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Abstract—Structured Tucker tensor decomposition models com-
plete or incomplete multiway data sets (tensors), where the core
tensor and the factor matrices can obey different constraints. The
model includes block-term decomposition or canonical polyadic
decomposition as special cases. We propose a very flexible optimiza-
tion method for the structured Tucker decomposition problem,
based on the second-order Levenberg-Marquardt optimization, us-
ing an approximation of the Hessian matrix by the Krylov subspace
method. An algorithm with limited sensitivity of the decomposition
is included. The proposed algorithm is shown to perform well in
comparison to existing tensor decomposition methods.

Index Terms—Alternating direction of multipliers,
CANDECOMP, CANDELINC, Krylov subspace, Levenberg-
Marquardt algorithm, PARAFAC, PARALIND, sensitivity, tensor
chain, Tucker decomposition.

I. INTRODUCTION

Tensor decompositions, especially the canonical polyadic
(CP) tensor representations, have been increasingly popular
since 70’s and the number of papers and applications for tensor
decomposition is increasing [1], [2].

The most popular tensor decompositions are the canonical
polyadic decomposition (CPD) and the Tucker decomposition,
and, more recently, tensor train (TT) [3], [4] and Tensor Chain
(TC) [5], [6]. This paper is devoted to the structured Tucker
tensor decomposition (STKD). A special case of STKD is a
Block-Term Decomposition (BTD) [7] which has found applica-
tions in biomedical applications [8]. The BTD was implemented,
to a certain extent, in a toolbox Tensorlab of De Lathauwer
and his co-workers [9], [10]. A connection between STKD and
TT/TC will also be shown in this paper.

We have recently proposed a Krylov-Levenberg-Marquardt
(KLM) algorithm for computing the CP decomposition of ten-
sors [11], [12]. The idea is to preserve the good numerical prop-
erties of the well-known second-order Levenberg-Marquardt
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(LM) algorithm but decrease its computational complexity by
a low-rank approximation of the Hessian through the Krylov
subspace [13], [14]. The algorithm uses a trick by which products
of the approximate Hessian,H, with a vector x can be computed
very efficiently thanks to a special structure of the Hessian, with-
out actually constructing the Hessian. The efficient computation
of the product Hx has been already proposed in [15]. In this pa-
per, we extend this idea to the Tucker decomposition, structured
Tucker decompositions, weighted decompositions (incomplete
tensors), and constrained decompositions.

The dimension of the Krylov subspace influences the quality
of the Hessian approximation and is a design variable of the
technique. A higher dimension results in increasing complexity
for each iteration, but it decreases the number of iterations
needed to achieve the convergence. When the dimension exceeds
a certain limit, the performance does not improve any more and
the algorithm becomes equivalent to the ordinary LM algorithm.
In comparison with the Nonlinear Least Squares (NLS) algo-
rithm [10] in the Tensorlab, which has a similar performance
and applicability, KLM has one more tuning parameter. Some
tuning might be necessary to achieve optimum performance, see
the simulation section.

In some difficult scenarios, cost functions in most tensor
decompositions have many local minima, and traditional al-
gorithms often terminate in some of them. In such situations,
the concept of decomposition with a limited sensitivity may
help [11]. Such decompositions were applied in compression
of convolutional layers of neural networks [16]. We adopt this
concept for STKD and demonstrate its usefulness in simulations.

In many applications, it is required that elements of one or
more factor matrices must be nonnegative or bounded at certain
intervals. The most efficient technique of such constrained CP
decomposition is probably either the Alternating Direction of
Multipliers (ADMM) [17] or its variant with Nesterov iter-
ation [18]. This method is usually combined with ALS, as
proposed in Liavas and Sidiropoulos [19]. In a supplementary
material to this paper we show that ADMM and KLM can be
combined together to update all factor matrices jointly. Note
that a similar technique has been applied recently to nonnegative
matrix factorization in [20].

The main achievements of this paper can be summarized as
follows.

1) Tensor chain decomposition. In Section III, we show that
TC can be reformulated as the structured Tucker decom-
position (STKD), introduced in Section II. Thus, the KLM
algorithm can provide a new tool for TC.

2) Sensitivity. In Section IV, we extend the notion of sensi-
tivity to STKD. The sensitivity, if used as a constraint in
KLM, can significantly improve performance of KLM in
some difficult scenarios, as we show later in the simulation
section.
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3) Fast computing of y = Hx. Here, H is the approximate
Hessian of the STKD problem, and x is an arbitrary vector
of appropriate dimension. This is an important ingredience
of KLM. We acknowledge that this computation was
already discussed in [10] and is implemented in Tensorlab,
but we present it in closed form and for arbitrary dimension
(Appendix C of the Supplementary materials).

4) Extensions. We present several extension of KLM in Sec-
tion VII to show the high flexibility of the method. The
most important one among them is probably the incorpo-
ration of smooth constraints (namely for sensitivity).

Section VIII presents the simulation results, mainly focused
on the block-term decomposition and tensor chain modeling.
Section IX concludes the paper.

