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Abstract
The article shows how some common measures of association between two random
vectors may be used to test multivariate symmetry around a subspace (possibly up to
a shift), which also permits testing exchangeability, axial symmetry, halfspace sym-
metry, and certain goodness-of-fit and equality-of-scale hypotheses. The resulting
(parametric, nonparametric, permutation, and asymptotic) tests of the symmetry, con-
sistent in the class of all elliptical distributions, are also illustrated with a few simulation
and real data examples.

Keywords Axial symmetry · Halfspace symmetry · Exchangeability · Canonical
correlation

Mathematics Subject Classification 62H15 · 62H20

1 Introduction

Various concepts of multivariate symmetry (Serfling 2006) are indispensable for mul-
tivariate statistics. The symmetry around a subspace up to a shift has been rather
neglected so far, which is why the topic is discussed here in a general context. Recall
that a random vector Y is symmetric around a subspace generated by basic vectors
{u1, . . . , uq} up to a shift when L{Y −EY} = L{R(Y −EY)} for the reflection matrix
R = 2u1u′

1 +· · ·+2uqu′
q − I, which is the rotational (orthonormal) matrix satisfying

Rui = ui , i = 1, . . . , q, and Rv = −v for any vector v orthogonal to all vectors ui ,
i = 1, . . . , q.

It seems that the corpus of published literature lacks such general tests although it
contains a kernel-based nonparametric test of multivariate conditional symmetry (Su
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2492 Š. Hudecová, M. Šiman

2006) and various tests of axial symmetry, hyperplane symmetry, or exchangeability in
the bivariate case; see, e.g., Hollander (1971), Modarres (2008), Rao and Raghunath
(2012), Krupskii (2017) and references therein for some nonparametric examples.
One should perhaps mention as related even the tests for the first eigenvector of the
covariance matrix known from the principal component analysis; see, e.g., Hallin et al.
(2010b) and the references given there.

In the broad multidimensional context considered here, there already exists a test of
symmetry around a line in a given direction by means of quantile regression (Hudecová
and Šiman 2019), inspired by the theory of directional regression quantiles (Hallin et al.
2010a). There also exist some permutation tests of the symmetry around a subspace
up to a shift that are based on various scatter matrices (Kalina 2019). Such matrices
must have certain elements equal to zero for distributions symmetric around subspaces
generated by axial directions under very mild equivariance conditions, see Lemma 2.4
of Dumbgen et al. (2015) or Kalina (2019), which is used in the latter manuscript for
testing various hypotheses of symmetry by means of nonparametric combinations of
permutation tests regarding the individual scatter matrix coefficients.

This article focuses on the sample covariance matrix and on its use for testing the
null hypothesis of symmetry around a subspace (possibly up to a shift) . It also elabo-
rates on the use of (rank) Kendall correlations for such purpose when the parametric
tests are not adequate, i.e., when some outliers may be present or when the moment
assumptions cannot be relied on. Unlike Hudecová and Šiman (2019), it proposes axial
symmetry tests with simple asymptotic distributions that are available in any dimen-
sion and include tests with no moment assumptions. Unlike Kalina (2019), it also
provides asymptotic and naturally invariant tests of the null hypothesis. It transforms
the problem to the testing of association between two vectors which is well known from
the literature and addressed there in several different ways, e.g., by means of canonical
correlation analysis. The link thus gives rise to various (parametric, nonparametric,
permutation, and asymptotic) tests of the null hypothesis that are valid under relatively
mild conditions and consistent in the class of all elliptical distributions.

The tests may become useful even in the most general form because such sym-
metries probably appear in optics, acoustics, astronomy, crystallography or whenever
reflections, rotations or mirrors are employed. In particular, such symmetries in the
molecular world influence chemical properties of the matter.

In any way, the general testing framework considered here includes many com-
mon special cases such as testing symmetry about a particular coordinate axis, axial
symmetry, halfspace symmetry, exchangeability, and equality of distributions or their
scales. These applications alone justify the tests very well. They are further elaborated
and illustrated in the text.

The rest of this article is organized as follows. Theoretical Sect. 2 transforms the
testing of symmetry around a subspace up to a shift to the testing of association between
two vectors, briefly mentions some tests that are available for the latter problem,
elaborates on the use of Kendall’s correlations for such purpose, and discusses the
case when the shift is known. Empirical Sect. 3 then illustrates the theory with highly
representative examples based on simulation and real data and compares the proposed
tests to their competitors. Concluding Sect. 4 collects miscellaneous final remarks and
comments.
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Testing symmetry around a subspace 2493

2 Theory

Consider a random vector Y = (Y1, . . . ,Ym)′ ∈ R
m with non-degenerate continuous

distribution L(Y). Furthermore, consider the subspace Sq generated by the column
vectors of Γ A = {u1, . . . , uq} ∈ Rm×q where Γ = (Γ A|Γ B) ∈ R

m×m is a regular
matrix of column basic vectors.

The null hypothesis of interest is

H A
0 : L(Y) is symmetric around Sq after a suitable shift s ∈ R

m,

which means that L((Γ ′
AỸ ,Γ ′

B Ỹ)′) = L((Γ ′
AỸ ,−Γ ′

B Ỹ)′) for Ỹ = Y − s. If the
covariance matrix var(Y) is finite, then H A

0 implies

HP
0 : cov(Γ ′

AY ,Γ ′
BY) = O

that is checked by the parametric tests presented below. Of course, desirable tests
should not depend on the particular choice of Γ A or Γ B .

