms 0.2 ms 1.4 ms

ζ 0.1 ms 2.0 ms 18.0 ms 0.2 s

ζOptimized 39.0µs 0.4 ms 1.2 ms 17.5 ms

Values of individual spectral channels of the given pixel form vector. The
maximum metric applied on these vectors is used as an order relation. The rest
of the method is formally the same, although the implementation is slightly
different. The algorithm passes through the sorted set of pixels. For each pixel
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belonging to the first compared image, the algorithm searches a pixel belonging
to the other image so that their distance is minimal in the sense of the maximum
metric. During the search in the set, we use advantageously the fact that the data
are sorted. Suppose a situation in the distance of the compared pixels, i.e., the
pixel from the first image and the candidate for the most similar pixel from the
other image, is more distant than the previous candidate. In that case, the search
can be terminated, and the distance of the compared pixel from the first image
and the previous candidate can be indicated as the minimum one as illustrated
in Fig. 1. This step leads to a significant acceleration of the entire algorithm as
shown in Table 1 comparing the computational times for both variants of the
algorithm and the compared alternative criteria.

Fig. 1. The comparison of the original MEMD algorithm (upper scheme) with its
optimized version (lower scheme). Comparing images A and B and their corresponding
pixels A1, A1, A1 and B2, B2, B3, respectively. In the original version, there are three
necessary comparisons (marked with arrows) of the pixel from the first image (A1)
with the pixels from the second image B1, B2, B3 (marked with a star) to find the
pixel from the second image (B3), which is the most similar to the scanned pixel (A1)
from the first image (marked with solid line arrows). While there is only one necessary
such comparison in the optimized version as the second pixel from the second image in
the sorted set (B2) is less similar to the scanned pixel from the first image (A1) than
the first pixel from the second image in the sorted set (B3), and there cannot exist a
more similar one as the data are sorted.

5 Comparison

The proposed criteria (1)–(3) together with the previously published alternatives
mentioned in Sect. 2 have been extensively tested on the experiments described
in detail in Sect. 5.1 to investigate how the individual criteria are affected by
the spectral composition changes in the compared images.
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Original 2DCAR 3DCAR

0 79.3 33.4

Fig. 2. Example of the use of the proposed criterion MEMD. The original image is
compared with the images synthesized using 2D CAR [3] and 3D CAR [5] models,
respectively. The values below individual images equal the difference between them
and the original expressed by MEMD.

5.1 Controlled Degradation of the Test Data

A sequence of gradually degraded images is generated from the original test one.
The original image serves as the first member of the sequence, i.e., AX

1 = A
and each member, except for the first one, is generated from its predecessor in
the sequence as: AX

t = fX

(
AX

t−1

)
, t = 1, . . . , l, where l equals the length of

the sequence and X is the label identifying the experiment (individual experi-
ments described below). Further Y A

r,t denotes the multi-spectral pixel from the
experimental image AX

t at r = [r1, r2, r3] which is a multi-index with image row,
column, and spectral components, respectively. X is the corresponding label
of one of the following nine degradation experiments established for validation
tests:

A - replacing pixel spectral intensities with the maximal value in the used
colour space with the probability p = 1

l
B - adding a constant c = 255

l to all pixel spectral intensities
C - adding a value 255

l sin(π o
l ) depending on the order of the image in the

sequence (o) to pixel spectral intensities
D - adding a constant c = 255

l to pixel spectral intensities and random mutual
interchanging with probability p = 0.5 with 4-connected neighbourhood
E - adding a constant c = 255

l to pixel spectral intensities and randomly
driven propagating with probability p = 0.5 with 8-connected neighbourhood
F - adding a value equals to the order of the image in the sequence (o) to
pixel spectral intensities
G - adding a pseudo-random vector to each pixel
H - blurring the images using the convolution with the 3 × 3 Gaussian filter
I - adjusting pixel spectral intensities so as to approach average over spectral
channels
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More detailed description of the experiments including showed several examples
of degraded images created during the experiments can be found in [10].

5.2 Evaluation Meta-criterion

The tested criteria are applied to quantifying spectral composition differences
between the template image, i.e., the first member of the degradation sequence
and the remaining members. As all those sequences are constructed so that
monotone degradation of the original image is guaranteed, i.e., the similarity of
the members of the sequence and the original image decreases with increasing
order, and criterion should follow this trend.

The meta-criterion is the number of monotonicity violations of the criterion
τ in the experiment X [10]:

ΞX,τ =
l∑

i=1

[
1 − δ

(
oX

i − oX,τ
i

)]
, (4)

where τ is a tested criterion, oX
i is the rank of a degraded image and oX,τ

i its
corresponding correct ordering of the τ -criterion-based ranking, and δ is the
Kronecker delta function.

5.3 Test Data

Gaussian noise 1 Gaussian noise 5 blur 3 blur 5

DMOS: 0.033 0.358 0.247 0.763

MEMD: 0.012 0.332 0,051 0.167

Fig. 3. Comparison between DMOS and MEMD criteria on the CSIQ image degrada-
tion examples.

Suggested criteria were validated and compared with the alternative measures on
three types of visual data: color, BTF, and hyper-spectral textures, respectively.
Two hundred fifty color textures, 200 BTF textures, and three hyper-spectral
textures were used. Detailed information about used test data, including showed
selected samples, can be found in [10]. The MEMD criterion was also compared
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with the differential mean opinion score (DMOS) from the CSIQ database [15]
images (Fig. 3). The Spearman rank correlation between MEMD and DMOS
criteria values was always 1 for all compared results (Gaussian additive noise,
blurring, contrast, JPEG 2000, JPEG). Hence it suggests MEMD’s high corre-
lation with the human quality ranking.

