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Abstract
In a variety of diverse applications, it is very desirable to perform a robust analysis
of high-dimensional measurements without being harmed by the presence of a possi-
bly larger percentage of outlying measurements. The minimum weighted covariance
determinant (MWCD) estimator, based on implicit weights assigned to individual
observations, represents a promising and flexible extension of the popular minimum
covariance determinant (MCD) estimator of the expectation and scatter matrix of
mlutivariate data. In this work, a regularized version of the MWCD denoted as the
minimum regularized weighted covariance determinant (MRWCD) estimator is pro-
posed. At the same time, it is accompanied by an outlier detection procedure. The
novel MRWCD estimator is able to outperform other available robust estimators in
several simulation scenarios, especially in estimating the scatter matrix of contami-
nated high-dimensional data.

Keywords High-dimensional data · Regularization · Robust estimation · Implicit
weighting · Scatter matrix

Mathematics Subject Classification 62H12 · 62F35

1 Introduction

This paper is interested in highly robust methods proposed for the fundamental task to
estimate the expectation and scatter matrix of elliptically symmetric unimodal distri-
butions. Starting with data with the number of observations n exceeding the number
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of variables p, the minimum covariance determinant (MCD) estimator of Rousseeuw
(1984) represents a popular choice, the properties ofwhichwere overviewed byHubert
and Debruyne (2010) or Hubert et al. (2018). It can be computed by means of the
FAST-MCD algorithm of Rousseeuw andVanDriessen (1999), which is based on con-
centration steps (C-steps). The minimum weighted covariance determinant (MWCD)
estimator represents an extension of the MCD to any non-negative weights (not only
equal to 1 or 0) proposed by Roelant et al. (2009), who proved the breakdown point
of the MWCD to be high (if suitable weights are considered) and derived its influence
function and asymptotic covariance matrix.

The MCD and MWCD estimators use implicit weighting and represent multivari-
ate counterparts (for data with n > p) of the least weighted squares (LWS) estimator,
where the latter was proposed for linear regression in Víšek (2011). The MWCD esti-
mator was successful e.g. within a classification analysis of contaminated EEG signals
of Kalina et al. (2016). In simulations, theMWCD estimator yields more accurate esti-
mates (with smaller quadratic errors) of both the expectation and scatter matrix than
other estimators (includingMCDandMM-estimators) for datawithmoderate or larger
sample sizes with n > p and with intermediate outliers, i.e. outliers that are relatively
close to the bulk of the data (Roelant et al. 2009). Such results were confirmed in
Kalina (2021), who considered also alternative definitions of the MWCD (including
a two-stage procedure) for n > p. The MCD and MWCD estimators (as solutions of
approximate algorithms) are precisely equal to an iteratively defined affine equivari-
ant L-estimator of Section 8.5.1 of Jurečková et al. (2013). Other robust estimators of
parameters ofmultivariate data with n > pwere overviewed in Chapter 5 of Jurečková
et al. (2019) or in a more theoretical context in Chapter 8 of Jurečková et al. (2013).

Robust methods are recommendable also for high-dimensional data (with n < p
or even n � p), which may be encountered in a variety of disciplines including
biomedicine, engineering or econometrics with an increasing intensity. Our particular
task is to estimate expectation and scatter of high-dimensional data contaminated by
outliers. As the empirical covariance matrix is singular for data with the number of
observations n smaller than the number of variables p, various alternative estimates
have been proposed to estimate the scatter matrix by a regular matrix also for n <

p. Various such regularized (shrinkage) estimates of the scatter matrix (Pourahmadi
2013), including the estimator of Ledoit and Wolf (2004) with an explicit form for the
optimal regularization parameter, are however not robust with respect to the presence
of outliers in the data (Chen et al. 2011).

From the practical point of view, robust estimates of parameters suitable also for
high-dimensional data are of a great importance. So far, robust statistical methods
for high-dimensional data have been more elaborated for dimensionality reduction
(Hubert et al. 2005), regression (Hastie et al. 2015), and outlier detection (Filz-
moser et al. 2008). On the other hand, robust estimates of expectation and scatter
of high-dimensional data have started to appear only in the last decade (Filzmoser
and Todorov 2011). Some inspiring approaches are overviewed in Sect. 1.1. Section 2
recalls selected robust regularized estimates for high-dimensional data and proposes
a novel regularized version of the MWCD estimator, i.e. a weighted extension of the
MRCD estimator of Boudt et al. (2020). A numerical illustration is presented in Sect. 3
and simulations follow in Sect. 4. Section 5 brings conclusions.
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1.1 Available robust estimators for high-dimensional data

This section recalls several inspiring estimators of location and scatter for high-
dimensional data. Chen et al. (2011) proposed a regularized version of the multivariate
M-estimator, where the latter is often denoted as Tyler’s estimator. The optimal value
for the regularization parameter for Chen’s estimator was derived by Ashurbekova
et al. (2019). Asymptotics for the estimators of Chen et al. (2011) and Ledoit and
Wolf (2004) was derived by Couillet and McKay (2014). A (non-robust) shrinkage
estimator of the covariance matrix for Hotelling’s T 2 test was proposed by Karjanto
et al. (2015), who considered replacing standard means by trimmed means.

Gschwandtner and Filzmoser (2013) defined the RegMCD estimator of expectation
and inverse scatter byminimizing the L1-regularized likelihood evaluated over h obser-
vations with the smallest values of Mahalanobis distances, where h is chosen by the
user. For the computations, they used a direct extension of the FAST-MCD algorithm.
They performed outlier detection based on comparing robust regularizedMahalanobis
distances of individual observations with the quantile χ2

p(0.975), i.e. the 97.5 % quan-
tile of χ2

p. This quantile is also the default value for the MCD (i.e. for n > p) and
comes from the idea that population Mahalanobis distances have a χ2 distribution
(Rousseeuw and Van Zomeren 1990). Simulations revealed such outlier detection to
perform reliably. A different regularization of the likelihood was used by Fritsch et al.
(2011) to define the R-MCD estimator as an extension of theMCD. This approach was
used mainly to perform outlier detection as by Gschwandtner and Filzmoser (2013).

Ro et al. (2015) considered only diagonal elements of the covariance matrix to
define their minimum diagonal product (MDP) estimator. Their diagonal estimator of
Σ does not need any additional regularization. They derived the asymptotics of the
estimator, proved its breakdown point to be high, and also proposed a sophisticated
outlier detection rule based on the MDP estimator.

Boudt et al. (2020) proposed the MRCD estimator based on minimizing the deter-
minant of a Tikhonov-regularized empirical covariance matrix evaluated over all
h-subsets of the data. A sophisticated algorithm was proposed for the computation.
It does not need numerous random initial choices of subsets of observations, which
are typical for the FAST-MCD algorithm (Rousseeuw and Van Driessen 1999) and its
extensions. Simulations revealed the MRCD estimator to be the best for a variety of
contaminated situations with n < p.