If the class of possible distributions L(Y) is fully described by a location parameter
and the covariance matrix, then H A

0 is equivalent to HP
0 and the tests of HP

0 consis-
tently test H A

0 . This is the case of continuous elliptical distributions. That is to say that
Y is elliptically distributed if and only if Z = (Γ ′

AY ,Γ ′
BY)′ is elliptically distributed,

which means that the density f (z) of Z can be uniquely described by median vector
μ, symmetric positive definite matrix Σ , and positive function g:

f (z) = g
(
(z − μ)′Σ−1(z − μ)

)
.

where Σ = (ρi j )
m,m
i, j=1 is proportionate to the covariance matrix of Z if it exists. It

makes sense to consider only scale invariant tests. Therefore, Σ is assumed to have
unit diagonal without any loss of generality.

In any case, H A
0 is equivalent to

HE
0 : ΣAB ≡ (ρi, j )

q,m
i=1, j=q+1 = O

in the class of elliptical distributions, and even for meta-elliptical distributions (Abdous
et al. 2005; Fang et al. 2002). The nonparametric tests presented below, based on
Kendall correlations, check HE

0 in these classes of distributions without requiring any
moment assumptions.

Recall that H A
0 includes some special cases. Those related to axial symmetry are

also mentioned in Hudecová and Šiman (2019).
The test of halfspace symmetry (after a suitable shift) corresponds to q = m−1. The

test of axial symmetry (after a suitable shift) results from q = 1 and includes the test of
exchangeability (after a suitable shift) as a special case with Γ A = {(1, . . . , 1)′/

√
m}.

That is to say that a multivariate distribution is exchangeable if and only if it is symmet-
ric around the axis of the first orthant. Such a test may be useful even for testing whether
m independent univariate distributions are the same up to their location, because only
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2494 Š. Hudecová, M. Šiman

then their joint distribution is exchangeable after a suitable shift. If the only difference
among the independent univariate distributions may be in their scale and location, then
even the equality-of-scale hypothesis may be tested by means of the exchangeability
test.

Furthermore, if one needs to test the equality (after a suitable shift) of k d-
dimensional equally-sized samples for some integers k and d, then the null hypothesis
implies the exchangeability of all the k-dimensional vectors consisting of all the i th
components of the individual samples, i = 1, . . . , d, and it is this compound hypoth-
esis that can be tested.

If the suitable shift is known, then one can proceed as in Sect. 2.4.
Before the general testing framework based on canonical correlations is presented

in full detail in Sect. 2.2, it seems reasonable to briefly inspect some special cases and
further possibilities.

2.1 Special cases and possibilities

If m = 2, then q = 1 corresponds to the symmetry about a line in the only direction u1
in Γ A. One can use any scale invariant test statistic of the hypothesis that the ordinary
correlation coefficient between Γ ′

AY and Γ ′
BY is zero.

If m > 2 and q = 1 or q = m − 1 (i.e., in the case of axial symmetry or halfspace
symmetry), then one can use any scale invariant test statistic of the hypothesis that the
multiple correlation coefficient is zero; see, e.g., Croux and Dehon (2003).

If m > 2 and q ∈ {2, . . . ,m − 2}, then the symmetry test can be conducted by
using scale invariant test statistics of the hypothesis that the cross-correlation matrix
between Γ ′

AY and Γ ′
BY is zero, e.g., those from (Rencher and Christensen 2012,

Sect. 10.7) or from the canonical correlation analysis (Rencher and Christensen 2012,
Chap. 11); see Sect. 2.2 for details.

However, one has to keep in mind that the asymptotic null distribution of all the
aforementioned test statistics derived under independence cannot be directly applied
here.

2.2 Testing procedures based on canonical correlations

Write ZA = Γ ′
AY ∈ R

q , ZB = Γ ′
BY ∈ R

m−q , and Z = (Z′
A, Z′

B)′. Although there
are plenty of tools available for testing whether the (conditional) cross-correlation
matrix between two random vectors ZA and ZB is zero, most of them assume indepen-
dence of ZA and ZB or even joint normality of Z, which rather limits their usefulness
in the setup considered here. Of course, the corresponding test statistics can still be
used in permutation tests, or their distributions can be approximated by means of
subsampling. However, these are computationally intensive procedures working satis-
factorily only for not too large random samples. Fortunately, the literature also contains
a substantial body of work clarifying the behavior of the most popular tests when the
original assumptions of normality or independence are violated. Some of the results
are summarized below.
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Testing symmetry around a subspace 2495

Assume q ≤ m − q and write VAA = var(ZA), VBB = var(ZB), and VAB =
cov(ZA, ZB). Popular tests of the cross-correlation matrix VAB are based on the
eigenvalues r2

1 , . . . , r2
q of the matrix V−1

AAVABV
−1
BBV

′
AB , the so-called squared canon-

ical correlations.
In particular, the Wilks test, the Hotelling-Lawley test, and the Pillai–Bartlett test

are respectively based on the following characteristics:

TW = −cW

q∑

i=1

log(1 − r̂2
i ), TH = cH

q∑

i=1

r̂2
i

1 − r̂2
i

, and TP = cP

q∑

i=1

r̂2
i (1)

or their transforms (Rencher and Christensen 2012) where r̂2
1 , . . . , r̂2

q are squared sam-
ple canonical correlations computed from the sample covariance matrices SAA,SBB ,
and SAB . Note that all the three tests inherit favorable invariance properties from the
squared sample canonical correlations, namely the shift invariance, the scale invari-
ance, and the invariance with respect to the particular bases Γ A and Γ B . In other
words, it is only the subspaces generated by the bases that really matter.