Notation. Boldface lowercase and uppercase letters will be
used for vectors and matrices, respectively. Tensors are writ-
ten in calligraphic letters, T ,K,L,Z , etc. The corresponding
matricizations along the mode i, i = 1, 2, 3, will be denoted as
T(i),K(i),L(i),Z(i), respectively. Superscript T denotes trans-
pose, ‖ · ‖F represents the Frobenius norm of the argument,
� is the elementwise (Hadamard) product, ⊗ is the Kronecker
product, I represents the identity matrix, and vec(·) is operator
of vectorization, which stacks all elements of a matrix or a tensor
in one column vector.

II. STRUCTURED TUCKER TENSOR DECOMPOSITION

For simplicity of presentation, in this section we consider
only the decomposition of order-three tensors. The models and
algorithms allow a straightforward extension to higher-order
tensors, as shown in Appendix C in Supplementary materials.

Assume that we are given a data tensor T of the size I1 × I2 ×
I3 with elements Tijk which can be either full, i.e., available, or
incomplete. In the latter case, we are given an indicator tensor
W of the same size, with binary elements Wijk, which indicate
whether the element Tijk is available or not.

The Tucker decomposition of the tensor with multilinear rank
(R1, R2, R3) will be denoted as a quartet [[K,A,B,C]] with a
core tensor K of the size R1 ×R2 ×R3 and factor matrices
A,B,C of the sizes Ii ×Ri, i = 1, 2, 3, respectively, such that

Tijk ≈
R1∑
p=1

R2∑
q=1

R3∑
r=1

KpqrAipBjqCkr. (1)

Symbolically, we shall write [2]

T ≈ [[K,A,B,C]]. (2)

The Tucker decomposition is, in general, not unique. Usually, the
ambiguity is reduced by assuming that the columns of the factor
matrices are mutually orthogonal and have unit-norm. In some
other cases, e.g., when the core tensor and/or the factor matrices
ought to be nonnegative, this condition cannot be fulfilled.

The structured Tucker decomposition often means that only
a part of the core tensor elements is nonzero. For example,
canonical polyadic tensor decomposition is a special case of
such a decomposition. The core tensor has a cubic shape, and
all nonzero elements of the core lie on its space diagonal.
Mathematically, Kijk = Kiiiδijδik, where δij is the Kronecker
delta.

Another important STKD is block term decomposition
(BTD), see Fig. 1 or Fig. 2. Here, the nonzero elements of K
form rectangular blocks along the spatial diagonal of K. For
BTD with non-overlapping core tensors, the decomposition can

Fig. 1. Illustration of BTD as a Structured TKD.

Fig. 2. Illustration of non-overlapping and overlapping core tensors in BTD.

be written as a sum of several Tucker tensors of the same size
but of smaller multilinear ranks. In BTD, the data is explained
by disjoint subspaces, each spanned by sub-factor matrices for
each block term.

The structured TKD allows a more flexible BTD with over-
lapping or shared partial loading components in each mode, see
Fig. 2.

The CPD and BTD are just only examples. It is possible
to consider lower-triangular core tensor, what is a generaliza-
tion of lower-triangular matrix. Here, Kijk = 0 for all i, j, k =
1, . . . , R such that i+ j + k > R+ 2.

The zero and nonzero elements of K can be described by a
tensor L of the same size as K, composed of nulls and ones
only, such that the following implication holds: Lijk = 0 =>
Kijk = 0. We will use the symbol K(L) for the column vector
composed of the nonzero elements ofK. The number of nonzero
elements ofK is the number of ones inL and will be denoted |L|.

The total number of parameters in the STKD is then |L|+
I1R1 + I2R2 + I3R3. The decomposition is meaningful if this
number is significantly smaller than the total number of the
tensor, I1I2I3 in the case of unweighted decomposition, or the
number of available tensor elements that is |W|, i.e., the number
of ones inW . It is generally permitted that the size of the core
tensor may exceed the original tensor’s size in some dimensions,
like the tensor rank in CPD may exceed some (or all) of the
dimensions of the tensor.

Note that the tensor model is linear in the factor matrices and
the core tensor individually, but not jointly. The “workhorse” Al-
ternating Least Squares (ALS) algorithm consists of minimizing
the criterion

ϕ(θ) = ‖T − [[K,A,B,C]]‖2F (3)

or (in the incomplete tensor case)

ϕW (θ) = ‖W1/2 � (T − [[K,A,B,C]])‖2F (4)

with respect to components (vectors) of

θ = [K(L); vecA; vecB; vecC] (5)

individually, in an alternating manner. In (4),W1/2 refers to the
elementwise squared root ofW .1 The separation by semicolons
in (5) indicates stacking the vectors one above the other (like in
Matlab). θ is a long (tall) vector.

Unfortunately, it is known that ALS often exhibits a slow
convergence. Its convergence is at most linear. Second-order

1Indeed, if the weights are only zeros and ones, the square root does not
change anything.
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methods like Gauss-Newton or damped Gauss-Newton method
applied to CPD problem (Levenberg-Marquardt, (LM)) can ob-
tain a significantly faster convergence [21], [22]. These methods
require computing the Hessian for the problem, which can be
difficult. This problem is alleviated in the Krylov-Levenberg-
Marquardt method [11], [12], and is extended to the structured
Tucker decomposition in this paper.