While properties of the available regularized versions of theMCDestimator (includ-
ing their local sensitivity) remain unknown, let us recall that robust methods based on a
complete rejection of individual observationsmay achieve a high local sensitivity. This
is the case of the least trimmed squares (LTS) estimator (Rousseeuw and Leroy 1987)
in linear regression as discussed in Víšek (2006) or in Chapter 4.9 of Jurečková et al.
(2019). On the other hand, the LWS estimator allowing to assign weights (not only
zeros or ones) to individual observations has a smaller local sensitivity (Kalina and
Tichavský 2020). This motivates us to consider an extension of the MRCD to a more
flexible estimator allowing to assign continuous weights to individual observations.
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2 Robust estimation for multivariate (possibly high-dimensional)
data

2.1 Assumptions and notation

We use the notation PSD(p) and PD(p) for the set of all positive semidefinite sym-
metric matrices and positive definite symmetric matrices of size p × p, respectively.
Throughout the paper, the following assumptions are assumed to be fulfilled; if not
explicitly stated, it is possible that n < p.

We consider the total number n of p-dimensional i.i.d. observations Xi =
(Xi1, . . . , Xip)

T for i = 1, . . . , n, where μ ∈ Rp. The matrix with elements Xi j

with i = 1, . . . , n and j = 1, . . . , p will be denoted as X ; its rows correspond to
observations. The notation �x� will be used for the integer part of x ∈ R.

Assumption 1 We consider p-dimensional i.i.d. random vectors X1, . . . , Xn follow-
ing an elliptically symmetric unimodal (ESU) distribution (Hubert et al. 2018) with
the location parameter μ ∈ Rp and scatter matrix Σ ∈ PD(p). Further, it is assumed
that any �n/2�+1 observations among the total number of n observations give a non-
singular estimate of Σ .

Definition 1 (Weight function) Let ψ : [0, 1] → [0, 1] be a non-increasing and con-
tinuous function on [0, 1], let ψ(0) = 1 and ψ(1) = 0. Then, the function ψ is called
a weight function.

For a fixed n, we consider weights generated by ψ in the form

wi = ψ

(
i − 1/2

n

)
for i = 1, . . . , n. (1)

We use the notation ĵ = (1, 1, . . . , 1)T ∈ Rn , In for the unit matrix of size n×n,Φ−1

for the quantile function of normal N (0, 1) distribution, det for the determinant and
med for the median. Let us now use standard basis vectors ei = (ei1, . . . , ein)T for
i = 1, . . . , n, where eii = 1 and ei j = 0 for j �= i . If we consider fixed non-negative
weights w = (w1, . . . , wn)

T , the diagonal matrix W ∈ Rn×n with diagonal elements
w1, . . . , wn can be expressed as

W = diag(w) =
n∑

i=1

eTi wei e
T
i . (2)

The weighted mean of the data with weights w, transformed to the natural require-
ment

∑n
i=1 wi = 1, equals X̄w = Xw = ∑n

i=1 wi Xi and the (empirical) weighted
covariance matrix with weights w can be expressed as

S(w) =
n∑

i=1

wi (Xi − X̄w)(Xi − X̄w)T = XT (In − wĵ Tn )W (In − ĵnw
T )X . (3)
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2.2 TheMWCD estimator

Let us assume data under Assumptions 1 with n > p. In this paper, we define the
MWCD estimator of μ and Σ simply as the solution of the algorithm of Roelant
et al. (2009), i.e. of a natural extension of the FAST-MCD algorithm of Rousseeuw
and Van Driessen (1999). The algorithm denoted here as FAST-MWCD is based on
concentration steps (C-steps), while a proof that a C-step improves the loss function
was presented also in Roelant et al. (2009).

The definition of theMWCD estimator will be now formally expressed bymeans of
several alternative (and novel) forms. The MWCD estimator searches for the optimal
permutation of weights. Let the set of all permutation matrices of size n×n be denoted
asPn . Instead of the magnitudes (1) of the weights, which have to fulfil

∑n
i=1 wi = 1,

we search for their (unknown) permutation, uniquely described by a given permutation
matrix P ∈ Pn . Thus, instead of considering S(w), the MWCD estimator is defined
as

argmin
P∈Pn

det S(Pw). (4)

Exploiting properties of permutation matrices, we may write

S(Pw) = XT (In − Pwĵ Tn )PW PT (In − ĵn(Pw)T )X

= XT (In P − Pwĵ Tn P)W (PT In − PT ĵnw
T PT )X

= XT (P − Pwĵ Tn )W (PT − ĵnw
T PT )X

= XT P(In − wĵ Tn )W (In − ĵnw
T )PT X

= XT PΞΞ T PT X

= (XT PΞ)(XT PΞ)T (5)

with Ξ = (In − wĵ Tn )W 1/2. Thus, S(Pw) can be expressed as being composed of
the data matrix X , a factor Ξ depending only on magnitudes of the weights, and the
permutation matrix P .

If the permutation matrix P corresponding to the optimal permutation (solution of
(4)) is denoted as P∗, the MWCD-estimates are defined as

X̄MWCD = XT P∗w and SMWCD = cψ(XT P∗Ξ)(XT P∗Ξ)T , (6)

where cψ is a consistency factor.

2.3 RegularizedMWCD estimator

In this section, we propose a novel minimum regularized weighted covariance deter-
minant (MRWCD) estimator, where the estimate of μ will be denoted by X̄MRWCD

and the corresponding estimate of Σ by SMRWCD . It is based on finding the optimal
permutation of givenmagnitudes of weights, naturally extending theMRCD estimator
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of Boudt et al. (2020) to a weighted version, and extending (6) to a regularized version.
The user specifies a given target matrix T , which must be symmetric positive definite
of size p × p. The simplest choice is the identity matrix T = Ip.

Definition 2 We assume Assumptions 1, the magnitudes of the weights defined by (1)
transformed to

∑n
i=1 wi = 1, a given regular matrix T ∈ PD(p), and a given ρ > 0.

The MRWCD is defined as

argmin
P∈Pn

det (ρT + (1 − ρ)S(Pw)) . (7)

If the permutation matrix P corresponding to the optimal permutation (solution of (7))
is denoted as P∗, the MRWCD-estimates of μ and Σ are defined by

X̄MRWCD = XT P∗w and SRMWCD = ρT + (1 − ρ)cψ(XT P∗Ξ)(XT P∗Ξ)T ,

(8)

respectively, where cψ is a consistency factor.