If Y has a multivariate normal distribution, then each of the test statistics in (1)
is known to have the asymptotic null distribution equal to the χ2 distribution with
q(m − q) degrees of freedom for cW , cT , and cP equal to the number of observations
n, and some F-approximations are then also available (Rencher and Christensen 2012).
Muirhead and Waternaux (1980) showed that this approximation still holds for TW in
certain special cases such as if Z has finite fourth moments and independent marginals.
Yuan and Bentler (2000) proved that the results derived under the classical normality
assumption also extend to other special settings such as to Z with a pseudo-normal
distribution. If Z comes from an elliptical distribution with excess kurtosis 3κ , then the
same asymptotic χ2 distribution of TW remains valid for cW = n/(1 + κ) (Muirhead
and Waternaux 1980). The same result applies also to pseudo-elliptical distributions
(Yuan and Bentler 2000), and it can be used for testing with a consistent estimator
for κ . Yanagihara et al. (2005) also presented some approximations for the mean and
variance of TW with cW = n in general situations and provided some results regarding
the behavior of such TW under some kinds of alternatives. Seo et al. (1995) suggested
formulas for cW , cH , and cP that improve the χ2 approximation of corresponding
test statistics in finite samples if Z has its sixth moments finite. In particular, if Z has
an elliptical distribution with finite sixth moments and with characteristic function
φ(t) = exp(it′μ)ψ(t′Σt), then

cW = n + 1

1 + κ
− 1

2
(3m + 11) + (m + 4)(1 + ϕ) − 1

(1 + κ)2 , (2)

cH = n + 1

1 + κ
− 2(m + 3) + (m + 4)(1 + ϕ) − 1

(1 + κ)2 , (3)

cP = n + 1

1 + κ
− (m + 5) + (m + 4)(1 + ϕ) − 1

(1 + κ)2 , (4)
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2496 Š. Hudecová, M. Šiman

for (kurtosis parameter) κ =
(

ψ(2)(0)
ψ ′(0)

)2 − 1 and ϕ =
(

ψ(3)(0)
ψ ′(0)

)3 − 1. For a generally

distributed Y with finite fourth moments, TW converges in distribution to a weighted
sum of q(m − q) independent χ2

1 random variables with non-trivial weights that are
known functions of the fourth order cumulants of Z (Muirhead and Waternaux 1980).

2.3 Tests based on Kendall correlations

Sample covariances are notorious for being sensitive to outliers, and they are consistent
only if the second moments of the underlying distribution are finite. This is why rank
methods are so attractive: they are quite robust to outliers and they generally do not
need any moment assumption to work. This section, therefore, proposes some ways
how to use ranks for testing H A

0 by means of the Kendall rank correlation τ that seems
especially promising in this regard because

τ = 2

π
arcsin(�) (5)

for any two bivariate marginals of continuous elliptical or meta-elliptical distributions
with the corresponding off-diagonal element of Σ equal, say, to � (and to their ordinary
correlation if it exists); see Abdous et al. (2005), Fang et al. (2002), and Lindskog et al.
(2001). In these classes of distributions, the Kendall τ can thus be used for consistent
testing of H A

0 .
Recall that vec denotes the matrix operator stacking matrix columns to a single

column vector. Assume that Z = (Z′
A, Z′

B)′ = (Z1, . . . , Zm)′ ∈ R
m , composed of

ZA ∈ R
q and ZB ∈ R

m−q , has a continuous elliptical or meta-elliptical distribution
with matrix parameter Σ , and consider a random sample Z1, . . . , Zn from the distri-
bution of Z. The Kendall correlation τi j between Zi and Z j , 1 ≤ i ≤ q < j ≤ m,
can then be consistently estimated with τ̂i j as follows:

τ̂i j = 1
(n

2

)
∑

1≤l<k≤n

sgn
{(

Zi
k − Zi

l

)(
Z j
k − Z j

l

)}
.

Consider also the population and sample Kendall correlation matrices between ZA

and ZB , namely T = (τi j )
q,m
i=1, j=q+1 and T̂n = (̂τi j )

q,m
i=1, j=q+1, and their vectorized

forms t = vec (T ) and t̂n = vec (T̂n). Then
√
n(̂tn − t) converges in distribution to a

zero-mean normal distribution with covariance matrix U = (ui j,kl)i≤q< j,k≤q<l ,

ui j,kl = 4(τi j,kl − τi jτkl) and

τi j,kl = E
[
Esgn

{(
Zi

1 − Zi
2

) (
Z j

1 − Z j
2

)} ∣
∣∣Z1

]
E
[
sgn

{(
Zk

1 − Zk
2

) (
Zl

1 − Zl
2

)} ∣
∣∣Z1

]
,

see, e.g., Klüppelberg and Kuhn (2009). Furthermore, Klüppelberg and Kuhn (2009)
provided a consistent and asymptotically normal estimator of U, namely Û = (̂ui j,kl),
where

ûi j,kl = 4(̂τi j,kl − τ̂i j τ̂kl) and
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Testing symmetry around a subspace 2497

τ̂i j,kl = 1

n(n − 1)2

n∑

s=1

⎡

⎣
n∑

t=1,t �=s

sgn
{(

Zi
s − Zi

t )(Z
j
s − Z j

t

)}
⎤

⎦

×
⎡

⎣
n∑

t=1,t �=s

sgn
{(

Zk
s − Zk

t )(Z
l
s − Zl

t

)}
⎤

⎦ .

