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This paper completes the description of the generalized Lorenz system (GLS) and hyperbolic
generalized Lorenz system (HGLS) along with their canonical forms (GLCF, HGLCF), mostly
presented earlier, by deriving explicit state transformation formulas to prove the equivalence
between GLS and GLCF, as well as between HGLS and HGLCF. Consequently, complete for-
mulations of the generalized Lorenz canonical systems and forms, and their hyperbolic settings,
are obtained and presented. Only potentially chaotic systems are classified, which significantly
helps clarify the respective canonical forms. To do so, some tools for systems to exclude chaotic
behavior are developed, which are interesting in their own right for general dynamical systems
theory. The new insight may inspire future investigations of generalized and canonical formula-
tions of some other types of chaotic systems.
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1. Introduction

In this paper, the Generalized Lorenz Canonical
Form (GLCF) of the Generalized Lorenz system
(GLS) is revisited, which was introduced first in
[Čelikovský & Vaněček, 1994] and later in a more
complete fashion in [Čelikovský & Chen, 2002a].
GLS includes many previously and recently studied
chaotic systems, as noted in [Čelikovský & Chen,
2005]. In particular, GLS includes the Chen system
[Chen & Ueta, 1999], Lü system [Lü & Chen, 2002]
and, of course, the celebrated Lorenz system itself
[Lorenz, 1963], which will be referred to as the clas-
sical Lorenz system hereafter.

The discussions below will focus on nontriv-
ial systems, which will be specified later. Roughly
speaking, trivial systems have only trajectories con-
verging to equilibrium, or have unbounded trajec-
tories, which thereby exclude interesting dynamical
phenomena like bifurcation and chaos.

The motivation of this paper is to clarify vari-
ous issues noted during the last two decades since
the first introduction of GLCF in [Čelikovský &
Chen, 2002b], where the derivation of GLCF was
completed for some key parameters in only one side
of their value ranges, relying on some intuitive geo-
metric arguments. Later on, it was realized that
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some options excluded therein to characterize even
nicer single GLCF were not sorted out appropri-
ately. The only algebraic formula relating GLCF to
GLS, obtained in [Čelikovský & Chen, 2005], was
also one-sided with respect to a key parameter, but
along the opposite direction. Notably, it was cor-
rectly argued in [Yang et al., 2006] that, as such,
a complete GLCF family is transformed back into
only a proper subfamily of GLS. These issues will
become clearer as the discussion further develops
below.

The present paper removes all the imperfections
and doubts that might exist and provides rigorous
and explicit formulas for linear transformations and
their inverses that take GLS into GLCF, and vice
versa. It also clearly relates parameters of GLS with
parameters of GLCF, expressing the latter explic-
itly by the former. This was not quite completed
in [Čelikovský & Chen, 2002a], although explicit
expressions of GLS parameters were already given
in [Čelikovský & Chen, 2005] using those of GLCF.
It should be noted, however, that those expressions
were not invertible and therefore cannot be used as
an alternative for the novel treatment of the present
paper.

In addition, this paper provides a canoni-
cal form for some conjugate systems, called the
Hyperbolic Generalized Lorenz System (HGLS) in
[Čelikovský & Chen, 2002b] and [Čelikovský &
Chen, 2005]. This system differs from GLS only by
a single minus sign in its quadratic part, which is
replaced by a plus sign. Originally, this case was
included into GLCF in [Čelikovský & Chen, 2005] as
it covers some missing parameter cases. Neverthe-
less, as will become clearer below, essentially HGLS
has a different structure and some different proper-
ties as compared to GLS.

In the present paper, it will be shown that there
are some nontrivial cases of HGLS that are not cov-
ered by the generic forms derived in [Čelikovský &
Chen, 2005]. For that reason, this paper presents
two separate settings for GLS and HGLS, respec-
tively, besides the above-mentioned GLCF, and a
new but analogous Hyperbolic Generalized Lorenz
Canonical Form (HGLCF). Consequently, a nice
duality-like analogy between the two cases will be
discussed in detail. To prove the triviality of some
cases in both GLS and HGLS, the original tech-
nique is further developed herein, which will also
be of interest in studying the general dynamical sys-
tem theory. Briefly, triviality is inferred by finding

a smooth function (not necessarily a sign-definite
one) having negative definite time derivative along
the system trajectories. Here, one actually may
not conclude any particular property of the respec-
tive system trajectories; instead, it shows that any
bounded trajectory must converge to a fixed point
thereby implying the triviality.

