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ABSTRACT
This paper proposes a constrained canonical polyadic (CP)
tensor decomposition method with low-rank factor matrices.
In this way, we allow the CP decomposition with high rank
while keeping the number of the model parameters small.
First, we propose an algorithm to decompose the tensors into
factor matrices of given ranks. Second, we propose an algo-
rithm which can determine the ranks of the factor matrices
automatically, such that the fitting error is bounded by a user-
selected constant. The algorithms are verified on the decom-
position of a tensor of the MNIST hand-written image dataset.

Index Terms— CANDECOMP, PARAFAC, low-rank
constraint, rank minimization, tensor decomposition

1. INTRODUCTION

The CANDECOMP/PARAFAC or canonical polyadic tensor
decomposition (CPD) seeks the best rank-R tensor approxi-
mation to a tensor Y of the size I ⇥ J ⇥ K in the form of

Y ⇡
RX

r=1

ar � br � cr = ~A,B,C� , (1)

where “�” represents the outer product, A = [a1, . . . , aR], B =
[b1, . . . , bR] and C = [c1, . . . , cR] are factor matrices of the
decomposition. A similar model can be extended straightfor-
wardly to higher-order tensors. The CPD has found applica-
tions in various fields, including separation of signals in wire-
less communication systems, independent component analy-
sis, estimation of temporal and spectral patterns in EEG sig-
nals, blind identification [1, 2]. Recently CPD has been used
to compress Convolutional Neural Networks (CNN) [3–6].
To obtain the CPD, we can minimize the Frobenius norm of
the error of the tensor Y and its estimate, e.g., using the Al-
ternating Least Squares (ALS) algorithm to update sequen-
tially the factor matrices [7–10], or the non-linear conjugate
gradient method [11, 12], the Levenberg-Marquardt (LM) al-
gorithm [13, 14], the Krylov LM algorithm [15, 16], the non-
linear least squares (NLS) algorithm [17] to update all the
parameters at a time.

Fig. 1. Illustration of the CPD with low-rank constraints.

In practice, real-world data does not exactly admit the
low-rank CPD. Good approximation often requires relatively
high rank. For example, to preserve the accuracy of the orig-
inal CNNs, e.g., ResNets, Alexnet, convolutional kernels can
be approximated with ranks of 800, which significantly ex-
ceed the tensor dimensions. Such decomposition yields “fat”
factor matrices, i.e., with more columns than rows, resulting
in high redundancy.

Tucker decomposition (TKD) is another widely used
decomposition [18, 19]. This decomposition is particularly
suited to compress the tensors before applying CPD but is
only applicable when the rank of CPD does not exceed the
tensor dimensions. The TKD can be used in the compres-
sion of deep neural networks [5], while a combination of
TKD+CPD in this application was proposed in [6].

In this paper, we consider the CPD with high rank and
propose a new model that seeks a compact subspace to repre-
sent the “fat” factor matrices. More specifically, some or all
factor matrices are modelled as products of an orthogonal ma-
trix, U of size I ⇥R1, R1 < I, and a smaller factor matrix A of
size R1⇥R, R is often much higher than I, R � I. This results
a low-rank constrained CPD (LrCPD), illustrated in Fig. 1

Y ⇡ ~UA,VB,WC� (2)

where UT U = IR1 , VT V = IR2 and WT W = IR3 . When R  I,
we can apply the two-stages decomposition, TKD+CPD,
which first performs the TKD with multilinear rank [R1,R2,R3],
then decomposes the core tensor to get a rank-R tensor [20].
When R � I, the subspaces sought by TKD may not be op-
timal, and CPD of the compressed core tensor does not give
the best result of the model in (2).
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When U, V, W are design matrices, i.e., fixed and known
in advance, the model in (2) becomes the CANDELINC [20,
21]. Another related model is when A, B and C are depen-
dence matrices that consist of zeros and ones, we obtain the
parallel profiles with linear dependencies (PARALIND) for
the rank-overlap problem proposed by R. Bro et. al. [22]. A
similar constrained PARAFAC (CONFAC) is developed for
the blind identification of underdetermined mixtures [23]. A
partial uniqueness of PARALIND with doubly linear depen-
dence was investigated in [22, 23]. For applications and vari-
ants of PARALIND/CONFAC, we refer to the overview [24].
Note that our proposed constrained CPD can seek the com-
pact subspace to represent factor matrices, while the PAR-
ALIND/CONFAC has no constraints on the sub-factor matri-
ces, and the dependence matrices are often given and contain
zeros and ones.