Algorithm 1 for approximating the MRWCD estimator performs generalized C-
steps (i.e.modified versions compared to basicC-steps of theMWCD; cf. Kalina 2021)
extending the algorithm of Boudt et al. (2020). Matrix operations allow to evaluate
robust regularized Mahalanobis distances in an efficient way. Algorithm 1 starts with
a data transform replacing the raw observations by transformed data Z1, . . . , Zn to
ensure location and scale equivariance. In our notation, Qn(X1 j , . . . , Xnj ) is the Qn

statistic of Rousseeuw and Croux (1993) evaluated for the j-th variable for j =
1, . . . , p.

Further, 6 initial estimates of scatter are applied on the transformed data. These esti-
mates previously used within the DetMCD algorithm (see Section 3.1 of Hubert et al.
2012) are chosen as a small diverse set of sufficiently robust estimates. Our numer-
ical evidence confirms these 6 initial estimates to be much more suitable compared
to naïve choices including e.g. diagonal estimates of Σ or based on random permu-
tations of weights. These estimates are overviewed in Table 1, where corr denotes
the correlation matrix. We remark that these 6 estimates are actually not necessarily
estimates of Σ , but are related to scatter; we can say that a matrix Δ related to scatter
of the transformed data is considered and its estimate is denoted by Δ̂ here. In fact,
correlation or shape matrices serve as Δ here, as we need them within (robust and
regularized) Mahalanobis distances only to obtain ranking of observations. For the
computation of the raw OGK estimator, we use the implementation in the package
rrcov (Todorov and Filzmoser 2009). For all the other estimates, we spent only little
effort to perform our own straightforward implementations. In case of ties, average
ranking method is used for rank-based estimates.

The method of Hubert et al. (2012) for obtaining regularized versions of the scatter
estimates is formulated here as a separate Algorithm 2, where cmed denotes the
coordinate-wise median. This method further denoted as hubertization is applied on
the obtained 6 estimates of Δ. Within Algorithm 1, estimates of μ corresponding to
hubertized estimates of Δ are computed.
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Algorithm 1 MRWCD for high-dimensional data (under Assumptions 1) using T =
Ip.
Input: X1, . . . , Xn , where Xi ∈ Rp for each i = 1, . . . , n
Input: ε > 0
Input: Weight function ψ transformed so that

∑n
i=1 ψ((i − 1/2)/n) = 1

Input: Consistency factor cψ (depends on p, n, and ψ)
Input: κ = 50
Input: � = 30
Output: X̄MRWCD and SMRWCD

v := (
med{X11, . . . , Xn1}, . . . ,med{X1p, . . . , Xnp}

)T ∈ Rp

D := diag{Qn(X11, . . . , Xn1), . . . , Qn(X1p, . . . , Xnp)}
Eigendecomposition T = EΛET

Zi := Λ−1/2ET D−1(Xi − v), i = 1, . . . , n
for r = 1 to 6 do

Use Algorithm 2 to obtain a positive definite estimate of Δ (say S0r ) and a corresponding estimate of
μ (say m0r ) from Z1, . . . , Zn using the r -th method (estimator)
Eigendecomposition S0r = ErΛr ET

r

d2ri (m0r , S0r ) := ||Λ−1/2
r ET

r (Zi − m0r )||2, i = 1, . . . , n

Rri := rank of d2ri (m0r , S0r ) among d20r (m0r , S0r ), . . . , d
2
rn(m0r , S0r ), where i = 1, . . . , n

m1r := ∑n
i=1 ψ

(
(Rri − 1/2)/n

)
Zi

S1r := cψ
∑n

i=1 ψ
(
(Rri − 1/2)/n

)
(Zi − m1r )(Zi − m1r )

T

�1r := det S1r
λ∗ := max. eigenvalue of S1r
λ∗ := min. eigenvalue of S1r
ρr := max

{
0,1[λ∗/λ∗ < κ] · (λ∗ − κλ∗)/(κ + λ∗ − κλ∗ − 1)

}
S1r := ρr T + (1 − ρr )S1r

end for
ρ := maxr {ρr }1 [maxr {ρr } ≤ 0.1] + max {0.1,medr {ρr }} · 1 [maxr {ρr } > 0.1]
for r = 1 to 6 do

ω := 0
if ρr ≤ ρ then

repeat // Generalized C-step
ω := ω + 1
m0r := m1r ; S0r := S1r ; �0r := �1r ;
Eigendecomposition S0r = ErΛr ET

r

d2ri (m0r , S0r ) := ||Λ−1/2
r ET

r (Zi − m1r )||2, i = 1, . . . , n

Rri := rank of d2ri (m0r , S0r ) among d21r (m0r , S0r ), . . . , d
2
rn(m0r , S0r ), where i = 1, . . . , n

m1r := ∑n
i=1 ψ

(
(Rri − 1/2)/n

)
Zi

S1r := ρT + (1 − ρ)cψ
∑n

i=1 ψ
(
(Rri − 1/2)/n

)
(Zi − m1r )(Zi − m1r )

T

�1r := det S1r
until ((�1r + ε > �0r ) or (ω ≥ �))

end if
end for
ř := argmin

r=1,...,6
�0r

X̄MRWCD := v + Dm0ř
SMRWCD := DEΛ1/2S0řΛ

1/2ET D
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Table 1 The 6 initial estimates of scatter, applied on transformed observations Z1, . . . , Zn in Algorithm 2

Index Estimate of Δ (or estimate of Σ)

1 corr(tanh(Z))

2 Spearman correlation matrix of Z computed as corr(R), where

R1 j , . . . , Rnj are ranks of Z1 j , . . . , Znj for j = 1, . . . , p

3 corr(Φ−1(R∗)), where R∗
i j = (Ri j − 1/3)/(n + 1/3)

for i = 1, . . . , n and j = 1, . . . , p

4 S = (1/n)
∑N

i=1 ki k
T
i , where ki = Zi /||Zi ||

5 Empirical covariance matrix of H̃ , where H̃ is the subset with

�n/2� observations with the smallest norm

6 Raw orthogonalized Gnanadesikan–Kettenring (OGK) estimator

Algorithm 2 Hubertization: Computing a positive definite estimate Δ̂H of Δ and a
corresponding estimate μ̂H of μ for a given scatter estimate Δ̂, i.e. for one of the 6
estimates of Table 1.
Input: Data Z1, . . . , Zn , where Zi ∈ Rp

Input: Matrix Δ̂ ∈ PSD(p)
Output: Δ̂H ∈ PD(p)
Output: μ̂H
Eigendecomposition Δ̂ = EΛET

B := ZE
R := E diag{Qn(B11, . . . , Bn1), . . . , Qn(B1p, . . . , Bnp)}
Δ̂H := RRT

μ̂ := Δ̂
1/2
H cmed(ZΔ̂

−1/2
H )