Last but not least, it is noted that this paper
aims to provide precise classifications of a large
family of systems, which have been extensively
studied especially regarding their chaotic attrac-
tors with a lot of analysis and simulations. There-
fore, this paper will only contain classifications and
their mathematical derivations, but not to include
tedious simulations of chaos, bifurcations, oscilla-
tions, stability, and so forth, which can be easily
found from the existing literature.

The rest of the paper is organized as follows.
The next section reviews some concepts and defini-
tions and provides some preliminary results, which
are needed later on and are also of interest on
its own right for studying general dynamical sys-
tems theory. Section 3 presents the main results
about GLCF and HGLCF and their equivalence to
GLS and HGLS, respectively. It also provides bib-
liographical information with detailed comparisons
of complete results. In particular, Sec. 3.4 studies in
subtle detail the special but important case connect-
ing GLCF and HGLCF. Conclusions and research
outlooks are presented in the final section.

2. Definitions and Preliminary
Results

First, recall some concepts and definitions.

Definition 2.1. The generalized Lorenz system
(GLS) is a three-dimensional dynamical system
with real parameters a11, a12, a21, a22, λ3 given in
the following form of ordinary differential equations
(ODEs):

⎡
⎢⎣

ẋ1

ẋ2

ẋ3

⎤
⎥⎦ =

⎡
⎢⎣

a11 a12 0

a21 a22 0

0 0 λ3

⎤
⎥⎦

⎡
⎢⎣

x1

x2

x3

⎤
⎥⎦

+ x1

⎡
⎢⎣
0 0 0

0 0 −1

0 1 0

⎤
⎥⎦

⎡
⎢⎣
x1

x2

x3

⎤
⎥⎦, (1)
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where

a11a22 − a12a21 < 0, a11 + a22 < 0, λ3 < 0.
(2)

Remark 2.1. GLS [(1) and (2)] contains, but more
importantly, generalizes the classical Lorenz sys-
tem, in the sense that it not only includes the classi-
cal Lorenz system with a11 = −σ, a12 = σ, a21 = r,
a22 = −1, λ3 = −b, but also represents all the main
structural features of the classical Lorenz system.
Specifically, system (1) consists of a linear part and
a quadratic part, where the latter is exactly the
same as that of the classical Lorenz system, while
the former has the same block triangular struc-
ture as the classical Lorenz system but the condi-
tions in (2) guarantee that the eigenvalues of the
two-dimensional block-matrix have one being pos-
itive and another being negative. It can be easily
observed that violating any inequality in (2) would
exclude some qualitative “signatures” of the classi-
cal Lorenz system. In fact, system (1) is the largest
possible form that can be considered as a general-
ized Lorenz system in the above sense of structural
features.

As noted in the Introduction, the following
complementary system was already introduced in
[Čelikovský & Chen, 2002b] and [Čelikovský &
Chen, 2005].

Definition 2.2. The Hyperbolic Generalized
Lorenz System (HGLS) is a three-dimensional
dynamical system with real parameters a11, a12,
a21, a22, λ3, described by the following system of
ODEs: ⎡

⎢⎣
ẋ1

ẋ2

ẋ3

⎤
⎥⎦ =

⎡
⎢⎣
a11 a12 0

a21 a22 0

0 0 λ3

⎤
⎥⎦

⎡
⎢⎣
x1

x2

x3

⎤
⎥⎦

+ x1

⎡
⎢⎣
0 0 0

0 0 1

0 1 0

⎤
⎥⎦

⎡
⎢⎣

x1

x2

x3

⎤
⎥⎦, (3)

where

a11a22 − a12a21 < 0, a11 + a22 < 0, λ3 < 0.
(4)

HGLS [(3) and (4)] looks very similar to
[GLS (1) and (2)], with the only sign difference

in a number 1. However, this difference has sig-
nificant consequences. First, some of their attrac-
tors were shown in [Čelikovský & Chen, 2002b]
and [Čelikovský, 2004], which have quite different
appearances. Unlike GLS, the quadratic part here
no longer imposes rotational dynamics, since the
matrix of the quadratic part has a pair of eigen-
values ±1 and, from this perspective, it is named
“hyperbolic”.