The LM or KLM methods permit handling an important
generalization of the tensor model, where the parameter vector
is subject to a linear transformation. This will be explained in
Section VI.

III. LINK BETWEEN STKD AND TENSOR CHAIN

Tensor Chain (TC) [5], [6] represents an order-N tensor in
terms of N order-3 tensors that are interconnected in a cyclic
network as

X = G1 • G2 • · · · • GN • G1 (6)

where Gn are core tensors of size Rn × In ×Rn+1, R1 =
RN+1, “•” represents the train contraction of two consecutive
core tensors. A core tensor is connected to two core tensors,
which forms a chain or train of core tensors. For example,
the core tensor G1 is connected to GN and G2, whereas the
core tensor GN is connected to GN−1 and G1. Numerically, the
(j1, . . . , jN )-th element of the tensor is given as

Xj1,...,jN = tr
(
G

(1)
j1

G
(2)
j2
· · ·G(N)

jN

)
(7)

where G
(n)
jn

= Gn(:, jn, :) is the jn−th slice of Gn, n =
1, . . . , N .

The tensor chain is an extension of the earlier tensor train [3].
It was designed to remove problems in TT decomposition with
dimensions of the core tensors in the middle of the chain, which
are often unbalanced and grow dramatically with the dimension
of the tensor. Connecting the first and last core tensors of the
model makes it more balanced because there are no first and last
core tensors.

Unfortunately, it appears that the loop in TC may lead to
severe numerical instability in finding the best approximation
especially when RnRn+1 > In, see Theorem 14.1.2.2 [23]
and [24]. ALS and DMRG algorithms for computing the TC
decomposition were proposed in [5].

This section proposes another interpretation of the model and
possibly new algorithms to estimate it. For simplicity, we con-
sider order-3 tensors only. The decomposition of higher-order
tensors can be extended straightforwardly. We claim that

X = [[M;U1,U2,U3]] (8)

where Un are mode-2 unfolding of the core tensors Gn and
are of size In ×RnRn+1, and M is a binary tensor of size
R3R1 ×R1R2 ×R2R3 associated with the multiplication of
two matrices of sizes R3 ×R1 and R1 ×R2 [25]. The tensor
has elements

Mαβγ = δinδjkδ�m (9)

where α = (i− 1)R1 + j; β = (k − 1)R2 + l; γ =
(m− 1)R3 + n for i, n = 1, . . ., R3; j, k = 1, . . ., R1;
l,m = 1, . . ., R2. See Appendix B in the suplementary
materials for proof. An example of the distribution of zeros and
ones in the tensorM is presented in the simulation section.

Thanks to (8), the TC decomposition can be interpreted as a
structured TKD with a fixed core tensor. We can apply the KLM

algorithm described below to find the factor matrices, Un and,
consequently, the core tensors Gn, n = 1, 2, 3.

IV. SENSITIVITY OF THE DECOMPOSITION

The notion of sensitivity was introduced for CPD [11]. The
motivation is that in some difficult cases, the CPD is not unique,
or there is additive noise. In practical applications, traditional
decomposition algorithms may lead to diverging solutions. In
particular, it occurs in all unconstrained algorithms (ALS, LM,
KLM) that some rank-one components in the decomposition
converge to infinity in the norm, and the decomposition terms
partially cancel each other. The basic remedy to this problem is
applying �1−norm, or �2− norm regularization [27], [28] which
is rather heuristic and not easy to adjust. A more sophisticated ap-
proach is to use either the so-called error-preserving correction
(EPC) [26] or applying estimates with limited sensitivity [11].

In this section, we extend the definition of sensitivity to the
structured Tucker decomposition as follows:

s(K,A,B,C) = lim
σ2→0

1

σ2
E{‖[[K + δK,A+ δA,

B+ δB,C+ δC]]− [[K,A,B,C]]‖2F }, (10)

where δK, δA, δB and δC are random Gaussian-distributed
perturbations of the core tensor and the factor matrices with
independently distributed elements of zero mean and variance
σ2, and E is the expectation operator. If some core tensor
elements are constrained to be zero, we set the corresponding
elements of δK to zero as well.

The sensitivity can be expressed directly in terms of the core
tensor elements and the factor matrices. After a straightforward
computation (see Appendix B for details), we get

s(θ) =
1

σ2
E{‖[[δK,A,B,C]]‖2F }

+
1

σ2
E{‖[[K, δA,B,C]]‖2F }

+
1

σ2
E{‖[[K,A, δB,C]]‖2F }

+
1

σ2
E{‖[[K,A,B, δC]]‖2F }

= 1T vec [[L,A �A,B �B,C �C]]

+ I1 ‖[[K, IR1
,B,C]]‖2F

+ I2 ‖[[K,A, IR2
,C]]‖2F

+ I3 ‖[[K,A,B, IR3
]]‖2F , (11)

where 1 is a vector composed of 1’s, and L is the tensor
indicating the nonzero elements of the core tensor K.