Computing the MRWCD estimator requires to find an approximation to the con-
sistency factor cψ depending on p, n and ψ . We propose the consistency factor can
be evaluated on normal data with N (0, Ip) without the knowledge of the proper Σ .
However, estimating cψ requires regularization, while finding ρ within Algorithm 1
already depends on the known cψ . Thus, we used Algorithm 1 (including the regu-
larization) with cψ = 1 and averaged the results over 1000 simulations to obtain a
scatter matrix estimate (say S). Further, cψ was found in a grid search to solve

min
c>0

||cS − Ip||2F , (9)

where the Frobenius norm of a matrix A = (
ai j

)p
i, j=1 ∈ Rp×p is defined as

||A||F =
⎛
⎝ p∑

i=1

p∑
j=1

a2i j

⎞
⎠

1/2

. (10)

The computational complexity of the MRWCD estimator is comparable to that
of the MRCD. Thanks to starting with the 6 initial estimates, the computation of
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both these estimators is much more efficient compared to RegMCD, where the latter
estimator computed by amodification of FAST-MCD requires a large number of initial
subsets of data. The computations are feasible also for larger p; for each of the 6 initial
estimates, there is typically up to 5 C-steps performed, and we set a maximum of 30
C-steps as in Roelant et al. (2009).

2.4 Regularization parameter and choice of target matrix

Naturally, one can always use cross validation to find a suitable value of the regular-
ization parameter ρ. Such approach is computationally very demanding, especially
for larger p, so we use here the approach of Boudt et al. (2020) to get a simple
estimate of ρ. We consider an upper bound for the condition number of the matrix
ρT + (1−ρ)cψΔ̂r with a known matrix denoted here as Δ̂r (r = 1, . . . , 6), where the
latter has the maximal and the minimal eigenvalue denoted as λ∗ and λ∗, respectively.
The equation requiring the condition number to be equal to a selected threshold κ has
the form

maximal eigenvalue of
(
ρT + (1 − ρ)cψΔ̂r

)

minimal eigenvalue of
(
ρT + (1 − ρ)cψΔ̂r

) = κ. (11)

The resulting value of ρr for the default choice T = Ip is explicitly expressed within
Algorithm 1. Combining individual values of ρ1, . . . , ρ6 to a single value of ρ ensures
the obtainedmatrix SMRWCD to be regular and positive definite even for n � p, while
the estimator does not possess affine equivariance.

Apart from the simplest and most natural choice of the target matrix T = Ip,
it is possible to consider e.g. two target matrices exploited already by Schäfer and
Strimmer 2005. Let the largest diagonal element of the matrix Δ̂r of above be denoted
as S∗ and its smallest diagonal element as S∗. The first target matrix

T = (
Ti j

)p
i, j=1 , Ti j =

{
ν := 1

p

∑p
i=1 Sii , if i = j,

c := 1
p(p−1)/2

∑p−1
i=1

∑
j>i Si j , if i �= j,

(12)

considers a common covariance and a common variance, while the second target
matrix

T = (
Ti j

)p
i, j=1 , Ti j =

{
Sii , if i = j,
0, if i �= j,

(13)

is diagonal and considers unequal variances. For target matrices (12) or (13), we
modify now the approach for the upper bound of the condition number. Particularly
for the target matrix (12), the Eq. (11) has the solution

ρr = λ∗ − κλ∗
κν + λ∗ − κλ∗ − ν

, (14)
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which can be used in Algorithm 1 replacing there ρr derived for the default choice
T = Ip. If the target matrix (13) is considered, (11) has the solution

ρr = λ∗ − κλ∗
κS∗ + λ∗ − κλ∗ − S∗ . (15)

2.5 Weighting schemes for implicitly weighted estimators

We now present several possible choices for the weight functions, which can be used
for the MRWCD and MWCD estimators. The simplest choice are linearly decreasing
weights generated by

ψ1(t) = 1 − t, t ∈ [0, 1]. (16)

Weights generated by the logistic curve (logistic function)

ψ2(t) = 1 + exp{−s/2}
1 + exp{s(t − 1

2 )}
, t ∈ [0, 1], (17)

with a fixed choice s = 10 remain larger for linear ones for the good data, while
they are very small for the most outlying observations. As shown in Fig. 1, weights
generated by the standardized density of normal distribution

ψ3(t) = exp

{
− t2

2σ 2

}
, t ∈ [0, 1], (18)

with a fixed choice σ = 0.8 decrease more slowly and can be thus expected to achieve
a better performance for non-contaminated data.

For each of the three choices, it is possible to consider more robust alternatives
defined for a fixed τ ∈ [1/2, 1), so that the estimators consider only h = �τn�
observations and trim away the remaining ones. The versions based on hard trimming
(HT)

ψHT
i (t) = ψ(t) · 1[t < τ ], t ∈ [0, 1], i ∈ {1, 2, 3}, (19)

are depicted in Fig. 1. Alternatively, one may consider such their versions

ψD
i (t) = ψ

(
t

τ

)
· 1[t < τ ], t ∈ [0, 1], i ∈ {1, 2, 3}, (20)

for which the weights decrease more quickly to 0 (so they obtain the superscript D)
and thus may be more robust but less efficient. The weight function

ψ4(t) = 1[t > τ ], t ∈ [0, 1], (21)

123



The minimumweighted covariance determinant estimator...

performs a hard trimming (cf. the discussion in Cerioli et al. (2018)) so that the
MRWCD equals to the MRCD estimator, and the MWCD to the MCD.

Algorithm 3 Outlier detection based on a reweighted MRWCD estimator in two
versions (FDR-χ2 or FDR-F)
.
Input: Data X1, . . . , Xn , where Xi ∈ Rp for each i = 1, . . . , n
Input: Weight function ψ transformed so that

∑n
i=1 ψ((i − 1/2)/n) = 1

Input: Consistency factor cψ (depends on p, n, and ψ)
Input: δ = 0.025
Input: α = 0.05
Output: List of outliers in the set {X1, . . . , Xn}
Compute X̄MRWCD and SMRWCD using ψ and cψ according to Algorithm 1

Compute d2i (X̄MRWCD , SMRWCD) using (30)

FDR-χ2:

ωi := 1
[
d2i (X̄MRWCD , SMRWCD) ≤ χ2

p,1−δ

]
, i = 1, . . . , n (22)

FDR-F :

ωi := 1

[
d2i (X̄MRWCD, SMRWCD) ≤ (n − 1)p

n − p
Fp,n−p(1 − δ)

]
, i = 1, . . . , n (23)

m := ∑n
i=1 wi

X̄ RMRWCD := ∑n
i=1 wi Xi /m

SRMRWCD :=

:= 1 − δ

P(χ2
p+2 < χ2

p,1−δ)

n∑
i=1

wi (Xi − X̄ RMRWCD)(Xi − X̄ RMRWCD)T

m − 1
(24)