Definition 2.3. A dynamical system consisting of
smooth ODEs is said to be trivial if any of its tra-
jectories either is unbounded or converges to an
equilibrium point of the system; otherwise, it is
nontrivial.

Remark 2.2. A trivial dynamical system is never
chaotic, or quasi-periodic, or periodic. As triv-
ial systems are not interesting for studying com-
plex dynamics, they are excluded from the present
study.

The following results are useful to show the triv-
iality of a system. It is one of the main contributions
of the present paper, which may also be useful for
excluding chaotic behavior of a given system if it is
not of interest.

Theorem 1. Consider a smooth dynamical system,
ẋ = f(x), x ∈ R

n, and assume that there exists a
smooth function V (x) satisfying

V̇ (x) ≤ 0, ∀x ∈ R
n, V̇ (x) :=

∂V (x)
∂x

f(x).

Moreover, assume that the largest forward invariant
subset of the set

{x ∈ R
n | V̇ (x) = 0}

is a single point. Then, this system is trivial.

Proof. This can be verified by mimicking the proof
of the well-known LaSalle principle via contra-
diction. Indeed, assume that the system is non-
trivial. Then, by the definition of the nontriv-
iality, there exists a bounded trajectory x(t),
which does not converge to any single point. Con-
sider the time function V (x(t)), where V (x) is
defined in the theorem statements. By assump-
tion, V (x(t)) exists, is smooth, and is bounded
and nonincreasing, therefore converges to a finite
constant. Further, V (x(t)) is equicontinuous, since
x(t) is bounded, so is V̇ (x(t)) due to the smooth-
ness of both f(x) and V (x). As a consequence,
the real scalar function V̇ (x(t)) converges to
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zero.1 Therefore, by the continuity argument, x(t)
converges to the set {x ∈ R

n | V̇ (x) = 0}. According
to the basic theory of dynamical systems it also con-
verges to an invariant set therein, since its ω-limit
set is invariant. Thus, by the theorem assumptions,
x(t) converges to a single point, which is a contra-
diction. This completes the proof. �

The following result can be similarly proved,
which provides a useful tool for excluding chaotic
behaviors of a given dynamical system.

Corollary 2.1. Consider the smooth dynamical sys-
tem ẋ = f(x), x ∈ R

n, and assume that there exists
a smooth function V (x) satisfying

V̇ (x) ≤ 0, ∀x ∈ R
n, V̇ (x) :=

∂V (x)
∂x

f(x).

Assume also that the largest forward invariant sub-
set of the set

{x ∈ R
n | V̇ (x) = 0}

belongs to a two-dimensional smooth embedded
submanifold of R

n. Then, any attractor of the
above system belongs to this smooth manifold and,
therefore, the system cannot generate chaotic behav-
ior by virtue of the well-known Poincaré–Bendixson
theorem.

Remark 2.3. It is important to emphasize that, in
both of the above results, the function V (x) can
be any smooth function, even sign indefinite. As
a matter of fact, typically sign-indefinite functions
are used to prove the triviality of a system. The
celebrated LaSalle invariance principle proves the
asymptotic stability of a system under the same
assumptions as in Theorem 1, with also assumption
that the system may only have bounded behavior.
Nevertheless, to show the latter one usually requires
another positive definite Lyapunov function having
negative semi-definite derivative along the system
trajectories. As a consequence, sign-indefinite func-
tions are rarely applied, when the LaSalle invariance
principle is used to prove the asymptotic stability.
In such a way, although technically Theorem 1 uses
the same arguments as the proof of the LaSalle

invariance principle, it presents a good possibility
to prove the triviality of a system. Even when it is
uncertain whether a particular system trajectory is
bounded or not, Theorem 1 simply shows that the
only option for the trajectory to be bounded is its
convergence to an equilibrium.

