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Abstract 

This paper is devoted to two important kernel-based tools of nonlinear regression: the 

Nadaraya-Watson estimator, which can be characterized as a successful statistical method in 

various econometric applications, and regularization networks, which represent machine 

learning tools very rarely used in econometric modeling. This paper recalls both approaches  

and describes their common features as well as differences. For the Nadaraya-Watson 

estimator, we explain its connection to the conditional expectation of the response variable. 

Our main contribution is numerical analysis of suitable data with an economic motivation and 

a comparison of the two nonlinear regression tools. Our computations reveal some tools for 

the Nadaraya-Watson in R software to be unreliable, others not prepared for a routine usage. 

On the other hand, the  regression modeling by means of regularization networks is much 

simpler and also turns out to be more reliable in our examples. These also bring unique 

evidence revealing the need for a careful choice of the parameters of regularization networks. 

Key words:  Nonlinear regression, machine learning, kernel smoothing, regularization, 

regularization networks 
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Introduction  

Regression modeling is well known to represent a fundamental task in econometrics. While 

the importance of its nonlinear versions has been acknowledged already decades ago (Fisher 

& Salmon, 1986), practical applications of nonlinear models in econometrics have become 

popular only rather recently (Racine, 2019). This work is devoted to two important methods 

of nonlinear regression with an unknown regression function. These include the Nadaraya-

Watson (shortly N-W) estimator and regularization networks.  

The N-W estimator has found numerous econometric applications and we now recall 

some of the recent ones. For example, Kibria et al. (2019) applied the N-W estimator in 

a study of different sources of electrical energy in various countries and focused on the 
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relationship between the share of fossil fuels and the economic growth. The N-W estimator 

was used for option pricing in Kenmoe & Sanfelici (2014), or in the study of audit quality 

effect by Yang et al. (2020). Other available applications include an extension of the N-W 

estimator for functional data was used within the study of the aggregate stock market by Hong 

& Linton (2020). An adaptive version of the N-W estimator with a varying size (i.e. varying 

bandwidth) of the kernel was used e.g. by Ahmed et al. (2020) for estimating nonlinear 

regression quantiles. 

Regularization is commonly used in machine learning in order to solve ill-posed 

problems in various tasks of regression, classification, clustering, or dimensionality reduction 

(Kalina & Schlenker, 2015). This paper studies regularization networks, which represent 

a particular type of machine learning tools also denoted as regularized ridge estimators. To 

avoid misunderstanding, we do not discuss regularized networks (i.e. regularized versions of 

common types of networks) here. We are not aware of economic applications of 

regularization networks; applications or regularization networks to the context of dynamical 

systems (however without a direct economic example) were presented by Chiuso & Pillonett 

(2019). There, the method was used for learning from examples using a nonlinear black-box 

system, while the complexity of the models was controled by the regularization parameter.  

The nonlinear regression model assumes the total number n of observations to be 

available. We denote the values of the continuous response variables as 𝑌1, … , 𝑌𝑛 and 

corresponding values of p-variate regressors (independent variables) as 𝑋1, … , 𝑋𝑛, where 𝑋𝑖 =

(𝑋𝑖1, … , 𝑋𝑖𝑝)𝑇 for 𝑖 = 1, … , 𝑛. The aim is to find the best approximation of the response 

conditioning on the regressors. Particularly, we consider the nonlinear regression model  

                              𝑌𝑖 = 𝑓(𝛽1𝑋𝑖1, … , 𝛽𝑝𝑋𝑖𝑝) + 𝑒𝑖,    𝑖 = 1, … 𝑛,                                 (1) 

with an unknown function f, where 𝑒1, … , 𝑒𝑛 are random errors in the model and 𝛽 =

(𝛽1, … , 𝛽𝑝)𝑇 is a vector of parameters. 

We can say that both the N-W estimator and regularization networks belong to 

nonparametric approaches, as they do assume specific distribution of the errors in (1) and as 

the predicted value of the response is an unknown parameter for each value of the regressor. 

In the regression framework, the task of nonparametric regression can be described as  

function estimation (function approximation), and its aim is to estimate a continuous function 

of the regressors, while the value of the function for each possible value of the regressors is 

an unknown parameter (Kalina, 2014). 
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1 Nadaraya-Watson estimator 

The N-W estimator represents a kernel-based regression method popular in the regression 

setup (1), but also in models without any regressors; in the latter case, the estimator is known 

as the kernel smoother. This section recalls the estimator and then desribes a related kernel-

based estimator of conditional expectation in Section 1.1, which is straightforward but still 

difficult to be found in the literature.  