A. Sensitivity for CPD

In the special case of CPD, the core tensor K comprises only
R nonzero elements on its diagonal. These elements can be set to
one because the energy of each rank-one factor can be absorbed
in the factor matrices. Thus we can take K as fixed, not being
perturbed in the definition of sensitivity. Then, the expression
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(11) translates in

s(A,B,C) =

R∑
r=1

(I1 ‖br‖2‖cr‖2 + I2 ‖ar‖2‖cr‖2

+ I3 ‖ar‖2‖br‖2) (12)

where ar,br and cr are columns of the factor matrices. Note
the missing factors I1, I2, I3 in the corresponding expression
in [11]. The difference between (12) and [11] disappears if the
scaling ambiguity of the CP decomposition is taken into account.
The columns in two factor matrices can be arbitrarily scaled, and
the change can be compensated by an appropriate adjustment in
the third-factor matrix. In other words, it holds that

[[ar,br, cr]] = [[αrar, βrbr, γrcr]]

for any αr, βr, γr such that αrβrγr = 1 for r = 1, . . . , R. The
scales should be selected to minimize the sensitivity (12); oth-
erwise, it could be arbitrarily large. It can be easily shown that
the minimum sensitivity is achieved if

I1 ‖br‖2‖cr‖2 = I2 ‖ar‖2‖cr‖2 = I3 ‖ar‖2‖br‖2.
The resultant expression for sensitivity which minimizes (12)
with respect to the scale changes is

s∗(A,B,C) = 3(I1I2I3)
1/3

R∑
r=1

(‖ar‖‖br‖‖cr‖)4/3. (13)

If the columns of the factor matrices are normalized so that
‖ar‖ = ‖br‖ = ‖cr‖, as is recommended in [11], then the
expression (13) is equivalent to the erroneous expression in [11]
up to a fixed multiplicative factor.

V. KRYLOV-LEVENBERG-MARQUARDT ALGORITHM

The Levenberg-Marquardt algorithm consists in a sequence
of iterations

θ ← θ′ = θ − (H+ μI)−1g

where an error gradient g, and an approximate Hessian H are
defined through a Jacobi matrix J as

J =
∂vec(T )

∂θ
(14)

g = JTWvec(T − T̂ ) (15)

H = JTWJ (16)

W = diag(vec(W)), and μ is a damping parameter that is up-
dated through the iterations. In short, a new vectorθ is accepted if
it reduces the cost function value. Otherwise, the step is skipped,
and another estimate with a higher value ofμ is applied. For more
details of the update rule for μ see, e.g., [29], [30].

In the Krylov-Levenberg-Marquardt algorithm, the expres-
sion (H+ μI)−1g is replaced by the approximation

(H+ μI)−1g ≈ 1

μ
g − 1

μ
U(μQ−1 +UTU)−1(UTg) (17)

where columns of matrix U form an orthogonal basis of the
so-called Krylov subspace that is the linear hull of

[g,Hg,H2g, . . . ,HM−1g] (18)

and

Q = UTHU. (19)

The integer M representing the Krylov subspace dimension is a
design parameter controlling the approximation accuracy. The
matrix U is obtained through a Gramm-Schmidt orthogonaliza-
tion process, and Q is received as a side product of the process.
See [11], [12] for more details.

The total complexity of computing (17) depends on the
complexity of the products Hx and on the order of the ap-
proximation M . If the complexity of the product is denoted
C and Np = |L|+ I1R1 + I2R2 + I3R3 is the total number
of the parameters of the model, then the complexity of (17)
is O(MC +M2Np +M3). If M is not too high, then the
complexity per iteration grows roughly linearly with M . Note
that M is the number of the y = Hx operations used in each
update.

We will see in the simulation section that the optimum param-
eterM is related to the complexity of the problem, namely to the
rank R in the CP decomposition or size of the kernel tensor in
STKD. A rule of thumb might be that M should be comparable
to the rank or the size of the kernel.

VI. FAST COMPUTING OF y = Hx

In the case of unweighted CPD, this part is well explained
in [15]. The case of weighted CPD is treated in [12]. In this
section, we show that this product can be computed efficiently
for the unweighted Tucker decomposition. The extensions for
weighted Tucker and other STKDs will be given in the next
section.

Assume that a data tensor to be decomposed is

T ≈ T (θ) = [[K,A,B,C]], (20)

where θ is composed of elements of the factor matrices

θ = [vec(K); vec(A); vec(B); vec(C)]. (21)

The Jacobi matrix has now four parts,

J =
∂vec(T )

∂θ
= [JK ,JA,JB ,JC ]. (22)

To deal with products of the type Jx, we write the arbitrary
vector x as,

x = [vecXK ; vecXA; vecXB ; vecXC ] (23)

where XK is a tensor of the shape of K, and XA,XB , and XC

are matrices of the sizes of A,B and C, respectively. Similarly,
the outcome y = Hx would have four parts as well,

y = [vecYK ; vecYA; vecYB ; vecYC ] (24)

where the tensor YK and matrices YA,YB ,YC have the same
size as K, A, B and C, respectively.