Due to (5), the null hypothesis HE
0 is equivalent to TAB = O where TAB is the

corresponding block of T. If it holds, then

TK1 := n̂t′nÛ−1̂tn → χ2
q(m−q) (6)

in distribution as n → ∞. In other words, TK1 has asymptotically χ2 distribution with
q(m − q) degrees of freedom.

Alternatively, consider the matrix Σ defining the distribution of Z and its estimator
Σ̂n = (ρ̂τ

i j )
m,m
i=1, j=1 based on Kendall correlations where ρ̂τ

i j = 1 for i = j and

ρ̂τ
i j = sin

(π

2
τ̂i j

)
, i �= j .

Let Σ AB and Σ̂n,AB be the blocks of Σ and Σ̂n corresponding to the correlation
matrix between ZA and ZB . The delta method then implies that vec Σ̂n,AB is an
asymptotically normal consistent estimator of vec Σ AB whose asymptotic covariance
matrix W is provided in Klüppelberg and Kuhn (2009) together with its consistent
estimator Ŵ = (ŵi j,kl), where

ŵi j,kl = π2 cos
(π

2
τ̂i j

)
cos

(π

2
τ̂kl

)
(̂τi j,kl − τ̂i j τ̂kl).

Under HE
0 ,

TK2 := n(vec Σ̂n,AB)′Ŵ−1vec Σ̂n,AB → χ2
q(m−q) (7)

in distribution as n → ∞.
Finally, it is also possible to use the test statistic T τ

W analogous to TW but
with the sample canonical correlations r̂2

i computed from Σ̂n . If the hypothe-
sis HE

0 holds and cW = n, then T̂ τ
W has the same asymptotic distribution as

n(vec Σ̂n,AB)′Q−1vec Σ̂n,AB , where Q is specified in Proposition 1 below. Con-
sequently, T τ

W has asymptotically the same distribution as the weighted sum of
independent χ2

1 variables
∑q

i=1 λiχ
2
1,i , where λ1, . . . , λq are eigenvalues of Q−1W.

The corresponding critical values can be approximated by taking
∑q

i=1 λ̂iχ
2
1,i where

λ̂i , i = 1, . . . , q, are the eigenvalues of Q̂−1Ŵ, and Q̂−1 is obtained from (8) by
replacing Σ with Σ̂n .
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2498 Š. Hudecová, M. Šiman

Proposition 1 Consider q × m matrix AA = (Iq ,O), m × (m − q) matrix
AB = (O, Im−q)

′, and m × m matrix Ji j = (Jkl) with all elements zero but

Ji j = 1. Let r̂2
i , i = 1, . . . , q, be the canonical correlations computed from

Σ̂n. Then T τ
W = −n

∑q
i=1 log(1 − r̂2

i ) has the same asymptotic distribution as

n(vec Σ̂n,AB)′Q−1vec Σ̂n,AB where

Q =1

2

⎡

⎣Σ AA ⊗ Σ BB +
q∑

i=1

m∑

j=q+1

A′
BΣJi j AB ⊗ AAΣJ j i A′

A (8)

+
q∑

i=1

m∑

j=q+1

A′
BJ j iΣ AB ⊗ AAJi jΣ A′

A

+
q∑

i,k=1

m∑

j,l=q+1

A′
BJ j iΣJkl AB ⊗ AAJi jΣJlk A′

A

⎤

⎦ . (9)

Note that A′
BΣJi j AB is an (m−q)×(m−q) matrix which has the i th column of Σ BA

in its ( j − q)th column and zeros elsewhere. Similarly, AAΣJ j i A′
A is a q × q matrix

which has the ( j − q)th column of Σ AB in its i th column and zeros elsewhere. The
terms in the second sum are just transposed terms of the first sum. Finally, J j iΣJkl
takes ρik and puts it on position ( j, l) in the m ×m zero matrix. Thus, A′

BJ j iΣJkl AB

is an (m−q)×(m−q) matrix with ρik on position ( j −q, l−q) and zeros elsewhere.
Analogously, AAJi jΣJlk A′

A is a q × q matrix with ρ jl on position (i, k) and zeros
elsewhere.

Proof Due to the asymptotic normality of Σ̂n , shown in Klüppelberg and Kuhn (2009),
the asymptotic equivalence of the two distributions follows from (Tyler 1983, Theo-
rem 2) applied to H(Σ) = vec Σ AB . Note that the function

fn(Σ̂n,Λ) = |Λ|−n/2 exp{−(n/2) · tr(Λ−1Σ̂n)} (10)

is maximized under the condition H(Λ) = 0 for Λn being the block diagonal matrix
with blocks Σ̂ AA and Σ̂ BB on the diagonal and zeros elsewhere. Then

Ln ≡ fn(Σ̂n,Λn)/ fn(Σ̂n, Σ̂n) = (|Σ̂n|/(|Σ̂ AA||Σ̂ BB |))n/2

and, thus, −2 log Ln equals T τ
W . The expression for Q follows from (Tyler 1983,

Theorem 2):

Q = 2H̃(Σ)(Σ ⊗ Σ)[H̃(Σ)]′

where

H̃(Σ) = 1

2

dvec Σ AB

dvec Σ

(

Im2 +
m∑

i=1

Ji i ⊗ Ji i

)
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Testing symmetry around a subspace 2499