Known properties of the N-W estimators include their consistency, asymptotic bias, or 

asymptotic normality. These results have been derived only under rather stringent 

assumptions, just like theoretical comparisons of various kernels. In practice, it is however not 

possible to verify if the assumptions are fulfilled. Usually, one assumes the observations to 

correspond to realizations of independent identically random vectors. Let us stress here that  

regressors are assumed to be random. Further, it is common to assume, apart from other 

technical assumptions, that 𝐸𝑌2 < ∞, where Y denotes the random response variable.  

Computing the N-W estimator requires to specify a kernel K, which serves to measure 

the distance in the p-dimensional space; common choices include the Gaussian kernel or                                                 

Epanechnikov kernel, which itself exists in several different versions. At any case, the N-W 

estimator uses a normalized version of the kernel obtained as 

                                                      �̃�(𝑥) = ℎ−𝑝𝐾 (
𝑥

ℎ
),     𝑥 ∈ ℝ𝑝,                                            (2) 

where the parameter h (bandwidth) fulfilling ℎ > 0 corresponds to the level of smoothing. 

The N-W estimator of the function f  in (1) with a normalized kernel (2) has the form 

                                                     𝑓(𝑥) =
∑ 𝑌𝑖�̃�(𝑥−𝑋𝑖)𝑛

𝑖=1

∑ �̃�(𝑥−𝑋𝑖)𝑛
𝑖=1

,        𝑥 ∈ ℝ𝑝,                                      (3) 

i.e. represents a linear function of the response. Thus, it commonly denoted as a linear 

estimator, although it is not a linear estimator of  f (𝑓 is not a linear function of 𝑥 ∈ ℝ𝑝). 

From the practical point of view, the influence of the choice of K turns out not to be so 

strong, so it remains crucial to select a proper h. There are no explicit expressions for its 

optimal value. Formally, numerous criteria for the optimal h have been derived, which 

however depend on unknown parameters; for practical purposes, cross validation may be 

recommended to find a suitable (but not the optimal) h. The N-W estimator requires a large 

number n of observations; especially if the dimensionality p increases, the number n required 

for retaining the same approximation ability increases exponentially. Such phenomenon is 

known as the curse of dimensionality. 
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1.1  A kernel-based estimator of the conditional expectation 

Let us now show the connection of the N-W estimator with the conditional expectation. We 

understand here the regressors as realizations of a p-dimensional random vector, which is 

denoted here as X. We may formulate an optimization task  

                                                 𝑚 ≔ arg min
𝑓∈𝑀

𝐸(𝑌 − 𝑓(𝑋))
2

;                                           (4) 

here, M denotes the class of real measurable functions, where each function 𝑓 ∈ 𝑀 fulfils 

𝐸𝑓2 < ∞. Let us stress that we consider expectations under the assumption that the 

distribution of the random variables is known.  

The solution of the optimization task (4) is precisely the conditional expectation in the 

form 𝑚(𝑥) = 𝐸(𝑌|𝑋 = 𝑥), where 𝑥 ∈ ℝ𝑝. In practice, however, the conditional expectation is 

not usually used as an estimate of  f, as its computation can be very tedious. The task (4) may 

be replaced by a close (approximated) task exploiting the relation 

                                𝑚(𝑥) = 𝐸(𝑌|𝑋 = 𝑥) = ∫ 𝑦𝑓(𝑦|𝑥)𝑑𝑦 = ∫ 𝑦 
𝑓(𝑥,𝑦)

𝑓𝑥(𝑥)
𝑑𝑦,                           (5) 

where 𝑓(𝑥, 𝑦) denotes the joint density and 𝑓𝑥 the marginal density of the regressors. Such 

approximation of the function m has a form  

                                  �̂�(𝑥) = ∑ 𝑌𝑖

∑ �̃�𝑦(𝑦−𝑌𝑗)𝑛
𝑗=1

∑ �̃�(𝑥−𝑋𝑗)𝑛
𝑗=1

𝑛
𝑖=1 ,    where    �̃�𝑦(𝑦) =

1

ℎ
𝐾 (

𝑦

ℎ
);                   (6)                         

this requires to use kernel estimates of densities for the numerator and denominator as 

             𝑓(𝑥, 𝑦) =
1

𝑛
∑ �̃�(𝑥 − 𝑋𝑖)

𝑛
𝑖=1  �̃�𝑦(𝑦 − 𝑌𝑖)   and   𝑓𝑥(𝑥) =

1

𝑛
∑ �̃�(𝑥 − 𝑋𝑖)

𝑛
𝑖=1              (7) 

for 𝑥 ∈ ℝ𝑝 and 𝑦 ∈ ℝ, respectively. It is already evident that the obtained nonlinear 

estimate (6) of the conditional expectation is related to the N-W estimator (3). 