Let us consider first computing the product y = Hx for the
unweighted case, where H = JTJ. It is easy to see that

Jx = JKvecXK + JAvecXA + JBvecXB + JCvecXC

= vec [[XK ,A,B,C]] + vec [[K,XA,B,C]]

+ vec [[K,A,XB ,C]] + vec [[K,A,B,XC ]]

= vecZ (25)
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where

Z = [[XK ,A,B,C]] + [[K,XA,B,C]]

+ [[K,A,XB ,C]] + [[K,A,B,XC ]]. (26)

We need to compute

y = JTJx = [JK ;JA;JB ;JC ]
TJx. (27)

Note that the matricization of the tensor T in (20) along the first
mode can be written as

T(1) = A[[K, IR1
,B,C]](1), (28)

where IR1
is the identity matrix of size R1 ×R1, and therefore,

using the identity vec(ABC) = (CT ⊗A)vecB, it holds

vec T = vecT(1) = {[[K, IR1
,B,C]]T(1) ⊗ II1}vecA. (29)

Hence, it follows that

JA =
∂vec T
∂vecA

= [[K, IR1
,B,C]]T(1) ⊗ II1 . (30)

Finally,

JT
AJx = {[[K, IR1

,B,C]](1) ⊗ II1}vecZ

= {[[K, IR1
,B,C]](1) ⊗ II1}vecZ(1)

= vec {Z(1)[[K, IR1
,B,C]]T(1)}. (31)

Similarly, we get

JT
BJx = vec {Z(2)[[K,A, IR2

,C]]T(2)} (32)

JT
CJx = vec {Z(3)[[K,A,B, IR3

]]T(3)}. (33)

For the core tensor we obtain

JT
KJx = vec {[[Z,AT ,BT ,CT ]]}. (34)

This completes the computation of y in (27). What remains is
to provide a recipe for computing the error gradient g in (15). It
has four parts as well,

g = [gK ;gA;gB ;gC ]. (35)

Let E be the approximation error, i.e., the difference between
the given tensor and the model,

E = T − [[K,A,B,C]]. (36)

Then we easily find that

gK = vec [[E ,AT ,BT ,CT ]] (37)

gA = vec {E(1)[[K, IR1
,B,C]]T(1)} (38)

gB = vec {E(2)[[K,A, IR2
,C]]T(2)} (39)

gC = vec {E(3)[[K,A,B, IR3
]]T(3)}. (40)

If the size of the core tensorK is smaller than the size of the data
tensor T , it might be convenient to use the following alternative
expressions to evaluate (31)–(33) and (38)–(40),

JT
AJx = vec {[[Z, II1 ,BT ,CT ]](1)K

T
(1)} (41)

JT
BJx = vec {[[Z,AT , II2 ,C

T ]](2)K
T
(2)} (42)

JT
CJx = vec {[[Z,AT ,BT , II3 ]](3)K

T
(3)} (43)

gA = vec {[[E , II1 ,BT ,CT ]](1)K
T
(1)} (44)

gB = vec {[[E ,AT , II2 ,C
T ]](2)K

T
(2)} (45)

gC = vec {[[E ,AT ,BT , II3 ]](3)K
T
(3)}. (46)

We note that neither computation of the error gradient nor
the product y = Hx requires larger memory than the memory
needed for storing the data tensor T , I1I2I3 or the core tensorK,
R1R2R3. The complexity of the computation of the productHx
is C = O((R1 +R2 +R3)I1I2I3 + (I1 + I2 + I3)R1R2R3).

VII. EXTENSIONS

In this section, we extend the results of the previous section
in five different directions. Note that some of these extensions
have been already proposed in [10].

A. Weighted Tucker Decomposition

The vector representing the error gradient in this case is
computed according to (37) and (38)–(40) or (44)–(46) with
the difference that the error tensor E in (36) is replaced with
EW = E �W . For computing the product y = Hx we need to
replace the tensor Z from (26) in (31)–(34) or (41)–(43) and
(34) with tensor ZW = Z �W .

B. Nulls in the Core Tensor

Assume that the nonzero elements of the core tensor K are
indicated by the tensor L. The vector of the error gradient will
be shorter in that case,

g = [gK(L);gA;gB ;gC ]. (47)

The product y = Hx can be computed in the same way as in the
previous case with the difference that the tensor XK is obtained
from the first |L| elements of the vector x. These elements are
distributed inXK in accord with the tensorL, and the remaining
elements will be zero. Similarly, after computing YK , the first
|L| elements of y are obtained as YK(L).

C. Fixed Core Tensor

In some applications, the core tensor can be assumed to be
fixed and known in advance. For example, the CP decomposition
can be cast in this class: the core tensor is spatially diagonal. We
can fix its elements to 1, because the energy of each rank-one
term can be distributed in the factor matrices. Another example
is the tensor chain in Section III.