For CPD with long (and thin) factor matrices, we can re-
shape them to higher-order tensors and represent them in the
low-rank Tensor Train format [25]. This model is di↵erent
from ours.

Contribution of the proposed approach includes

• Algorithm for the new constrained CPD with given fac-
tor ranks.

• Algorithm for the new model which can search for the
best subspace to model the factor matrices in CPD.
Ranks of the factor matrices are determined automati-
cally when the approximation error is bounded.

2. CPD WITH LOW-RANK FACTOR MATRICES

We first consider the CPD with ranks of its matrices given,
then extend the model to determine the smallest subspace for
the factor matrices.

2.1. Factor matrices with given ranks

Assume that the ranks of A and B are given, and the model
need not factorize the factor matrix C. This case can hap-
pen when tensor dimensions are not well balanced, and one
dimension can be much smaller than the other ones, e.g., the
color layer (3) in the color images, or the filter sizes (3, 5, 9) in
the convolutional kernels, or the number of channels in EEG
signals compared to the time instants or frequency bins.

Optimization problem for the constrained rank-R CP de-
composition can be formulated as

min
U,A,V,B,C

f = kY � ~UA,VB,C�k2F (3)

s.t. UT U = IR1 , VT V = IR2

where U and V are orthogonal matrices of size I ⇥ R1 and
J ⇥ R2, respectively, R1 < I1, R2 < I2 and R > max(R1,R2).
The matrices A, B and C comprise R columns,

We first derive update rules for factor matrices in the first
mode. In order to update A, we rewrite the objective function
in form of mode-1 unfolding of Y, that is

f = kY � ~UA,VB,C�k2F
= kY(1) � UA(C � VB)T )k2F
= kY(1)k2F + kUA(C � VB)T )k2F � 2 tr(UA(C � VB)T YT

(1))

= kYk2F + kA(C � VB)T )k2F � 2 tr(A(C � VB)T (UT Y(1))T )
= kYk2F � kUT Y(1)k2F + kUT Y(1) � A(C � VB)T )k2F ,

where “�” denotes the Khatri-Rao product. The last expres-
sion is achieved due to the orthogonality of U, UT U = IR1 .
Let G = Y ⇥1 UT ⇥2 VT . G(1) is mode-1 unfolding of G.
While keeping the other factor matrices fixed, f () achieves its
minimum at the optimal A? given by

A? = UT Y(1)(C � VB)†

= UT Y(1)(C � VB)((CT C) ~ (BT B))�1

= G(1)(C � B)((CT C) ~ (BT B))�1 , (4)

provided that ((CT C) ~ (BT B)) is invertible. The symbol “~”
represents the element-wise Hadamard product. The last ex-
pression exploits the following identity

C � VB = (I ⌦ V)(C � B).

Substitute A? into the objective function f (), we obtain

f (A?) = kYk2F � kUT Y(1)k2F + kUT Y(1) � A?(C � VB)T )k2F
= kYk2F + tr(A?(C � VB)T (C � VB)A?)

�2 tr(A?(C � VB)T YT
(1)U)

= kYk2F � tr(UT Q U)

where

Q = Y(1)(C � VB)T ((CT C) ~ (BT B))�1(C � VB)YT
(1) . (5)

The last expression of f () in the above equation implies that
the optimal U which minimizes f is the solution of a trace
maximization problem

max tr(UT QU) s.t. UT U = IR1 (6)

that is, U comprises R1 principle eigenvectors of Q. After
updating U, the algorithm updates A using (4).