Lemma 1. GLS [(1) and (2)] is trivial if a12 = 0,
or a21 = 0, a11 > 0.

Proof

Case 1. a12 = 0. This case is obvious, since the
first equation becomes ẋ1 = a11x1 and a11 �= 0 due
to the first inequality in (2). If a11 < 0, then x1(t)
tends to zero and the remaining components behave
trivially as a linear system. If a11 > 0 and x1(0) �= 0,
then all such system trajectories diverge to infinity.
If x1(0) = 0, then x(t) ≡ 0 and the remaining com-
ponents behave as a linear system.

Case 2. a21 = 0, a11 > 0. This case can be proved
using Theorem 1 with the sign-indefinite function

V (x) =
(−x2

1 + Rx2
2 + Rx2

3)
2

, R > − a2
12

4a11a22
.

Indeed, one has

V̇ = −a11x
2
1 + a12x1x2 + a22Rx2

2 + λ3Rx2
3

−Rx2x1x3 + Rx3x1x2

= −a11x
2
1 + a12x1x2 + a22Rx2

2 + λ3Rx2
3.

Note that a11 > 0 by the lemma assumption. So,
from a11 + a22 < 0 of (2), one has a22 < 0. Also,
λ3 < 0 in (2). Consequently,

V̇ = [x1, x2]
⎢
⎡
⎢⎢⎣
−a11

a12

2

a12

2
Ra22

⎥
⎤
⎥⎥⎦

[
x1

x2

]
+ λ3Rx2

3,

det⎢
⎡
⎢⎢⎣
−a11

a12

2

a12

2
Ra22

⎥
⎤
⎥⎥⎦ = −Ra11a22 − a2

12

4
> 0,

1This is sometimes called Barbalat’s lemma in the control systems’ literature. But in mathematics it was known earlier without
a specific name, which is merely the following property: if the integral of an equicontinuous function φ(t), defined on [t0,∞),
t0 ∈ R, converges to a constant as t → ∞, then limt→∞ φ(t) = 0. Notably, this fact was mentioned in LaSalle’s seminal
paper [LaSalle, 1968], stating for the first time the important result that was called later by others as the LaSalle invariance
principle.
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for the selection of R > −a2
12/(4a11a22). Now, since

−a11 < 0, it follows from the well-known criterion
for negative definiteness of a symmetric matrix, and
λ3 < 0, that V̇ (x) < 0 for all x �= 0. To this end,
applying Theorem 1 leads to the conclusion that
GLS (1) with a21 = 0, a11 > 0, is trivial. �

Lemma 2. HGLS [(3) and (4)] is trivial if a12 = 0,
or a21 = 0, a22 > 0.

Proof

Case 1. a12 = 0. This case is obvious, since the
first equation becomes ẋ1 = a11x1 with a11 �= 0
due to the first inequality of (4) in Definition 2.2. If
a11 < 0, then x1(t) tends to zero while the remain-
ing components behave as a trivial linear system.
If a11 > 0 and x1(0) �= 0, then all system trajecto-
ries diverge to infinity. If x1(0) = 0, then x(t) ≡ 0
and the other components behave as a trivial linear
system.

Case 2. a21 = 0, a22 > 0. This case can be proved
using Theorem 1 with the sign-indefinite function

V (x) =
x2

1 − Rx2
2 + Rx2

3

2
, R > − a2

12

(4a11a22)
.

Indeed, it can be easily verified that

V̇ = a11x
2
1 + a12x1x2 − a22Rx2

2 + λ3Rx2
3

−Rx2x1x3 + Rx3x1x2

= a11x
2
1 + a12x1x2 − a22Rx2

2 + λ3Rx2
3.