Compute d2i (X̄ RMRWCD, SRMRWCD) using (30)
Compute

pi :=

⎧⎪⎪⎨
⎪⎪⎩

P
[
ζ ≥ m

(m−1)2
d2i (X̄ RMRWCD , SRMRWCD)

]
, ωi = 1,

P
[
ξ ≥ m(m−p)

(m+1)(m−1)p d
2
i (X̄ RMRWCD , SRMRWCD)

]
, ωi = 0,

(25)

for i = 1, . . . , n, where ζ ∼ Beta
(
p
2 ,

m−p−1
2

)
and ξ ∼ F(p,m − p)

Arrange p1, . . . , pn in ascending order as p(1) ≤ · · · p(n)

H := argmax
η=1,...,n

[
p(η) ≤ η

n
α
]

(26)

for i = 1 to n do
Assign Xi to be an outlier if and only if p(i) ≤ p(H)

end for
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Fig. 1 Various weight functions suitable for implicitly weighted estimators (including the novel MRWCD).
Left:weight functionsψ1 (squares),ψ2 (circles), andψ3 (triangles).Right:weight functionsψ

HT
1 (squares),

ψHT
2 (circles), and ψHT

3 (triangles), always with τ = 2/3. Horizontal axis: parameter t ∈ [0, 1]. Vertical
axis: values of the weight functions

2.6 Outlier detection

Robust estimates of parameters ofmultivariate data have also been successfully applied
to outlier detection. The simplest approach (denoted here as the plain approach) for a
given estimator μ̂ and Σ̂ ofμ andΣ , respectively, is to assign such observations Xi to
be outlying, for which theMahalanobis distances d2i (μ̂, Σ̂) fulfil d2i (μ̂, Σ̂) > χ2

p,1−δ ,

where χ2
p,1−δ is the (1 − δ)-quantile of χ2

p distribution. The choice δ = 0.025 is
standard in this context (Hubert et al. 2005). Useful discussions about critical values
have been presented already for non-regularized estimators. Let us denote

ωi = 1
[
d2i (μ,Σ) > χ2

p,1−δ

]
, i = 1, . . . , n, (27)

andm = ∑n
i=1 ωi . Inspired byHardin andRocke (2005), approximations conditioning

on ωi in the form

m

(m − 1)2
d2i (μ,Σ) ∼̇ Beta

(
p

2
,
m − p − 1

2

)
, if ωi = 1, (28)

and

m(m − p)

(m + 1)(m − 1)p
d2i (μ,Σ) ∼̇ Fp,m−p, if ωi = 0, (29)

were considered for i = 1, . . . , n by Cerioli (2010), who also considered (28) and
(29) to be approximately valid if replacing μ and Σ by MCD-estimates. Cerioli and
Farcomeni (2011) extended the method to consider a multiple testing procedure based
on (28) and (29) controling the false discovery rate (FDR) by the B–H approach
(Benjamini and Hochberg 1995).
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While the plain approach has been criticized for regularized estimators (Boudt et al.
2020), themethodofCerioli andFarcomeni (2011)maybe applied as an approximation
also to regularized estimators. For the MRWCD estimator, let us now formally define
the Mahalanobis distances of the observation Xi from X̄MRWCD as

d2i (X̄MRWCD, SMRWCD) = (Xi − X̄MRWCD)T S−1
MRWCD(Xi − X̄MRWCD)

(30)

for i = 1, . . . , n. However, for the sake of improving numerical stability, we rec-
ommend to avoid the computation of (30), which is expensive of order p3. Instead,
eigendecomposition of SMRWCD in the form SMRWCD = QΛQ−1 with an orthogo-
nal matrix Q and a diagonal matrix Λ is more efficient, which allows to express (30)
as

d2i (X̄MRWCD, SMRWCD) = (Xi − X̄MRWCD)T QΛQ−1(Xi − X̄MRWCD)

= ||Λ−1/2Q−1(Xi − m)||2, i = 1, . . . , n. (31)

Let us finally formulate a multivariate outlier detection procedure based on the
MRWCD estimator which tests the null hypothesis that individual observations are
not outlying. The procedure inspired by Cerioli and Farcomeni (2011) is formulated
in Algorithm 3 with two different approximations (22) or (23) to obtain a reweighted
version of the MRWCD estimator (RMRWCD). The corresponding versions of the
FDR-based procedure will be denoted as FDR-χ2 and FDR-F , respectively. Approx-
imate p-values obtained using (25) are corrected for multiple testing. The same
approximate FDR-χ2 and FDR-F procedures may be also applied to other regularized
estimators.

3 A real data example

The cardiovascular genetic case-control study dataset of Kalina et al. (2016) will be
now considered in order to illustrate how the MRWCD estimator may be used for
outlier detection. Gene expressions of p = 38 590 gene transcripts were measured by
means of HumanWG-6 Illumina BeadChip microarrays (version 3) on 48 individuals
in the years 2006–2011, namely on 24 patients immediately after cerebrovascular
stroke (CVS) and 24 control persons, where the latter individuals were without a
manifested cardiovascular disease. The original aim of the research was to identify
genes associated with excess genetic risk for the incidence of cerebrovascular stroke.
As in Marozzi et al. (2020), we randomly select a subset of the whole genetic dataset
with p = 1000, however using only the CVS patients (i.e. n = 24 here). As the
microarray data were pre-processed in a sophisticated way, they contain 7 valid digits
and we can assume that no ties occur. The computations are performed in R software
(R Core Team 2018).

We compute the MRWCD estimator with the robust weight function ψD
3 . The loss

function values for various h are shown in Fig. 2(left). Based on the figure, we come
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Fig. 2 Results for the gene expression dataset of Sect. 3 with p = 1000 and n = 24. Left: loss function
(vertical axis) ofMRWCDwithψHT

3 for different values of h = �τn� ≥ n/2 (horizontal axis). Right: robust
regularized Mahalanobis distance for individual observations, based on MRCD with τ = 0.75 (horizontal
axis) and on MRWCD with ψHT

3 with τ = 0.75 (vertical axis)

to detecting 6 outliers, i.e. choosing h = 18 as the suitable value. Using τ = 0.75,
Fig. 2(right) shows robust Mahalanobis distances of individual observations by means
of MRWCD with ψD

3 against those by means of MRCD. The lines in the figure
correspond to the quantile χ2

p(0.975). Although the Mahalanobis distances of some
additional points exceed χ2

p(0.975), they turn out not to be significant in the FDR-F
outlier detection procedure, which finds 6 outliers here. Simulation comparisons of
the outlier detection performance of various methods presented in Sect. 2.6 will be
presented later in Sect. 4.2.