= 1

2
(A′

B ⊗ AA)
dvec Σ

dvec Σ

(

Im2 +
m∑

i=1

Ji i ⊗ Ji i

)

because vec (CXB) = (B′ ⊗ C)vecX for any compatible matrices C,X, and B,
and because Σ AB = AAΣ AB . Since Σ is symmetric, dvec Σ/(dvec Σ) = Im2 +∑

i �= j Ji j ⊗ J j i . The rest then follows after some calculations using the properties of
the Kronecker product. ��

The presentation above is slightly simplified because it assumes that matrices Û,
Ŵ, and Q̂ are regular, which holds only with probability tending to one for n → ∞.
If the singularity problem occurs, it could be addressed exactly as in Klüppelberg and
Kuhn (2009). Curious readers could also consult Christensen (2005) for some ways
to speed up the computations regarding the Kendall correlations.

2.4 Testing with a known shift

Obviously, no distribution can be symmetric about two different parallel affine spaces.
Note also that the suitable shift vector s for testing the symmetry is not defined uniquely
because any vector in the form s = EY + v, v ∈ Sq , also meets the definition.

Now what if one wants to test the null hypothesis H A
0 (s0): H A

0 holds with s = s0?
Since H A

0 (s0) ⊂ H A
0 , one can still test H A

0 (s0) by means of the tests for H A
0 , which

may be reasonable if shift alternatives are to be excluded.
In fact, H A

0 (s0) is equivalent to H A
0 with further assumption EΓ ′

B(Y − s0) = 0.
One can thus view H A

0 (s0) as a compound hypothesis and, therefore, test it with a
combination of a test of H A

0 and a test of Γ ′
B(EY − s0) = 0, where the latter test

reduces to a standard statistical procedure about the mean vector.
In principle, one could use EΓ ′

B(Y − s0) = 0 for estimating cov(ZA, ZB) and
var(ZB) with the aid of s0 instead of the mean because then

cov(ZA, ZB) = EΓ ′
A(Y − EY)(Y − EY)′Γ B = EΓ ′

A(Y − s0)(Y − s0)
′Γ B

var(ZB) = EΓ ′
B(Y − EY)(Y − EY)′Γ B = EΓ ′

B(Y − s0)(Y − s0)
′Γ B

even for the expectation taken with respect to the empirical probability measure. The
asymptotic distributions of all the proposed test statistics under H A

0 (s0) would be
the same as under H A

0 even if they were computed from such modified estimators.
The same could be said even about the finite sample distributions of all the rank test
statistics. Nevertheless, the tests based on the covariance matrix estimator alone could
still be insensitive to shift alternatives and still should be complemented with a test of
Γ ′

B(EY − s0) = 0.

3 Illustrations

This section illustrates the presented tests of symmetry with a few representative
examples. They involve bivariate, trivariate, and multidimensional observations; per-
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2500 Š. Hudecová, M. Šiman

mutation tests and both parametric and nonparametric asymptotic tests; elliptical and
non-elliptical data distributions; small, moderate, and large data sets; and the general
tests as well as the special tests of axial symmetry and equality of scale.

All the tests have been implemented in the free software environment for statistical
computing and graphics called R (R 2018) by means of additional packages CCP
(Menzel 2012) [permutation and asymptotic tests in the canonical correlation analysis],
mvtnorm (Genz et al. 2019) [multivariate t RNG], and LaplacesDemon (Statisticat
2018) [multivariate Laplace RNG] whose contributions are indicated in the square
brackets. The vector of canonical correlations have been computed by the standard
function cancor from the default stats library.

Basically, the first simulation example (Figs. 1 and 2) uses the parametric test
statistics TW , TH , and TP of (1) with various approximations, including the default
F-approximations (provided by the CCP package in R) and three χ2 approximations,
differing only in the choice of cW , cH , and cP . The comparison indicates that there
is not much difference among the three test statistics if a proper approximation is
employed and the number of observations is not too small. Consequently, all the
other examples use only the Wilks test statistic, either with the default approximation
(because no kurtosis correction is then required) or in a permutation test. In the fourth
example, the Wilks test statistic serves only as a benchmark for the comparison of the
rank tests TK1 and TK2 of (6) and (7). The real data examples are also investigated with
the rank tests TK1 and TK2 as well as with the Wilks test statistic, both with the default
F-approximation and with the χ2 approximation by means of the kurtosis correction
term cW of (2). The moderate sample comparison with the test of Rao and Raghunath
(2012) uses TK1 and TK2, TW , TH , and TP [with correction factors (2), (3), and (4)]
and also TW with cW = n for an illustration.

The simulation experiments generally compare average empirical p-values. They
are preferred because of their independence of testing level and because of their use
in Hudecová and Šiman (2019) where the closest test competitor is described. Test
powers are reported only in Table 1 for easy comparison with the test of Rao and
Raghunath (2012).