Note that a11 < 0 by the lemma assumption of
a22 > 0 and because a11 + a22 < 0 by the second
inequality of (4) in Definition 2.2. Also, λ3 < 0.
Moreover, it follows from the above computations
that

V̇ = [x1, x2]
⎢
⎡
⎢⎢⎣

a11
a12

2

a12

2
−Ra22

⎥
⎤
⎥⎥⎦

[
x1

x2

]
+ λ3Rx2

3,

det⎢
⎡
⎢⎢⎣

a11
a12

2

a12

2
−Ra22

⎥
⎤
⎥⎥⎦ = −Ra11a22 − a2

12

4
> 0,

for the selection of R > −a2
12/(4a11a22). Since

a11 < 0 by the lemma assumption of a22 > 0 and
a11 + a22 < 0 by the second inequality of (4) in
Definition 2.2, using the well-known criterion for

negative definiteness of a symmetric matrix, and
λ3 < 0, one has V̇ (x) < 0 for all x �= 0. To this
end, applying Theorem 1 leads to the conclusion
that HGLS [(3) and (4)] with a21 = 0, a22 > 0, is
trivial. �

To conclude this section, for later convenience,
some notation and properties are summarized from
both GLS [(1) and (2)] and HGLS [(3) and (4)], as
follows:

A =

[
a11 a12

a21 a22

]
, det

[
a11 − λi a12

a21 a22 − λi

]
= 0,

i = 1, 2, λ1 > 0, λ2 < 0, (5)

λ1 =
1
2
{a11 + a22

+
√

(a11 + a22)2 − 4(a11a22 − a12a21)}

=
1
2
{a11 + a22 +

√
(a11 − a22)2 + 4a12a21}

> 0, (6)

λ2 =
1
2
{a11 + a22

−
√

(a11 + a22)2 − 4(a11a22 − a12a21)}

=
1
2
{a11 + a22 −

√
(a11 − a22)2 + 4a12a21}

< 0. (7)

Further, introduce the following key parameter
τ �= −1, defined for both GLS and HGLS, when
a11 �= λ1:

τ := −λ2 − a11

λ1 − a11

=
4a12a21

[a11 − a22 −
√

(a11 − a22)2 + 4a12a21]2
,

τ �= −1, a11 �= λ1. (8)

Note that τ = −1 implies λ1 = λ2, contra-
dicting both definitions of GLS [(1) and (2)] and of
HGLS [(3) and (4)]. Indeed, by the assumptions (2)
and (4), one has λ1 > 0, λ2 < 0. Otherwise, every
value of τ �= −1 can be obtained for some values of
parameters a11, a12, a21, a22 in (8).

3. Main Results

The canonical forms for both GLS and HGLS are
established here. Only nontrivial systems will be
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S. Čelikovský & G. Chen

considered and therefore a12 �= 0 will be assumed
in the sequel by virtue of Lemmas 1 and 2.

Note that, for GLS, the case of a12 �= 0, a21 = 0,
a11 > 0 is trivial by Lemma 1. Thus, by formula (6),
possible nontriviality implies that a11 �= λ1. Indeed,
a11 = λ1 implies by (6) both a12a21 = 0 and
a11 = λ1 > 0. Therefore, the key parameter τ is
always well defined by (8) for nontrivial GLS [(1)
and (2)]. In particular, there exists a nontrivial case
with τ = 0 when a21 = 0 and a11 = λ2, which leads
to the Lü system [Lü & Chen, 2002]. Moreover,
sign(τ) = sign(a12a21), and the GLS with τ > 0
is the classical Lorenz system [Lorenz, 1963], while
the GLS with τ < 0 is the Chen system [Chen &
Ueta, 1999].

Finally, for HGLS, the case of a12 �= 0, a21 = 0,
a22 > 0 is trivial by Lemma 2 as well, with τ = 0
for this case. Yet, the case of a12 �= 0, a21 = 0,
a11 > 0 may not be trivial. This case corresponds
to the hyperbolic Lü system to be discussed fur-
ther later. Since the key parameter τ is not defined
for the hyperbolic Lü system by (8), this case
will be handled separately when deriving respec-
tive canonical forms. Again, for HGLS, one has

sign(τ) = sign(a12a21) and it is natural to call the
case with τ > 0 the hyperbolic Lorenz system, while
the case with τ < 0, the hyperbolic Chen system.