Table 2. The average strict monotonicity violation (in percent) for 250 test color
texture sequences per experiment performed in the RGB color space, the average over
all experiments, and the rank for the tested criteria.

A B C D E F G H I � Rank

rSSIM 43 44 46 42 42 20 47 25 47 39 9

dcos 29 44 45 31 31 19 47 47 47 38 8

dcan 0 34 29 40 40 12 17 20 31 25 7

SDI 16 10 23 9 9 4 28 24 26 17 6

JI 10 8 26 7 7 4 28 24 26 16 5

J 7 5 9 7 7 3 14 24 14 10 4

ΔH 0 3 5 3 3 1 13 16 8 6 3

∩H 0 3 5 3 3 1 13 16 8 6 3

dsc 0 3 5 4 4 1 14 17 9 6 3

χ2 0 3 5 4 4 1 14 16 9 6 3

ΔGCM111
00 0 0 0 0 0 0 11 9 3 3 2

ζ 0 0 0 0 0 0 0 2 0 0 1

6 Results

The achieved results for the optimized MEMD criterion (1) are summarized in
Tables 2, 3 and 4 showing average strict monotonicity violation, i.e., fails, for
individual criteria in individual experiments, in average and their rank, using
color textures in RGB color space, color textures in CIE Lab color space, and
hyper-spectral textures respectively. It is apparent that the proposed criteria
(1)–(3) are universally the most reliable.

It holds for the original version of the algorithm and the optimized version,
i.e., Tables 2, 3 and 4 as well. Both results are the same, Tables 2, 3 and 4 as well
as the corresponding tables in [10], which proves that the presented optimization
does not deteriorate the original criteria outstanding performance.
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Table 3. The average strict monotony violation (in percent) for 250 test color texture
sequences per experiment performed in the CIE Lab color space, the average over all
experiments, and rank for tested criteria.

A B C D E F G H I � Rank

rSSIM 46 46 45 46 46 21 46 40 46 42 9

dcos 8 46 45 46 46 21 43 46 46 39 8

dcan 0 14 1 45 45 5 9 4 32 17 7

SDI 3 1 2 2 2 1 37 29 18 11 6

JI 1 1 2 1 1 1 37 29 16 10 5

J 1 1 2 1 1 1 25 25 12 7 4

ΔH 0 0 0 0 0 0 10 6 2 2 3

∩H 0 0 0 0 0 0 10 6 2 2 3

dsc 0 0 0 0 0 0 12 5 3 2 3

χ2 0 0 0 0 0 0 11 5 3 2 3

ΔGCM111
00 0 0 0 0 0 0 5 5 7 2 3

ζ2 0 0 0 0 0 0 8 2 0 1 2

ζ3 0 0 0 0 0 0 0 0 0 0 1

ζ 0 0 0 0 0 0 0 0 0 0 1

ΔGCM111
00 , ΔH, ∩H, dsc and χ2 are relatively reliable and thus applicable

for spectral similarity comparison. The remaining criteria are significantly worse
and thus unreliable. More detailed and commented results can be found in [10].
The results achieved using BTF textures are almost the same as those achieved
using color textures as presented in [10]. Figure 2 illustrates the proposed MEMD
criterion values for two different color texture model synthesis of the original
texture.

Table 4. The average strict monotonicity violation (in percent) for 3 test hyper-spectral
data sequences per experiment, average over all experiments and the rank for the tested
criteria.

A B C D E F G H I � Rank

rSSIM 36 38 46 28 28 18 47 25 47 37 4

dcos 30 35 41 21 22 15 47 47 47 34 3

JI 0 3 4 4 3 2 24 24 3 7 2

SDI 0 2 2 3 3 1 25 25 5 7 2

ΔGCM111
00 0 0 0 0 0 0 0 0 0 0 1

ζ 0 0 0 0 0 0 0 0 0 0 1
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7 Conclusions

Accelerated variants of the criteria for comparing the spectral similarity of the
color, BTF, and hyper-spectral textures were presented. Spectral similarity com-
parison represents a partial solution for general visual data quality assessment
as individual pixels’ positions are not considered. Despite this restriction, spec-
tral similarity comparison criteria can assist in numerous texture-analytic or
synthesis applications.

The performance quality of the optimized criteria was verified and demon-
strated on the extensive series of 407,700 [10] specially designed monotonically
image degrading experiments, which also served to compare with the existing
alternative methods. These experiments proved that optimized versions of the
criteria maintain the original ones’ quality although they are significantly less
time demanding, decreasing the average computing time to about 20% of the
average computing time of the original algorithm. On the other hand, all three
proposed criteria are still slightly more time-demanding than some alternative
criteria except for EMD, which is both more time- and memory-demanding in
such a practically unusable way spectral similarity comparison purposes.

Unlike many existing approaches, e.g., mentioned in Sect. 2, the MEMD cri-
terion ζ (1) and its variants ζ2 (2), ζ3 (3) are not based on 3-D histograms,
instead representing the estimate of the image spectral distribution, and requir-
ing a sufficiently large data set, which is seldom available. Moreover, the criterion
(1) has no limit on the number of spectral bands in the compared data. The pro-
posed criteria can be exploited in simple spectral-based texture, image retrieval,
or (un)supervised classification methods as demonstrated in [10].

The presented criteria propose a reliable, fully automatic alternative to psy-
chophysical experiments, which are highly impractical due to their cost and strict
design setup, condition control, human resources, and time. Additionally, psy-
chophysical experiments are restricted to visualize maximally three-dimensional
data due to the limited tri-chromatic nature of the human vision.

Acknowledgments. The Czech Science Foundation project GAČR 19-12340S sup-
ported this research.
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