The first example deals with general asymptotic tests of symmetry (up to a shift)
around a subspace of arbitrary dimension. Figures 1 and 2 compare the performance of
three asymptotic tests of symmetry around m-dimensional subspaces (of Rd ) that are
generated by the firstm vectors of the canonical basis,m ∈ {1, . . . , d−1} and d = 20.
To be specific, the tests based on TW , TH , and TP have been used for this purpose with
a kurtosis correction to cW , cH , and cP applied when necessary, i.e., in (c) and (d).
The plots show average p-values obtained from 5000 independent samples containing
n = 1000 observations from four multivariate distributions with zero mean vector,
out of which 500 observations were shifted by ξ(1, . . . , 1)′ ∈ R

20 where ξ = 0,
0.2, 0.3, 0.4, or 0.5. The distributions considered are the (non-elliptical) uniform
distribution on [−0.5, 0.5]20 and three elliptical distributions: multivariate standard
normal distribution, (heavy-tailed) multivariate standard t-distribution with 14 degrees
of freedom (and unit diagonal scale matrix) and (light-tailed) multivariate standard
Laplace distribution (i.e., the multivariate exponential power distribution of Gómez
et al. (1998) with β = 1/2 and the unit diagonal covariance matrix). The difference
between Figs. 1 and 2 lies in the fact that Fig. 1 uses the default F-approximation in (a)
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Fig. 1 Testing symmetry (up to a shift) around a subspace by means of asymptotic tests. The figure shows
the average of sample p-values from the tests of symmetry around an m-dimensional subspace generated by
the first m vectors of the canonical basis in R

20. Three asymptotic tests have been used for this purpose: the
Wilks test (solid), the Hotelling-Lawley test (dashed) and the Pillai–Bartlett test (dotted), with the default
F-approximation applied in (a) and (b), and with the χ2 approximation including the kurtosis adjustments
(2) to (4) applied in (c) and (d), i.e., when necessary. The plots have been obtained from 5000 indepen-
dent samples of n = 1000 independent observations that were first generated from (a) (non-elliptical)
multivariate uniform distribution U(−1, 1)20, (b) multivariate standard normal distribution N (0, 1)20, (c)
(heavy-tailed elliptical) standard multivariate student t distribution with 14 degrees of freedom, and (d)
(light-tailed elliptical) standard multivariate Laplace distribution, and then the last n/2 of them were shifted
by ξ(1, . . . , 1)′ ∈ R

20 where ξ = 0 (black), 0.2 (very dark gray), 0.3 (dark gray), 0.4 (gray), and 0.5 (light
gray). The type of line used for plotting is indicated in the parentheses

and (b), and the refined χ2 approximation with kurtosis corrections (2) to (4) in (c) and
(d), while Fig. 2 uses the crude χ2 approximations with cW = cH = cP = n in (a) and
(b), and with cW = cH = cP = n/(1+κ) in (c) and (d). Obviously, the approximation
matters even for n = 1000. The crude approximations work satisfactorily only with
the Pillai–Bartlett test TP . When the refined approximations are used, then the three
tests behave almost identically for such large data samples.
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Fig. 2 Testing symmetry (up to a shift) around a subspace by means of asymptotic tests II. The figure
settings are the same as in Fig. 1 except for the approximations used for the test statistics. This time the
χ2 approximation is used, with cW = cH = cP = n in (a) and (b) and with the kurtosis adjustment
cW = cH = cP = n/(1 + κ) in (c) and (d). The comparison with Fig. 1 indicates that the accuracy of the
approximation matters even for n = 1000. These crude approximations apparently distort the size of the
Pillai–Bartlett test TP the least

The second example concerns asymptotic testing of axial symmetry. Figure 3
presents average p-values from the test of axial symmetry based on the Wilks statistic
(as implemented in the R package CPP), obtained from 5000 trivariate normal samples
of size n = 100 or 200 from N (0, 1) × N (0, 4) × N (0, 9). The individual p-values
have been computed from each sample for several supposed axial directions in the
form u = (cos(α), sin(α), 0)′ for α ∈ [0, π ]. Their null empirical distribution for the
axial directional angle α = 0 is reported as well. Compare it to Fig. 2 of Hudecová
and Šiman (2019) and note the apparent size inferiority of their test.

The third example illustrates the test of scale equality. Figure 4 shows the average
of sample p-values for various scale factors R ∈ [1, 2] and their empirical distribution
functions under the null hypothesis of R = 1 for the Wilks test and its permutation
variant based on 1000 permutations, as they are implemented in the CPP package for
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Fig. 3 Testing axial symmetry by means of asymptotic tests. The figure shows the average of sample p-
values from the tests of axial symmetry around a line in direction u = (cos(α), sin(α), 0)′ for α ∈ [0, π ]
(left) and their empirical distribution function for α = 0 (right). The Wilks test has been used for that
purpose as implemented in the R package CPP, i.e., with the default F approximation. The plots have
been obtained from 5000 independent samples containing n = 100 (thin) or n = 200 (thick) independent
observations drawn from the true model (Y1, Y2, Y3)′ ∼ N (0, 1) × N (0, 4) × N (0, 9). The type of line
used for plotting is indicated in the parentheses

Table 1 The table relates to the problem of testing symmetry of bivariate normal distribution (with zero
mean, unit marginal variances and correlation �) around the x-axis

Test comparison for bivariate normal distribution and axial symmetry
� B(k = 2) B(k = 3) TW T ∗