The factor matrices, V and B, can be updated similarly.
The factor matrix without constraint, e.g., C, is updated using
the ordinary ALS update rule, i.e.,

C = Y(3)(VB � UA)(((UA)T (UA) ~ ((VB)T (VB)))�1

= Y(3)(V ⌦ U)(B � A)((AT A) ~ (BT B))�1

= G(3)(B � A)((AT A) ~ (BT B))�1. (7)

In summary, the update rules for A, B, and C are similar to
the ALS updates for CPD of the tensor G of size R1 ⇥R2 ⇥ I3,
i.e., have lower complexity than those in the ordinary CPD.
However, the updates for U and V demand an extra cost for
the EVD of the matrix Q.
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2.2. Optimal Ranks for Factor Matrices

The ranks of the factor matrices may not always be given.
In this subsection, we derive a more compact model with
the smallest number of parameters so that the rank of fac-
tor matrices UA, VB can be determined automatically based
on an approximation error bound. More specifically, for a
CPD with given rank R, we find a constrained decomposition,
Ŷ = ~UA,VB,C� with the smallest number of parameters,
e.g., we minimize

min (I + R)R1 + (J + R2)R2 + KR
s.t. kY � ~UA,VB,C�k2F  "kYk2F

where 0  " < 1.
Define F = UA. Then rank(F) = R1 and F is solution of

the following rank minimization problem

min rank(F)
s.t. kY(1) � F(C � VB)T k2F  " kYk2F .

Next, we assume that C � VB is of full column rank. De-
note SVD of C�VB = ZDKT , where Z is of size I2I3 ⇥R, K
of size R ⇥ R. By exploiting the identity in (5) and orthogo-
nality of V, the SVD of C�VB is computed through SVD of
a smaller matrix (C � B).

The constraint in the above rank minimization problem
can be rewritten as

kY(1) � F(C � VB)T k2F = kYk2F � kY1Zk2F + kY1Z � FKDk2F
 "kYk2F

Since rank(F) = rank(FKD), we can formulate an equivalent
rank-minimization problem for F̃ = FKD

min rank(F̃)
s.t. kY(1)Z � F̃k2F  kY(1)Zk2F � (1 � ")kYk2F .

It is straightforward to see that the optimal F̃ is achieved
through the truncated SVD of the matrix, Y(1)Z, which obeys
the bound kY(1)Z � F̃k2F  kY1Zk2F � (1 � ")kYk2F

F̃ = USṼT ⇡ Y(1)Z

where S = diag(�1 � �2 � · · · � �R1 ) and the rank R1
is determined as the smallest number of singular values such
that
PR1

r=1 �
2
r � (1 � ")kYk2F >

PR1�1
r=1 �

2
r . In other words, U

comprises the left leading singular vectors of Y(1)Z and

A = SṼT D�1KT (8)

Similar update rule can be derived for V and B.

Remark 1. Factor matrices in the low-rank constrained CPD
can be initialized by full factor matrices in the ordinary CPD,
i.e., U (and V) can first start with an identity matrix of size II .
The rank of the factor matrix UA will be gradually updated to
achieve the smallest model.

Algorithm 1: Low-rank constrained CPD

Input: Y, CP-rank R and an error bound "
Output: Ŷ = ~U1A1,U2A2, . . . ,UNAN�, UT

n Un = IRn

s.t. kY � Ŷk2F  "kYk2F
begin

1 Initialize a rank-R CPD of Y
2 Initialize Un = IIn , n = 1, . . . ,N

for n = 1, . . . ,N do
3 SVD of the Khatri-Rao product

AN � · · · � An+1 � An�1 � · · · � A1 = ZDK
4 T = Y ⇥k,n Uk
5 Update Un from truncated-SVD of

T(n)Z ⇡ UnSVT s.t.
PRn

r=1 �
2
r � (1 � ")kYk2F

6 Update An = SVT D�1KT
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Fig. 2. Decomposition of the Pepper image using LrCPD and
TKD+CPD.

Remark 2. The error bound, "kYk2F, to control the complexity
of the model, can be set to the noise level or the approximation
error of the CPD without constraints.

Remark 3. For the task to reduce the number of parameters
in CPD, the rank R1 <

RI
R+I in order to keep the total number

of parameters of U and A is smaller than that of the full factor
matrix F = UA.