The KLM algorithm presented above can be modified to the
case with fixed K by omitting the initial part of the parameter θ
containing elements ofK. Similarly, the vector representing the
error gradient will be shorter, e.g.,

g = [gA;gB ;gC ], (48)

and similarly the vectors x and y in the equation y = Hx
will contain only entries corresponding to the factor matrices
A,B,C. The product y = Hx will be computed in the same
way as in the previous cases. In each iteration, only the factor
matrices would be updated.
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D. Linear Transformation of the Factor Matrices

In the previous sections, we have presented an implementation
of the KLM algorithm for the Tucker decomposition, where the
matrix H has a special structure. Assume now that parameter
vector θ can be obtained as a linear transformation of a new
parameter ϑ of a lower dimension,

θ = [vec(K); vec(A); vec(B); vec(C)] = Xϑ. (49)

whereX is a fixed tall matrix, andϑ is the new vector parameter.
For example, we can facilitate symmetric or partially symmet-
ric decomposition, say A = B = C or A = B. In the former
case, we can define ϑ = [vec(K); vec(A)]. Another example is
enforcing a Toeplitz structure to some or all factor matrices or
to a core tensor K. In this way, it is possible, e.g., to imple-
ment the low-rank tensor deconvolution [31], PARallel FACtor
with LINear Depedences (PARALIND) [33], or CANonical
DEcomposition with LINear Constraints (CANDELINC) [34].
A similar technique is used in [10] and in Tensorlab. There are
many possibilities, and all of them differ in the matrix X. Note
that the former model with some core tensor elements fixed to
zero is a special case of the linear transformation considered in
this subsection.

We now consider a Levenberg-Marquardt algorithm for the
new parameter ϑ. The corresponding Jacobi matrix would be

Jϑ =
∂vec T
∂ϑ

=
∂vec T
∂θ

∂θ

∂ϑ
= JX (50)

and the corresponding approximate Hessian that reads

Hϑ = JT
ϑJϑ = XTJTJX = XTHX (51)

in the unweighted case and

Hϑ = JT
ϑWJϑ = XTJTWJX = XTHX (52)

in the weighted case. The Krylov subspace variant of the LM
method requires computing the products

Hϑx = XTHXx = XTH(Xx). (53)

We can compute this product y = Hϑx through the product
of H with the vector (Xx) via the algorithm proposed in the
previous section. Note that the computation remains efficient,
because evaluation of the matrix H is not needed.

E. Decompositions With Limited Sensitivity

Consider now a smooth constraint c(θ) = 0, e.g., the con-
straint on sensitivity. The LM algorithm can be modified as
follows,

θ′1 = θ0 − (H+ μI)−1g +
uT
0 (H+ μI)−1g

uT
0 (H+ μI)−1u0

(H+ μI)−1u0.

(54)
where

u0 =
∂c(θ)

∂θ

∣∣∣∣
θ=θ0

. (55)

θ1 obeying the constraint c(θ1) = 0 is obtained from θ′1 by
appropriate scale change. See [11] for more details.

We have found empirically that for computing (H+ μI)−1u0

it is convenient to generate another Krylov subspace,

[u0,Hu0,H
2u0, . . . ,H

M−1u0]

and compute its orthogonal basis Uu. Then, we have

(H+ μI)−1u0 ≈
1

μ
u0 −

1

μ
Uu

(
μQ−1u +UT

uUu

)−1 (
UT

uu0

)

(56)
cf. (17), where

Qu = UT
uHUu. (57)

It appears that this procedure leads to a more accurate approx-
imation than using the former Krylov subspace (18), or even
(18) with increased dimension M . Investigation in this direction
exceeds the scope of this paper.

The vector u0 is the gradient of the constraint in the latest
value of θ. If the constraint is the sensitivity, u0 is composed of
four parts,

u0 = [uK(L);uA;uB ;uC ] (58)

where

uK = I1vec [[K, IR1
,BTB,CTC]]

+ I2vec [[K,ATA, IR2
,CTC]]

+ I3vec [[K,ATA,BTB, IR3
]] (59)

and

uA = vec {A � (1I11
T
I2I3

[[L, IR1
,B �B,C �C]]T(1))}

+ I2vec {A[[K, IR1
, IR2

,C]](1)[[K, IR1
, IR2

,C]]T(1)}

+ I3vec {A[[K, IR1
,B, IR3

]](1)[[K, IR1
,B, IR3

]]T(1)}

uB = vec {B � (1I21
T
I1I3

[[L,A �A, IR2
,C �C]]T(2))}

+ I1vec {B[[K, IR1
, IR2

,C]](2)[[K, IR1
, IR2

,C]]T(2)}

+ I3vec {B[[K,A, IR2
, IR3

]](2)[[K,A, IR2
, IR3

]](2)

uC = vec {C � (1I21
T
I1I3

[[L,A �A,B �B, IR3
]]T(3))}

+ I1vec {C[[K, IR1
,B, IR3

]](3)[[K, IR1
,B, IR3

]]T(3)}

+ I2vec {C[[K,A, IR2
, IR3

]](3)[[K,A, IR2
, IR3

]](3)}.

F. Nonnegativity Constraints

In many applications, there is a need to impose nonnegativity
constraint on some or all parameters of the model (core tensor
and factor matrices). This can be done through a variant of
the Alternating Direction of Multipliers (ADMM) [17] called
Krylov-ADMM. In short, the procedure applies the fast com-
putation of the term (H+ ρI)−1g, described in the previous
sections, in the ADMM procedure. Details can be found in
Supplementary materials to this paper.