W T ∗
H T ∗

P TK1 TK2

n = 60

0.0 0.0544 0.0506 0.0514 0.0525 0.0528 0.0513 0.0602 0.0659

0.1 0.0726 0.0660 0.1168 0.1190 0.1209 0.1179 0.1204 0.1292

0.2 0.1346 0.1223 0.3315 0.3321 0.3358 0.3286 0.3207 0.3356

0.3 0.2464 0.2501 0.6539 0.6514 0.6535 0.6492 0.6188 0.6355

0.4 0.4336 0.4451 0.8961 0.8937 0.8949 0.8921 0.8570 0.8672

0.5 0.6478 0.6640 0.9850 0.9828 0.9831 0.9825 0.9734 0.9760

0.6 0.8405 0.8682 0.9997 0.9993 0.9993 0.9993 0.9983 0.9985

0.7 0.9549 0.9737 1.0000 1.0000 1.0000 1.0000 0.9999 0.9999

n = 75

0.0 – 0.0457 0.0507 0.0513 0.0520 0.0509 0.0574 0.0616

0.1 – 0.0660 0.1341 0.1343 0.1352 0.1332 0.1358 0.1438

0.2 – 0.1398 0.4088 0.4097 0.4116 0.4076 0.3871 0.3981

0.3 – 0.2900 0.7586 0.7602 0.7617 0.7585 0.7180 0.7293

0.4 – 0.5305 0.9479 0.9466 0.9473 0.9460 0.9239 0.9288

0.5 – 0.7786 0.9961 0.9956 0.9956 0.9954 0.9920 0.9928

0.6 – 0.9382 0.9999 0.9999 0.9999 0.9999 0.9998 0.9998

0.7 – 0.9928 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Table 1 continued

Test comparison for bivariate normal distribution and axial symmetry
� B(k = 2) B(k = 3) TW T ∗

W T ∗
H T ∗

P TK1 TK2

n = 100

0.0 0.0498 – 0.0473 0.0487 0.0496 0.0482 0.0529 0.0565

0.1 0.0737 – 0.1651 0.1674 0.1686 0.1669 0.1612 0.1671

0.2 0.1773 – 0.5170 0.5163 0.5186 0.5148 0.4804 0.4917

0.3 0.3705 – 0.8607 0.8594 0.8604 0.8584 0.8272 0.8321

0.4 0.6255 – 0.9869 0.9862 0.9863 0.9861 0.9763 0.9778

0.5 0.8500 – 0.9998 0.9998 0.9998 0.9998 0.9991 0.9991

0.6 0.9707 – 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.7 0.9985 – 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

n = 150

0.0 0.0548 0.0515 0.0513 0.0521 0.0522 0.0517 0.0529 0.0548

0.1 0.1033 0.0963 0.2305 0.2311 0.2319 0.2303 0.2209 0.2255

0.2 0.2736 0.2878 0.6927 0.6911 0.6921 0.6895 0.6520 0.6595

0.3 0.5686 0.6038 0.9591 0.9580 0.9584 0.9578 0.9404 0.9431

0.4 0.8331 0.8721 0.9998 0.9995 0.9995 0.9995 0.9985 0.9987

0.5 0.9728 0.9833 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.6 0.9977 0.9995 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

It uses the test of Rao and Raghunath (2012) with the two recommended values of the auxiliary binning
parameter k (namely k = 2 and k = 3) as a benchmark, denoted as B(k = 2) and B(k = 3). The
benchmark is compared with various tests presented in this article in terms of empirical power (for � > 0)
or size (for ρ = 0) for testing level α = 0.05, based on 10,000 simulations of independent samples with
n = 60, 75, 100 or 150 observations. The benchmark empirical sizes and powers were only copied from
the original Table 3 of Rao and Raghunath (2012) to minimize the chance of an error. The test TW uses the
default F-approximation and cW = n while the other tests T ∗

W , T ∗
H and T ∗

P use the test correction factors
of (2), (3) and (4) in this order

R. The plots have been obtained from 1000 independent samples containing n = 100,
n = 200, and n = 400 observations drawn from the true model (Y1,Y2)

′ = (ε1, Rε2)
′

with independent ε1 ∼ N (0, 1) and ε2 ∼ N (0, 1). The figure is analogous to Fig. 3 of
Hudecová and Šiman (2019) and clearly shows their test inferior in terms of power.

The fourth example is dedicated to the tests TK1 and TK2 based on the Kendall rank
correlations, and shows their robustness to outliers and ability to work without any
moment assumption in Fig. 5. It uses 1000 independent samples containing n = 300
independent six-dimensional observations and presents the average p-values from the
tests of symmetry around the subspace generated by the first three axial directions
(up to a shift). The left plot employs the observations generated by the multivariate
standard normal distribution where the last three were shifted by (d, . . . , d)′ ∈ R

6 for
d = 0, 1, . . . , 6. The right plot employs the observations generated by the multivariate
Cauchy distribution where the last half of them were shifted by (d, . . . , d)′ ∈ R

6 for
d = 0, 0.25, . . . , 1.5. It appears that TK1 marginally outperforms TK2 in this context,
and that both the rank tests are then clearly superior to the asymptotic Wilks parametric
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Fig. 4 Testing equality of scale. The figure shows the average of sample p-values for various scale factors
R ∈ [1, 2] (left) and their empirical distribution functions under the null hypothesis of R = 1 (right) for
the Wilks test (black) and its permutation variant (gray) based on N = 1000 permutations, as they are
implemented in the CPP package for R. The plots have been obtained from 1000 independent samples
containing n = 100 (thin), n = 200 (normal), and n = 400 (thick) observations drawn from the true model
(Y1, Y2)′ = (ε1, Rε2)′ with independent ε1 ∼ N (0, 1) and ε2 ∼ N (0, 1). The type of line used for plotting
is indicated in the parentheses

test (as implemented in the CPP package for R) included for comparison, at least from
the two points of view considered.