4 Simulations

Several simulation studies aiming at investigating the performance of the newly
proposed MRWCD estimator, particularly over high-dimensional data, will be now
presented. In each of the simulations, we randomly generate the data 1000 times in
the following way. First, we randomly generate n observations from N (μ,Σ), where
we always use μ = (0, . . . , 0)T and Σ = Ip. Then, we randomly select �αn� of the
observations (for a given α), which are replaced in one of three ways. In each case,
the outliers are generated as i.i.d. random vectors from p-variate normal distribution.
The choice α = 0 corresponds to non-contaminated normal data.

(A) Outliers generated from N ((3, . . . , 3)T ,Σ A), where Σ A denotes the matrix Ip

with additional covariance Σ A
12 = Σ A

21 = 0.5;
(B) Outliers generated from N (μB, cΣ) with a given μB ∈ Rp and c > 0;
(C) Multivariate outliers of Fritsch et al. (2011). We take a random vector a ∈ Rp

with coordinates generated from the alternative (Bernoulli) distribution Alt(1/2)
and generate the outliers from N (μC ,ΣC ), where ΣC = Σ + 5aaT /||a||22.
The following estimators (and their implementations) are used in the simulations.
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– Classical estimates, i.e. the mean and empirical covariance matrix, where the latter
can be obtained as (3) with weights wi = 1/n for i = 1, . . . , n;

– The regularized (shrinkage) empirical covariance matrix of Σ of Ledoit and Wolf
(2004), using package CovTools (Lee and You 2019) of R software;

– RegMCD proposed in Gschwandtner and Filzmoser (2013), using package rrlda
(Gschwandtner et al. 2012) of R software;

– MRCD of Boudt et al. (2020) with the trimming constant h = �3n/4�, using
package rrcov (Todorov and Filzmoser 2009);

– The novel MRWCD with a specified weight function, using our implementation
of Algorithm 1; if ψHT

1 or ψHT
3 is used, then τ = 3/4 is chosen.

We consider the target matrix T = Ip for all regularized estimators. Except for the
Ledoit-Wolf estimator, all methods estimate both expectation and scatter. We verified
that Algorithm 1 with ψ(t) = 1[t < τ ] for t ∈ [0, 1] yields results very close to those
obtained with the MRCD estimator implemented in package rrcov. We also realized
that results of MRWCD with ψD

i are rather similar to those obtained with ψHT
i for

each fixed i ∈ {1, 2, 3}. Importantly, we verified that regularization is used only when
necessary (for small values of n/p).

Denoting the parameters of non-contaminated data again by μ and Σ , we consider
three measures to evaluate the performance of an estimate μ̂ ofμ and the performance
of a corresponding estimate Σ̂ of Σ . These are defined as

E1 = ||μ̂ − μ||22, E2 = ||Σ̂ − Σ ||2F , E3 = tr(Σ̂Σ−1) − log det(Σ̂Σ−1) − p,

(32)

where tr(A) denotes the trace of a matrix. Naturally, the error measures are averaged
over the simulated datasets.

Results of simulation A are presented in Table 2 for various values of p, n, and α.
The empirical covariance matrix turns out to be outperformed by regularized counter-
parts even for normal data, as it becomes ill-conditioned in high dimensions. There
are not big differences between results of MRCD (Boudt et al. 2020) and RegMCD
(Gschwandtner and Filzmoser 2013). MRWCD outperforms them in some contam-
inated situations in terms of E2. E3 remains undefined for classical estimates for
n < p; for other estimates, the results obtained with E3 do not correspond much
to those obtained with E2. We do not consider E3 to be a suitable measure as such,
because it may be derived as the Kullback–Leibler divergence between two multi-
variate normal distributions with regular covariance matrices under the assumption
of their common expectation. This also explains why the only application of E3 to
high-dimensional data appears to be presented in Boudt et al. (2020).

Results of simulations B and C are presented in Tables 3 and 4, respectively. Most
often, the best estimates of Σ in terms of E2 are obtained using MRWCD. Its per-
formance seems especially good if the data are more heavily contaminated by severe
outliers, which are shifted from the bulk of the data as well as having a large variabil-
ity. For estimating μ, MRWCD stays only slightly behind the best results (if not the
best), but the main contribution of MRWCD (also compared to MRCD) is mainly in
estimating Σ .
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Table 2 Measures of performance of estimating μ (E1) and Σ (E2 and E3) in simulation A

Estimator E1 E2 E3 E1 E2 E3 E1 E2 E3

Simulation A with p = 50, n = 60

α = 0 α = 0.1 α = 0.2

Classical 0.91 6.64 84.3 2.32 42.35 120.7 4.32 75.03 152.9

Ledoit-Wolf – 1.35 50.9 – 40.53 87.4 – 72.42 118.6

RegMCD 1.10 7.22 62.0 1.06 7.27 62.2 1.04 7.57 63.1

MRCD 1.09 7.33 82.9 1.07 7.60 83.1 1.04 7.96 83.1

MRWCD ψ1 1.07 6.10 73.7 1.12 6.32 69.1 1.48 13.23 68.2

MRWCD ψHT
1 1.28 6.77 81.1 1.29 6.56 80.9 1.31 6.97 81.5

MRWCD ψ2 1.17 6.47 76.7 1.20 6.17 75.4 1.22 6.89 71.1

MRWCD ψ3 0.94 6.12 71.4 1.65 13.00 65.1 3.21 22.50 75.4

MRWCD ψHT
3 1.26 6.77 81.1 1.27 6.57 81.0 1.29 6.98 81.7

Simulation A with p = 50, n = 200

α = 0 α = 0.05 α = 0.20

Classical 0.50 3.59 57.0 1.17 22.01 75.3 4.28 72.82 125.3

Ledoit-Wolf – 0.71 50.3 – 21.61 68.6 – 72.07 117.8

RegMCD 0.61 5.03 57.8 0.60 5.10 57.9 0.58 5.34 58.6

MRCD 0.59 4.37 60.8 0.58 4.43 60.7 0.58 4.51 60.3

MRWCD ψ1 0.58 3.95 60.5 0.58 3.89 60.6 1.30 17.47 69.4

MRWCD ψHT
1 0.69 4.59 67.4 0.69 4.42 67.6 0.76 4.46 67.5

MRWCD ψ2 0.64 4.30 63.6 0.64 4.14 63.6 0.74 5.29 64.9

MRWCD ψ3 0.51 3.61 57.7 0.83 12.86 66.6 3.34 28.10 78.3

MRWCD ψHT
3 0.68 4.55 66.7 0.68 4.40 67.0 0.74 4.44 66.9

For each scenario, the choices of p, n and α are specified. The smallest value in each simulation is shown
in boldface

MRWCD estimates with non-robust weights perform particularly well. The rea-
son why MRWCD estimates with robust weights stay (only slightly) behind is that
MRWCDwith hard trimming is always computed with trimming away 25 % of obser-
vations, although the true contamination level is lower in all simulations. An adaptive
search for data-dependent weights, extending the ideas of Čížek (2011) or Cerioli et al.
(2018), may have a potential to lead to further improvements. The effect of replacing
T = Ip by an alternative target matrix is revealed in Table 4 to be rather small.