VIII. SIMULATIONS

Example 1 [Role of ParameterM ] The influence of parameter
M on the convergence of KLM will be studied in the case of CP
decomposition of the matrix multiplicative tensor introduced in
Section III. In particular, we take the case of the one correspond-
ing to the multiplication of two matrices 4× 4. The tensor has
the size 16× 16× 16. The distribution of ones and zeros in the
tensor is plotted in Fig. 3. Actually, we show the tensor reshaped
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Fig. 3. Matricized tensorM from Example 1. Blue means zeros and yellow
marks denote ones.

Fig. 4. Median learning curve of KLM with rank R = 5 and various M .

Fig. 5. Median learning curve of KLM with rank R = 49 and various M .

into a matrix of the size 16× 256. The tensor has 64 ones and
its rank is at most 49 [25].

First, we approximate the tensor by another one of rankR = 5
using the KLM algorithm with M = 5, 10, 20 and 40. In Fig. 4
we plot the median learning curve (error vs. iteration number) of
500 independent runs of the algorithm with random initialization
and various M . We can see that the algorithm converges quickly
regardless of the value of M . The conclusion is that if the rank
is small, then small M suffices.

The influence of the parameterM becomes apparent at higher
ranks, see Fig. 5 for rankR = 49. Note that the ideal fitting error
should be zero, but this case never happened in the 500 trials.
The minimum error (the squared Frobenius norm of the error
tensor) was 1. Similar results (not shown here) were obtained
by KLM with the sensitivity constraint set to 1200. In that case,
the minimum fitting error was smaller than 1 in some cases.

Example 2 [Block-term decomposition] In this example, we
generate the tensor from its block-diagonal core tensorK of the
size 15× 15× 15 with three blocks of the size 5× 5× 5 on its
main diagonal, at random, having i.i.d. Gaussian random entries
withN(0, 1) distribution. The factor matricesA,B, andC have
the size 12× 15 and the tensor T = [[K,A,B,C]] has the size
12× 12× 12. It means that T is smaller in size than the core
tensor. It has 123 = 1728 elements. The number of the model pa-
rameters is 3× 53 + 3× 12× 15 = 915. For simplicity, there
was no additive noise.

We compare the performance of three algorithms: KLM with
M = 30, KLM with bounded sensitivity and M = 30, and
the NLS algorithm (Structured Data Fusion - Nonlinear Least
Squares) of Tensorlab [9]. The bound on the sensitivity for
the second algorithm was set to the sensitivity of the original

TABLE I
COMPARISON OF THREE BTD ALGORITHMS FROM THE EXAMPLE WITH

SYNTHETIC TENSORS

model. The week point of the algorithm is that a qualified
guess on the desired sensitivity is needed. The algorithms were
initialized by random factor matrices and random core tensor
in 230 independent trials. We let each of them perform 500
iterations.

Theoretically, since there is no noise, the fitting error should
converge to zero for all three algorithms. We have observed that
this is not always the case. The algorithms differ in finding the
right global minimum of the cost function among many other
false minima. Also, we have limited the number of iterations to
500, so that the achieved minimum fitting error is not always
close to zero.

In Table I, we present the following characteristics: (1) median
fitting error per tensor element, i.e., the median fitting error di-
vided by the number of the tensor elements, (2) number of cases
where the right minimum of the cost function was achieved,
numerically when the final fitting error was smaller than 10−3,
(3) computational time in seconds, and (4) median sensitivity of
the estimates.

We can see that KLM and NLS have nearly the same median
fitting error and the same number of successful runs and pro-
duce estimates with roughly the same sensitivity, although the
sensitivity of the original model was significantly smaller. With
the bounded sensitivity, KLM provided estimates with desired
sensitivity and has about a 3× larger probability of converging to
the right local minimum, which is cca 39%. The computational
time of the bounded KLM is about twice as long as the time
of the unbounded KLM. NLS is the slowest algorithm in this
example. Indeed, the probability of success could be increased
by using multiple random initializations.

In Fig. 6, we present 25 learning curves for all three algorithms
as illustration, and the median of the learning curves. The error
is measured as the squared Frobenius norm of the error tensor.

The experiment was repeated once again with the difference
that the bounded KLM was applied differently. It started the
decomposition with low initial sensitivity, and after every 30
iterations, if it had not yet converged, the bound on sensitivity
was increased 1.5×. In this way, we achieved the convergence
to the desired global minimum in all the simulation trials. 300
iterations were sufficient in all cases.

The results were summarized in two scatter plots in Fig. 7. The
former diagrams show the achieved fitting error as a function of
the sensitivity of the estimated models. We can see that in most
trials, KLM and NLS produce results with high fitting error and
high sensitivity, unlike the bounded KLM. The latter diagram
shows the output sensitivity as a function of the sensitivity
of the original model. We note that in all trials, successful or
not, KLM and NLS produce estimates with significantly higher
sensitivities than necessary.

Example 3 [Decomposition of convolutional kernels in
Alexnet CNN] In this example, we tested the BTD algorithms
on real-world data. We used four convolutional kernels in the
well-known convolutional neural network Alex-net [32]. These
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Fig. 6. Example of 25 learning curves of KLM, KLM with limited sensitivity,
and NSF, and medians of the learning curves.