3.1. Transformations of
(hyperbolic) generalized Lorenz
systems

This subsection presents preparatory results giving
unified state transformations of possibly nontriv-
ial GLS and HGLS. Their nontriviality requires,
besides a12 �= 0, one of the following options:

a11 �= λ1 ⇔ a21 �= 0 ∨ (a21 = 0 ∧ a11 < 0), (9)

a11 = λ1 ⇔ a21 = 0 ∧ a11 > 0. (10)

First, consider case (9), for which the following
result is established.

Theorem 2. Consider both GLS [(1) and (2)] and
HGLS [(3) and (4)] with a12 �= 0 and assume (9)
holds. Define a linear change of coordinates from
the original coordinates x ∈ R

n to the new coordi-
nates z ∈ R

3 as follows2:

x = Tz, T = |τ + 1|1/2

⎢⎢⎢

⎡
⎢⎢⎢⎢⎣

1 −1 0

λ1 − a11

a12
−λ2 − a11

a12
0

0 0
λ1 − a11

a12
|τ + 1|1/2

⎥⎥⎥

⎤
⎥⎥⎥⎥⎦
, (11)

z = T−1x, T−1 = (τ + 1)−1|τ + 1|−1/2

⎢⎢⎢⎢

⎡
⎢⎢⎢⎢⎣

τ
a12

λ1 − a11
0

−1
a12

λ1 − a11
0

0 0
a12

λ1 − a11
|τ + 1|−1/2(τ + 1)

⎥⎥⎥⎥

⎤
⎥⎥⎥⎥⎦

. (12)

Then, [(11) and (12)] transform GLS [(1) and (2)] and HGLS [(3) and (4)] together into the following
form: ⎡

⎢⎣
ż1

ż2

ż3

⎤
⎥⎦ =

⎡
⎢⎣

λ1 0 0

0 λ2 0

0 0 λ3

⎤
⎥⎦

⎡
⎢⎣
z1

z2

z3

⎤
⎥⎦ + (z1 − z2)

⎡
⎢⎣

0 0 μ sign(τ + 1)

0 0 μ sign(τ + 1)

1 τ 0

⎤
⎥⎦

⎡
⎢⎣

z1

z2

z3

⎤
⎥⎦, τ �= −1, (13)

where τ, λ1, λ2 are given by (8), (6), (7), respectively, μ = −1 for GLS and μ = 1 for HGLS.

2Here, τ , λ1, λ2 are to be substituted from (8), (6), (7), respectively. In such a way, transformations (11) and (12) are actually
expressed via GLS (1) and HGLS (3) parameters while keeping the formulas in (11) and (12) reasonably short and compact.
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Proof. First, for convenience later, consider a uni-
fied form of both GLS and HGLS:⎡

⎢⎣
ẋ1

ẋ2

ẋ3

⎤
⎥⎦ =

⎡
⎢⎣

a11 a12 0

a21 a22 0

0 0 λ3

⎤
⎥⎦
⎡
⎢⎣

x1

x2

x3

⎤
⎥⎦

+ x1

⎡
⎢⎣

0 0 0

0 0 μ

0 1 0

⎤
⎥⎦
⎡
⎢⎣

x1

x2

x3

⎤
⎥⎦,

a12 �= 0, a11 �= λ1, (14)

which is GLS if μ = −1 and is HGLS if μ = 1.
Recall that a11 �= λ1 as assumed by (9).

Since a11 �= λ1, using x1 = |τ + 1|1/2(z1 −
z2), obtained from (11), and by (14), (11), (12),

one has

ż = T−1ẋ

= T−1

⎡
⎢⎣
a11 a12 0

a21 a22 0

0 0 λ3

⎤
⎥⎦Tz

⎢⎣+ |τ + 1|1/2(z1 − z2)T−1

⎡0 0 0

0 0 μ

0 1 0

⎤
⎥⎦ Tz,

(15)

where |τ + 1|1/2(z1 − z2) is a scalar, therefore
can be moved to the front of the second additive
term.