4.1 Effect of regularization

To study how the estimated values of ρ are affected by different choices of p, n and
α, where the last corresponds to the true contamination level, we present averaged
values of ρ evaluated within a particular study over 1000 randomly generated datasets
in Table 5. Simulation BwithμB = (2, . . . , 2)T , c = 5, andψT

1 is considered there. It
turns out that no regularization is used when it is not needed. Further, ρ increases with
an increasing ratio p/n, and decreases with an increasing contamination, because the
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Table 3 Measures of performance of estimating μ (E1) and Σ (E2 and E3) in simulation B

Estimator E1 E2 E3 E1 E2 E3

Simulation B with p = 200 and n = 50

α = 0.1, c = 5 α = 0.2, c = 3

μB = (0, . . . , 0)T μB = (1, . . . , 1)T

Classical 2.40 53.6 – 3.66 62.5 –

Ledoit-Wolf — 7.7 219 – 32.0 245

RegMCD 2.33 30.9 307 2.37 31.2 309

MRCD 2.30 28.5 434 2.31 29.3 433

MRWCD ψ1 2.30 21.6 335 2.44 22.8 329

MRWCD ψHT
1 2.45 22.2 337 2.46 23.0 337

MRWCD ψ2 2.52 22.6 331 2.55 23.3 331

MRWCD ψ3 2.18 22.7 307 2.99 21.1 273

MRWCD ψT
3 2.35 22.3 347 2.36 22.9 347

Simulation B with p = 400 and n = 100

α = 0.1, c = 5 α = 0.1, c = 3

μB = (2, . . . , 2)T μB = (3, . . . , 3)T

Classical 4.63 177.5 – 6.41 343.9 –

Ledoit-Wolf – 139.6 569 – 321.1 729

RegMCD 2.31 43.5 616 2.34 43.5 615

MRCD 2.29 40.5 858 2.33 40.9 861

MRWCD ψ1 2.33 26.6 562 2.38 22.0 486

MRWCD ψHT
1 2.39 31.0 656 2.38 31.1 659

MRWCD ψ2 2.49 31.8 647 2.47 32.1 649

MRWCD ψ3 3.29 16.4 439 4.26 18.3 430

MRWCD ψHT
3 2.30 31.1 678 2.27 31.0 681

For each scenario, the choices of p, n and parameters characterizing the data contamination are specified.
The smallest value in each simulation is shown in boldface

outliers contribute to improving the numerical stability (and decreasing the condition
number) of the estimated scatter matrix.

4.2 Outlier detection

The outlier detection performance of methods of Sect. 2.6 will now be compared
in a simulation study inspired by Gschwandtner and Filzmoser (2013). Each dataset
contains the “good” observations randomly generated as independent values from
N p(0, σ ∗), whereΣ∗ corresponds to Ip except for the covariancesΣ∗

12 = Σ∗
21 = 0.7.

In addition, each dataset contains �nα� contaminated observations, which are obtained
as independent N (μout , σoutIp) values. The plain approach assigns a given (i-th)
observation as an outlier if and only if its corresponding robust Mahalanobis distance
exceeds χ2

p,1−δ . The MRCD and RegMCD estimators triming away 25 % of the
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Table 4 Measures of performance of estimating μ (E1) and Σ (E2 and E3) in Simulation C

Estimator E1 E2 E3 E1 E2 E3

Simulation C

p = 200, n = 50 p = 300, n = 200

α = 0.2 α = 0.1

μC = (2, . . . , 2)T μC = (1, . . . , 1)T

Classical 3.96 86.5 – 2.49 173.1 –

Ledoit-Wolf – 80.8 188 – 170.0 153

RegMCD 3.49 18.4 162 2.24 15.1 136

MRCD 3.46 19.3 507 2.24 16.7 259

MRWCD with T = Ip

MRWCD ψ1 3.62 19.6 416 2.33 18.4 312

MRWCD ψHT
1 3.58 18.2 327 2.31 15.9 227

MRWCD ψ2 3.74 21.5 458 2.47 19.0 385

MRWCD ψ3 3.78 20.1 330 2.45 19.1 323

MRWCD ψHT
3 3.61 18.0 283 2.26 14.7 256

MRWCD with target matrix (12)

MRWCD ψ1 3.61 19.9 441 2.33 18.8 330

MRWCD ψHT
1 3.58 19.1 389 2.30 15.5 248

MRWCD ψ2 3.75 21.2 492 2.48 20.6 361

MRWCD ψ3 3.77 20.8 373 2.45 19.7 347

MRWCD ψHT
3 3.61 18.4 325 2.27 16.3 266

MRWCD with target matrix (13)

MRWCD ψ1 3.62 20.6 424 2.34 18.8 322

MRWCD ψHT
1 3.58 19.5 396 2.31 15.7 232

MRWCD ψ2 3.74 21.1 524 2.47 20.4 369

MRWCD ψ3 3.76 20.9 351 2.44 19.2 341

MRWCD ψHT
3 3.62 19.1 290 2.26 16.6 252

For each scenario, the choices of p, n, α and μC are specified. The smallest value in each simulation is
shown in boldface

Table 5 Simulation comparison
of the effect of regularization of
Sect. 4.1: average values of ρ in
Simulation B with
μB = (2, . . . , 2)T , c = 5, and
ψT
1

p n α Average ρ p n α Average ρ

50 100 0.0 0.000 200 200 0.0 0.088

50 100 0.1 0.000 200 200 0.1 0.069

50 100 0.2 0.000 200 200 0.2 0.056

100 100 0.0 0.085 400 100 0.0 0.195

100 100 0.1 0.073 400 100 0.1 0.156

100 100 0.2 0.056 400 100 0.2 0.134

200 100 0.0 0.121 400 200 0.0 0.131

200 100 0.1 0.106 400 200 0.1 0.109

200 100 0.2 0.094 400 200 0.2 0.100
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observations are used here, and the MRWCD estimator is used with the loss function
ψHT
1 .
The results obtained for different values of p, n, α andμout are presented in Table 6

for σout = 1. In the table, averaged ratios of false negative (FN) and false positive
(FP) results computed across 100 simulations are reported. For example, the FDR-F
method used with the MRWCD estimator yields the average FN equal to 0.04 for
p = 50, n = 100, α = 0.1 (i.e. 10 outliers), and μout = 1.