 

2  Regularization networks 

Regularization networks proposed by Girosi et al. (1995) may be characterized as nonlinear 

regression tools with a clear interpretation and a straightforward computation; in fact,  they 

may be computed using an available explicit formula. Still, as stated already in the 

Introduction, regularization networks are currently avoided in econometric applications. This 

is perhaps because of their simplicity, or also because their theoretical properties have not 
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been known. Actually, the performance of regularization networks has been studied mainly by 

means of numerical experiments (Neruda & Vidnerová, 2009).  

Assuming again the nonlinear regression model (1), let us now formulate the task of 

finding an unknown continuous function f as argument of minima  

                                                        min
𝑓

∑ (𝑌𝑖 − 𝑓(𝑋𝑖))2𝑛
𝑖=1 ,                                                  (8) 

which is considered over the space of all continuous functions. This task of nonparametric 

regression is ill-posed, because there exist more than one solution. In fact, there exist an 

infinite number of solutions and one of them is the trivial (degenerated) solution in the form 

of a piece-wise linear function connecting all values of the response. The following approach 

assumes that the user chooses some kernel; the most common choice is the Gaussian 

kernel (2). It follows from the theory of functional analysis that a space (say 𝐻𝐾) of functions 

corresponds to every fixed K.  

When a particular kernel is chosen, we can replace the original task (8) by a new task 

                                                         min
𝑓∈𝐻𝐾

∑ (𝑌𝑖 − 𝑓(𝑋𝑖))2𝑛
𝑖=1 ,                                                  (9) 

which still remains to be ill-posed. Thus, we consider yet another task  

                                    min
𝑓∈𝐻𝐾

{∑ (𝑌𝑖 − 𝑓(𝑋𝑖))2𝑛
𝑖=1 + 𝜆||𝑓||𝐻𝐾

},      λ > 0,                                (10)  

where 

                                               ||𝑓||𝐻𝐾
= ∑ ∑ 𝛽𝑖𝛽𝑗𝐾(𝑋𝑖, 𝑋𝑗).𝑛

𝑗=1
𝑛
𝑖=1                                         (11) 

Such metric in the functional space evaluated the distance between p-variate vectors by means 

of the kernel K. 

We skip theoretical results from the field of functional analysis, devoted to the space 

of real functions or RKHS (Reproducible Kernel Hilbert Space) spaces (Neruda & Vidnerová, 

2009). We will only need here the representation theorem (Girosi et al., 1995) stating that the 

resulting estimator can be expressed as 

                                     𝑓(𝑥) = ∑ 𝛽𝑖𝐾(𝑥, 𝑋𝑖),    𝑥𝑛
𝑖=1 ∈ ℝ𝑝,                                        (12) 

depending on the vector of parameters 𝛽 = (𝛽1, … , 𝛽𝑛)𝑇 . It will be convenient to denote by K 

the square matrix 𝐾 = (𝐾(𝑋𝑖, 𝑋𝑗))
𝑖,𝑗=1

𝑛
. Then, the task (10) can be expressed as  
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                                                  min
𝛽

{||𝑌 − 𝐾𝛽||2 + 𝜆𝛽𝑇𝐾𝛽}.                                             (13) 

By using derivatives, we find out already easily that the explicit form of the minimum is   

                  �̂� = (𝐾𝑇𝐾 + 𝜆𝐾)−1𝐾𝑇𝑌=[(𝐾 + 𝜆𝐼)𝐾]−1𝐾𝑇𝑌 = (𝐾 + 𝜆𝐼)−1𝑌.            (14)   

The estimate �̂� is known as a regularization network, although statisticians often 

prefer to call it a generalized ridge estimator (Mori & Suzuki, 2018); the latter reminds the 

connection between (14) and the ridge regression estimator (in linear regression). It is 

necessary to recall that the properties depend not only on 𝜆, but also on the variance of the 

Gaussian kernel (say 𝜎2). Finally, the fitted value for a particular 𝑥 ∈ ℝ𝑝 is obtained as 

an empirical counterpart of  (12) in the form 𝑓(𝑥) = ∑ �̂�𝑗𝐾(𝑥, 𝑋𝑗).𝑛
𝑗=1           

                                        

3  Examples 

This section presents our computations of the N-W estimator and regularization networks 

over two datasets denoted here as dataset A and dataset B. In fact, we are not aware of  

comparisons of these two methods over real economic data. In the dataset A with 𝑛 = 23 and 

𝑝 = 1, the response variable corresponds to real gross private domestic investments in the 

United States and a single regressor is the GDP, while both variables are yearly measurements 

from the years 1980-2001 in 109 USD. We create here an artificial dataset B with 𝑛 =  22 

and again 𝑝 = 1, which is shown in Figure 1. 