To evaluate the first additive term in (15), spec-
ify the transform T as follows:

⎡
⎢⎣

a11 a12 0

a21 a22 0

0 0 λ3

⎤
⎥⎦T = |τ + 1|1/2

⎢⎢⎢

⎡
⎢⎢⎢⎢⎣

a11 + λ1 − a11 −a11 − λ2 + a11 0

a21 + a22
λ1 − a11

a12
−a21 − a22

λ2 − a11

a12
0

0 0 λ3
λ1 − a11

a12
|τ + 1|1/2

⎥⎥⎥

⎤
⎥⎥⎥⎥⎦

,

⎡
⎢⎣
a11 a12 0

a21 a22 0

0 0 λ3

⎤
⎥⎦T = |τ + 1|1/2

⎢⎢⎢

⎡
⎢⎢⎢⎢⎣

λ1 −λ2 0

λ1a22 +a21a12 − a11a22

a12

−λ2a22 −a21a12 + a11a22

a12
0

0 0 λ3
λ1 − a11

a12
|τ + 1|1/2

⎥⎥⎥

⎤
⎥⎥⎥⎥⎦
.

Since the sum of all eigenvalues is equal to the trace of the matrix, and their product to the determinant,
one has a11a22 − a21a12 = λ1λ2, a22 − λ2 = λ1 − a11 and a22 − λ1 = λ2 − a11, which together yield

⎡
⎢⎣

a11 a12 0

a21 a22 0

0 0 λ3

⎤
⎥⎦ T = |τ + 1|1/2

⎢⎢⎢

⎡
⎢⎢⎢⎢⎣

λ1 −λ2 0

λ1
−λ2 + a22

a12
λ2

λ1 − a22

a12
0

0 0 λ3
λ1 − a11

a12
|τ + 1|1/2

⎥⎥⎥

⎤
⎥⎥⎥⎥⎦
,

⎡
⎢⎣

a11 a12 0

a21 a22 0

0 0 λ3

⎤
⎥⎦ T = |τ + 1|1/2

⎢⎢⎢

⎡
⎢⎢⎢⎢⎣

λ1 −λ2 0

λ1
λ1 − a11

a12
λ2

a11 − λ2

a12
0

0 0 λ3
λ1 − a11

a12
|τ + 1|1/2

⎥⎥⎥

⎤
⎥⎥⎥⎥⎦

= T

⎡
⎢⎣
λ1 0 0

0 λ2 0

0 0 λ3

⎤
⎥⎦.
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Summarizing the above, by the last several equalities for the first group of terms in (15), one arrives at

T−1

⎡
⎢⎣
a11 a12 0

a21 a22 0

0 0 λ3

⎤
⎥⎦ T =

⎡
⎢⎣
λ1 0 0

0 λ2 0

0 0 λ3

⎤
⎥⎦. (16)