It follows from Table 6 that the outlier detection performance increases with an
increasing ratio p/n (when all other parameters are retained). The performance is also
improved with an increasing μout , although false positivity does not decrease to 0 in
some situations, especially for MRCD; this is a consequence of considering 75 % of
observations in the estimate, without reflecting the true contamination level. FDR-χ2

and especially FDR-F approaches yield better results compared to the plain ones; the
improvement of FDR-based hypothesis testing is remarkable for such observations,
for which the robust Mahalanobis distances are only moderately above χ2

p,0.975. The
choice of σout turns out to have a negligible effect here. For p > n, RegMCD turns
out to represent the best estimator for outlier detection for largerμout , while MRWCD
with the FDR-F procedure outperforms all other tools for smaller μout .

5 Conclusions

This work fills the gap of robust implicitly weighted estimation of expectation and
scatter of high-dimensional data. A real data example with gene expressions illus-
trates a data-driven outlier detection (and finding a suitable number of observations
detected as outliers). In the task to estimate the expectation and scatter matrix of high-
dimensional (possibly contaminated) data, simulations reveal the MRWCD estimator
to outperform other tools in some situations. This is especially true in the task to esti-
mate the scatter matrix when using E2 as the criterion for the estimation performance.
The MRWCD estimator, which depends on the choice of a particular weight function,
performs the best in several simulation scenarios, especially in estimating the scatter
matrix of contaminated high-dimensional data. Simulations of Sect. 4.2 reveal the
MRWCD estimator to perform well also in the outlier detection task, especially if
using the FDR-F approach.

The MRWCD estimator is computationally feasible for data with the number of
variables in the order of thousands. This is true in spite of the fact that the MRWCD
estimator extends theMRCD to allow for any continuousweights. Indeed, Algorithm 1
ismuch less demanding compared to adirect extensionof theFAST-MCD, as it requires
only a relatively small number of generalized C-steps; in fact, the computation of the
6 initial estimates is the most demanding part of the computation.

None of the weight functions seems to be the best across a wide range of scenarios.
It seems as a possibility for future research to use metalearning (automatic method
selection) to predict the most suitable weights for a given dataset based on suitable
data features, as a multivariate analogy of the regression approach of Kalina and
Tichavský (2019). We agree with Tong et al. (2018) that the choice of T in regularized
covariance matrices should not be performed (estimated) based on the data. Instead, it
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Table 6 Outlier detection performance in simulations of Sect. 4.2: the average percentages of false nega-
tives (FN) and false positives (FP) for three different outlier detection approaches of Sect. 2.6

Estimator Outlier FN FP FN FP FN FP
detection μout = 0.5 μout = 1 μout = 5

p = 50, n = 100, α = 0.1

RegMCD Plain 1.00 0.00 0.59 0.00 0.00 0.00

RegMCD FDR-χ2 1.00 0.00 0.23 0.12 0.00 0.08

RegMCD FDR-F 1.00 0.00 0.21 0.12 0.00 0.08

MRCD Plain 0.52 0.23 0.08 0.18 0.00 0.18

MRCD FDR-χ2 0.26 0.19 0.05 0.11 0.00 0.09

MRCD FDR-F 0.23 0.11 0.04 0.07 0.00 0.05

MRWCD Plain 0.51 0.18 0.08 0.17 0.00 0.18

MRWCD FDR-χ2 0.31 0.17 0.07 0.07 0.00 0.02

MRWCD FDR-F 0.28 0.10 0.04 0.05 0.00 0.02

p = 100, n = 100, α = 0.1

RegMCD Plain 1.00 0.00 0.22 0.00 0.00 0.00

RegMCD FDR-χ2 0.85 0.00 0.15 0.07 0.00 0.06

RegMCD FDR-F 0.33 0.00 0.13 0.05 0.00 0.05

MRCD Plain 0.44 0.22 0.00 0.18 0.00 0.17

MRCD FDR-χ2 0.19 0.15 0.05 0.09 0.00 0.08

MRCD FDR-F 0.17 0.13 0.04 0.06 0.00 0.05

MRWCD Plain 0.23 0.17 0.00 0.14 0.00 0.13

MRWCD FDR-χ2 0.17 0.11 0.00 0.02 0.00 0.02

MRWCD FDR-F 0.14 0.09 0.00 0.02 0.00 0.02

p = 200, n = 100, α = 0.1

RegMCD Plain 0.98 0.00 0.01 0.00 0.00 0.00

RegMCD FDR-χ2 0.62 0.10 0.00 0.03 0.00 0.03

RegMCD FDR-F 0.29 0.09 0.00 0.01 0.00 0.01

MRCD Plain 0.27 0.21 0.00 0.17 0.00 0.14

MRCD FDR-χ2 0.15 0.12 0.04 0.08 0.00 0.06

MRCD FDR-F 0.13 0.10 0.03 0.05 0.00 0.04

MRWCD Plain 0.33 0.15 0.00 0.11 0.00 0.11

MRWCD FDR-χ2 0.16 0.08 0.00 0.02 0.00 0.01

MRWCD FDR-F 0.13 0.07 0.00 0.02 0.00 0.01

p = 400, n = 100, α = 0.1

RegMCD Plain 0.85 0.00 0.00 0.00 0.00 0.00

RegMCD FDR-χ2 0.28 0.08 0.00 0.00 0.00 0.00

RegMCD FDR-F 0.21 0.05 0.00 0.00 0.00 0.00

MRCD Plain 0.22 0.13 0.00 0.09 0.00 0.06
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Table 6 continued

Estimator Outlier FN FP FN FP FN FP
detection μout = 0.5 μout = 1 μout = 5

MRCD FDR-χ2 0.13 0.10 0.03 0.03 0.00 0.03

MRCD FDR-F 0.09 0.07 0.01 0.03 0.00 0.02

MRWCD Plain 0.24 0.11 0.00 0.05 0.00 0.05

MRWCD FDR-χ2 0.10 0.06 0.00 0.01 0.00 0.01

MRWCD FDR-F 0.07 0.04 0.00 0.01 0.00 0.01

The MRWCD estimator is used with ψHT
1

has been recommended to choose T not to contain information learned from the given
data (Schäfer and Strimmer 2005). On the other hand, the choice of T may reflect a
prior knowledge related to the structure of data in a Bayesian setup, as discussed in
DeMiguel et al. (2013).

Possible applications or extensions of the MRWCD estimator can be found within
robust regularized linear discriminant analysis or within machine learning (Rusiecki
2008), or for cell-wise down-weighting of cell-wise contaminated high-dimensional
observations within methods of Agostinelli et al. (2015) or Van Aelst (2016).
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