The moderate sample comparison considers the problem of testing symmetry of a
bivariate normal distribution (with zero mean, unit marginal variances and correlation
�) around the x-axis. It uses the test of Rao and Raghunath (2012) with the two
recommended values of the auxiliary binning parameter k (namely k = 2 and k = 3)
as the benchmark. It is compared with various tests presented here in terms of empirical
power (for � > 0) or size (for ρ = 0), obtained for testing level α = 0.05 from 10000
simulated independent random samples with n = 60, 75, 100 or 150 observations.
The benchmark empirical sizes and powers were copied from the original Table 3 of
Rao and Raghunath (2012) for maximum reliability. The tests for comparison include
TK1 and TK2, TW , TH , and TP [with correction factors (2), (3), and (4)] and also TW
with cW = n.

The tests TK1 and TK2 appear slightly liberal for such small sample sizes but all the
other tests including the benchmark appear correctly sized even for n as low as n = 75.
However, the benchmark falls badly behind all the other included tests in terms of test
power that is otherwise very similar across all the remaining tests, although TW with
cW = n (i.e., without the kurtosis correction useless in this case) appears marginally
the best and rank-based TK1 and TK2 perform marginally the worst in that respect.
It is not surprising that the ad hoc benchmark test loses the comparison to the tests
derived by means of the maximum-likelihood approach for the normal distribution.

Next examples use real data. For comparison, some of the data sets employed in
Hudecová and Šiman (2019) are also investigated here by means of the Wilks test
with the default F-approximation, the Wilks test with the kurtosis correction (2), and
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Fig. 5 Testing by means of the Kendall correlations. The figure illustrates two main advantages of the rank
tests TK1 (dashed dark gray) and TK2 (dashed light gray) over the parametric Wilks test TW with the default
F-approximation (solid black), namely their robustness to outliers (a) and their ability to work without any
moment condition (b). Both the pictures report average sample p-values obtained from 1000 independent
samples with n = 300 six-dimensional observations by means of the tests of symmetry around the subspace
generated by the first three axial directions. In (a), all the observations come from the multivariate standard
normal distribution except for the last three that are moreover shifted by (d, . . . , d)′ ∈ R

6, d = 0, 1, . . . , 6.
In (b), all the observations come from the multivariate Cauchy distribution but the last half of them are
shifted by (d, . . . , d)′ ∈ R

6, d = 0, 0.25, . . . , 1.5. The Wilks test is then invalid. The type of line used for
plotting is indicated in the parentheses

the two rank tests TK1 and TK2. Of course, the tests are meaningful only when their
assumptions are satisfied.

The first case deals with the famous Fisher’s Iris (flower) data set as included
in R. It contains 50 observations from each of the three Iris species considered and
records four of their characteristics: the length and the width of the sepals and petals
(in centimeters). The null hypothesis H0 that the probability distribution of certain
feature is the same for all the three species up to a location shift can be tested by
means of the presented tests with Γ A = {(1, 1, 1)�/

√
3} in the combined sample.

Hudecová and Šiman (2019) thus rejected H0 for the petal width and petal length. All
the tests used here confirm the findings (with p-values less than 10−8) and moreover
reject H0 for the petal length as well (each with p-value less than 0.01).

The second example considers 626 (virtually serially uncorrelated) log-returns
of four daily exchange rates (AUD/CZK, CAD/CZK, EUR/CZK, USD/CZK) from
2/5/2017 to 30/10/2019 as a four-variate sample. Then the null hypotheses of exchange-
ability (up to a shift) and of symmetry around the last coordinate axis (up to a shift)
could clearly be rejected by the presented tests (with virtually zero p-values), as in
Hudecová and Šiman (2019). The same could be said even for the bivariate sample
consisting only of EUR/CZK and USD/CZK.

The last case focuses on the Australian athletes data set ais from the R package
DAAG (Maindonald and Braun 2019). Its subsets are employed in Hudecová and
Šiman (2019), Kalina (2019) and Henze et al. (2014) for testing various symmetries. In
particular, Henze et al. (2014) rejected the spherical symmetry of the joint distribution
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of the logarithms of the red blood cell count, white blood cell count and hemoglobin
concentration regarding 202 athletes. They rejected the null hypothesis, which is not
surprising because the tests used here reject the null hypotheses (up to a suitable shift)
of exchangeability, axial symmetry around the last coordinate axis, and symmetry
around the subspace generated by the last two coordinate axes, each with virtually
zero p-value.

4 Concluding discussion

This article presents a coherent approach to testing symmetry of a continuous random
vector around a subspace after a suitable shift. The asymptotic parametric tests based
on canonical correlations seem suitable for the situations when the moment conditions
are satisfied and no outliers are present. The nonparametric asymptotic tests based on
Kendall correlations are suitable for the other cases if the underlying distribution is
elliptical or meta-elliptical. If the underlying distribution is normal or a shift vector is
known, then all the test statistics mentioned or referred to in the text may also be used
in permutation tests without any moment assumptions, which can be recommended if
there are no more than two to three hundreds of observations.

All the presented examples strongly speak in favor of the proposed tests, demon-
strate their usefulness, and confirm their validity in different settings. In the special
context of testing axial symmetry considered here, the parametric tests seem sized
better and more powerful than the tests of axial symmetry based on the regression
rank score process and presented in (Hudecová and Šiman 2019).

Permutation testing could extend the presented methodology even to the linear
regression setup [thanks to the test statistics from the partial correlation analysis) or
to the simultaneous testing of various symmetries (thanks to the tests if the covariance
matrix is block diagonal (Rencher and Christensen 2012, Sect. 7.4)], at least for small
to moderate data samples.
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