 

Fig. 1: Dataset B. Horizontal axis: the regressor (GDP). Vertical axis: the response 

(investments). 

 

Source: own artificial data. 
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Fig. 2: Regularization networks for dataset A with 𝝈𝟐=1000. Horizontal axis: GDP. 

Vertical axis: investments. Left: 𝝀 = 𝟎. Right: 𝝀 = 𝟎. 𝟏.  

    

Source: own computation. 

 

Results of regularization networks with different values of their parameters are shown 

in Figures 2 and 3. The fit with λ = 0 in Figure 2 (left) does not use any regularization (i.e. is 

extremely overfitted); thanks to the effect of a positive 𝜆, the fit in Figure 2 (right) is much 

smoother. The two images of Figure 3 are shown as a warning; the left image yields a suitable 

fit with reasonable values of the parameters. The right image however has extremely selected 

parameters, which themselves are definitely unsuitable for the data, but the fit still seems very 

good (in fact smoother than in the left image). Thus, the user should be very careful and we 

do not recommend to rely on automatic procedures for computing regularization networks 

without interpreting their parameters. 

 

Fig. 3: Regularization networks for dataset B. Left: 𝝀 = 𝟎. 𝟏 and 𝝈𝟐=1000. Right: 𝝀 =

𝟎. 𝟎𝟎𝟎𝟏 and 𝝈𝟐=𝟏𝟎𝟕. Horizontal axis: GDP. Vertical axis: investments. 

    

Source: own computation. 
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Fig. 4: The Nadaraya-Watson estimator (full circles) computed for dataset A; raw data 

shown are as empty circles. Horizontal axis: GDP. Vertical axis: investments. 

 

Source: own computation. 

 

We used three methods for computing the N-W estimator, using three different 

libraries of R software. Library bbemkr (function NadarayaWatsonkernel) yields no result, 

presumably because of a small n; library stats (function ksmooth) yields no result again; and 

finally using library monreg (function monreg), the fitted values of the response are shown in  

Figure 4. We consider the results obtained by the library monreg to be quite poor. The result 

was obtained with the Epanechnikov kernel with a default value of the bandwidth. This 

library, just like the libraries bbemkr and stats, do not contain tools for a cross-validated 

search of a suitable bandwidth. Thus, we do not consider these tools to be user-friendly, as the 

user would has to perform the search for a suitable bandwidth only manually. In addition, it 

should be mentioned that a user-friendly method for computing the N-W estimator together 

with a cross validation for finding the optimal bandwidth is available in the Python 

programming language, namely in the package mcmodels. 

Finally, let us conclude that the regularization networks clearly estimate the trend 

much better compared to the N-W estimator. Although some of the images seemingly reveal 

the obtained trend to correspond to the data very well, such autovalidation (autoverification) 

only reveals here to fit the training data well, while the images do not show if the method is 

able to generalize well to new data or not.  

 

Conclusions 

This paper starts with a detailed comparative description of the N-W estimator and 

regularization networks. Both are flexible nonlinear regression tools; at the same time, their 
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nonparametric structure ensures robustness (as in Saleh et al. (2012)). The N-W estimator has 

been applied to many economic data analysis tasks, but its performance in our numerical 

examples is outperformed by (much less known) regularization networks. In addition, we 

realize here even on a (simplistic) economic dataset that the methods heavily depend on the 

choice of the parameters. Thus, both methods require a careful modeling over real data; we 

stress here that their parameters (commonly denoted as hyperparameters) should be checked 

to be meaningful for the data under consideration. This complicates their potential 

implementation within automatic procedures; we are actually not aware of a publicly 

available software procedure for their fully automatic computation. While there exist 

numerous other nonlinear regression methods within statistics as well as machine learning, it 

turns out that their systematic comparisons over economic data, including a minimization of 

the cross validation mean square error, would be very useful.  
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