The proposed algorithm can be similarly extended to
higher-order tensors. We skip the detailed derivation and
summarize the pseudo-code of the algorithm in Algorithm 1.
Step-3 computes Khatri-Rao product of all-but-one subfactor
matrices Ak, k , n.

3. EXPERIMENTAL RESULTS

Example 1 The aim of this example is to compare the pro-
posed algorithm to the naive method which first performs
TKD, then CPD of the core tensor of the estimated tensor. We
decompose the Pepper image of size 128 ⇥ 128 ⇥ 3 into three
factor matrices with fixed ranks R1 = R2 = 6 and R3 = 2,
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Fig. 3. (a) Illustration of a Gabor tensor of a handwritten digit image which comprises 8 sub-tensors of Gabor coe�cients in
8 orientations and 4 scale layers, (b)Relative errors in approximation of the Gabor tensors with rank R = 500 using CPD and
LrCPD, (c) Number of parameters in the CPD (white (blank) boxes) and the low-rank constrained CPD shading boxes.

but di↵erent number of columns R = 7, 8, . . .. The parame-
ters in CPD are initialized randomly. Approximation errors
in Fig. 2 show that LrCPD gives a better approximation than
TKD+CPD. Moreover, CPD of the core tensor is sensitive to
the initial values and unstable because the decomposition is
with rank exceeding the tensor dimensions. Its approximation
error does not always decrease with increasing the rank. The
fixed subspaces obtained by TKD are not optimal for the low-
rank constrained CPD. Similar results have been observed for
other values of the ranks R1 = R2.

Example 2 We demonstrate the proposed model’s perfor-
mance, especially the algorithm for the model with factor
ranks optimally determined in Section 2.2. We use the hand-
written digit images in the MNIST dataset. From 100 images
for each digit, which are of size 28 ⇥ 28, we computed their
Gabor features with 8 orientations and 4 scales to yield order-
4 tensors of size 28 ⇥ 28 ⇥ 32 ⇥ 100. The Gabor features of
MNIST handwritten digits can be used to cluster or classify
the digits [26]. A Gabor tensor with 8 orientations of a digit
image is illustrated in Fig 3(a). The CPD and the constrained
CPD with optimal factor ranks decomposed the tensors with
the same ranks R = 200, 400 and 500. Note that for the de-
composition with rank exceeding the dimension, TKD cannot
be used as a compression tool prior to CPD.

For CPD, we ran the ALS algorithm with line search [9]
within 1000 iterations. The obtained tensors were used to ini-
tialize the constrained CPD with optimal ranks for factor ma-
trices. We seek low-rank models for all four-factor matrices.
The approximation error bound for the low-rank constrained
CPD is set to the approximation error attained by CPD, i.e.

" =
kY � Ycpdk2F
kYk2F

.

Because the approximation error in the constrained CPD is
bounded, the newly yielded models will not be worse than
those by CPD. The approximation errors plotted in Fig. 3(b)
even show that we obtained lower approximation errors.

More importantly, the new models have a fewer number of
parameters than the CPD results.

Comparison for the decomposition of tensors for each
digit is provided in Fig. 3(c). Blank bars indicate the num-
ber of parameters in the CPD of a Gabor tensor. Shading
bars show the number of parameters in the constrained CPD.
For the same CP-ranks R = 200, 400, 500, the constrained
CPD yields models with less 5547, 11376, and 14002 pa-
rameters on average for all digits images than the ordinary
CPD, respectively. As an example, the Gabor tensor for
the digit-9 was decomposed with ranks R1 = 15, R2 = 13
and R3 = 29. The rank R4 = 89 for the last mode exceeds
84(= [500 ⇥ 100/600]), hence the last factor matrix was not
factorized.

4. CONCLUSIONS

The proposed method is a novel method of tensor compres-
sion that may be suitable in cases when the tensor itself does
not have a low rank. The number of the parameters can still
be reduced, as we show with MNIST handwritten image
database. Our recent study shows that the combination of
Tucker and CPD can provide lower compression ratios for
compression of ResNet18 while maintaining the accuracy of
the original CNNs [6]. The proposed constrained CPD works
similarly to the TKD-CPD decomposition and can be applied
to CNN compression.
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