TABLE II
COMPARISON OF KLM-BND AND NLS ALGORITHMS IN THE EXAMPLE WITH

REAL-WORLD TENSORS

tensors have the order 4, but were reshaped to order-3 tensors
by folding their first two dimensions. It is known that most
convolutional neural networks are overparameterized and ex-
hibit a high computational cost mainly due to the huge number
of parameters in the convolutional and fully connected layers.
By factorizing the convolutional kernels in low-rank tensor
formats, the convolutional layers can be replaced by a sequence
of new layers with much smaller kernel sizes. This reduces the
number of parameters and computational cost in the original
CNN model. In [16], we have shown that CPD with sensitivity
control can significantly improve compression of widely used
CNN including ResNet, VGG, over ordinary CPD methods due
to severe degeneracy of the decomposition results. By keeping
the decomposition at low sensitivity, the compressed CNNs
retain their original accuracy (with a minor loss). This example
demonstrates an application of the BTD with sensitivity control
in compression of CNN.

We decomposed four tensors whose sizes are given in Table II
by BTDmodels with 15 blocks of size 2× 2× 2, so that the core

Fig. 7. (a) Fitting errors versus the model sensitivity and, (b) the output
sensitivity versus the initial sensitivity.

tensor had the size 30× 30× 30. The initial decomposition of
the tensor was obtained as follows. The factor matrices A,B,C
were taken at random with N(0, 1)-distributed elements. The
initial core tensors were obtained by the least-squares update
rule. The initial sensitivity bound for the algorithm KLM-bnd
was taken as the sensitivity of the initial model. After every 30
iterations of the algorithm, the sensitivity bound is increased
1.5× and the algorithm is halted if the fitting error is not
reduced anymore. The performance is compared to that of NLS
of Tensorlab, with 500 iterations. Table II shows the outcome,
sensitivity, and fitting error. We can see that both algorithms
achieve approximately the same fitting error, but our algorithm
provides the estimate with a much smaller sensitivity measure.
This opens a new application of sensitivity bounded BTD in
compression of CNNs.

Example 4 [Tensor chain modeling]
We demonstrate the proposed KLM algorithm for TC decom-

position of synthetic tensor of size 7× 7× 7 and rank Rn = 3
for all n. The factor matrices, Un, are of size 7× 9. Note that
for this case, because the factor matrices have more columns
than rows, algorithms based on SVD are not applicable, whereas
the TC-ALS [5] does not work efficiently. Fig. 8 compares

Authorized licensed use limited to: UTIA. Downloaded on April 15,2021 at 11:37:17 UTC from IEEE Xplore.  Restrictions apply. 



558 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 15, NO. 3, APRIL 2021

Fig. 8. Comparison of performance of KLM for structured TKD and TC-ALS.

TABLE III
PERFORMANCE COMPARISON FOR THREE MODELS, TKD, BTD AND BTD

WITH OVERLAPPING CORES

relative errors obtained using the two algorithms, TC-ALS and
STKD-KLM with norm correction for different noise levels,
SNR = 20, 30, 40 dB, and a noise-free case. The results were
averaged over 100 independent runs. For all the test cases,
the TC decomposition achieved through STKD outperformed
the TC-ALS. The proposed method can find almost the exact
decomposition for the noise-free case.

Example 5 [TKD vs. Overlapping BTD for clustering of
handwritten digits].

In this example, we illustrate an application of the overlapping
BTD for clustering of handwritten digit images in the MNIST
dataset. From 100 images for each digit 5 and 6, which are of size
28× 28, we computed their Gabor features with 8 orientations
and 4 scales. The Gabor images are vectorized and concatenated
into an order-3 tensor of size 784× 32× 200. We applied TKD
with multilinear rank-(6, 6, 6), BTD with two core tensors of
size 3× 3× 3 and the overlapping BTD with two core tensors
of size 5× 5× 5 sharing a term of size 4× 4× 4. For all three
decomposition models, the factor matrices were of the same size
and comprised 6 columns. The difference between them is due
to the structured of the core tensors. For Tucker decomposition,
we used the HOOI algorithm [35], NLS for BTD [10], and KLM
for overlapping BTD.

Six compressed features in the third-factor matrices were
used to cluster the digits using the K-means algorithm. Table III
compares the performance of the three models. Obviously, the
TKD with multilinear rank-(6, 6, 6) explained the data better
than the two other block term models. However, TKD does not
achieve the best clustering accuracy.

The BTD-(3-3) with two smaller core tensors obtained an
accuracy of 94%; the two subspaces can discriminate the two
classes of digits.

The BTD with overlapping core tensors can be considered
a decomposition that seeks joint subspaces associated with the

overlapping part and individual subspace for each class. This
model achieved the best accuracy of 98% with the highest mutual
information of 0.89.

An extension of this example can be found in the supplemen-
tary material to this paper.

IX. CONCLUSIONS

We presented novel algorithms for structured or constrained
Tucker tensor decomposition and their application in block
term decomposition, tensor chain modeling, classification of
handwritten digits, and the compression of convolutional layers
in neural networks.

Matlab codes related to the KLM algorithm are avail-
able on the Internet at https://github.com/Tichavsky/tensor-
decomposition.
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