Next, to evaluate the second group of terms in (15), by (11) and (12), one has

T−1

⎡
⎢⎣

0 0 0

0 0 μ

0 1 0

⎤
⎥⎦ T = (τ + 1)−1

⎢⎢⎢⎢

⎡
⎢⎢⎢⎢⎣

τ
a12

λ1 − a11
0

−1
a12

λ1 − a11
0

0 0
a12(τ + 1)
λ1 − a11

|τ + 1|−1/2

⎥⎥⎥⎥

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎣
0 0 0

0 0 μ

0 1 0

⎤
⎥⎦

×
⎢⎢⎢

⎡
⎢⎢⎢⎢⎣

1 −1 0

λ1 − a11

a12
−λ2 − a11

a12
0

0 0
λ1 − a11

a12
|τ + 1|1/2

⎥⎥⎥

⎤
⎥⎥⎥⎥⎦

= (τ + 1)−1

⎢⎢⎢⎢

⎡
⎢⎢⎢⎢⎣

τ
a12

λ1 − a11
0

−1
a12

λ1 − a11
0

0 0
a12(τ + 1)
λ1 − a11

|τ + 1|−1/2

⎥⎥⎥⎥

⎤
⎥⎥⎥⎥⎦

×
⎢⎢⎢

⎡
⎢⎢⎢⎢⎣

0 0 0

0 0 μ
λ1 − a11

a12
|τ + 1|1/2

λ1 − a11

a12
−λ2 − a11

a12
0

⎥⎥⎥

⎤
⎥⎥⎥⎥⎦

= (τ + 1)−1

⎢⎢⎢

⎡
⎢⎢⎢⎣

0 0 μ|τ + 1|1/2

0 0 μ|τ + 1|1/2

|τ + 1|−1/2(τ + 1) −λ2 − a11

λ1 − a11
|τ + 1|−1/2(τ + 1) 0

⎥⎥⎥

⎤
⎥⎥⎥⎦
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=
⎢⎢
⎡
⎢⎢⎢⎣

0 0 μ|τ + 1|−1/2 sign(τ + 1)

0 0 μ|τ + 1|−1/2 sign(τ + 1)

|τ + 1|−1/2 −λ2 − a11

λ1 − a11
|τ + 1|−1/2 0

⎥⎥
⎤
⎥⎥⎥⎦

⎢= |τ + 1|−1/2

⎡
⎢⎣

0 0 μ sign(τ + 1)

0 0 μ sign(τ + 1)

1 τ 0

⎥
⎤
⎥⎦.

The last two equalities are obtained by using

(τ + 1)−1|τ + 1|1/2 = (τ + 1)−1|τ + 1||τ + 1|−1/2

= sign(τ + 1)|τ + 1|−1/2

and using the definition of τ in (8), namely

τ = −λ2 − a11

λ1 − a11
, τ �= −1.

Summarizing the above, along with the previ-
ous several equalities for the second additive group
of terms in (15), one finally obtains

T−1

⎡
⎢⎣
0 0 0

0 0 μ

0 1 0

⎤
⎥⎦T

⎢⎣= |τ + 1|−1/2

⎡
0 0 μ sign(τ + 1)

0 0 μ sign(τ + 1)

1 τ 0

⎤
⎥⎦. (17)

The proof is then completed by substitut-
ing (16) and (17) into (15), which gives (13). �

Second, consider the case of (10). One has the
following result.

Theorem 3. Let a12 �= 0 and assume (10) holds,
i.e. a21 = 0, a11 > 0, a22 < 0. Consider the system⎡

⎢⎣
ẋ1

ẋ2

ẋ3

⎤
⎥⎦ =

⎡
⎢⎣
a11 a12 0

0 a22 0

0 0 λ3

⎤
⎥⎦

⎡
⎢⎣
x1

x2

x3

⎤
⎥⎦

+ x1

⎡
⎢⎣
0 0 0

0 0 μ

0 1 0

⎤
⎥⎦

⎡
⎢⎣
x1

x2

x3

⎤
⎥⎦. (18)

Then, (18) is state-equivalent to the following
system:⎡
⎢⎣
ż1

ż2

ż3

⎤
⎥⎦ =

⎡
⎢⎣

λ1 0 0

0 λ2 0

0 0 λ3

⎤
⎥⎦

⎡
⎢⎣
z1

z2

z3

⎤
⎥⎦

+ (z1 − z2)

⎡
⎢⎣

0 0 μ

0 0 μ

0 1 0

⎤
⎥⎦

⎡
⎢⎣

z1

z2

z3

⎤
⎥⎦, λ1 �= λ2,

(19)

where λ1 = a11, λ2 = a22, and the respective state-
transformations are

x1 = z1 − z2, x2 =
λ1 − λ2

a12
z2,

x3 =
λ1 − λ2

a12
z3,

(20)

z1 = x1 +
a12

λ1 − λ2
x2, z2 =

a12

λ1 − λ2
x2,

z3 =
a12

λ1 − λ2
x3.

(21)

Proof. Recall the theorem assumption of (λ1 = a11,
λ2 = a22). It follows from (18), (20) and (21) that

ż1 = ẋ1 +
a12

λ1 − λ2
ẋ2

= λ1x1 + a12x2 +
a12

λ1 − λ2
(λ2x2 + μx1x3)

= λ1(z1 − z2) + a12
λ1 − λ2

a12
z2 +

a12

λ1 − λ2

×
(

λ2
λ1 − λ2

a12
z2 + μ(z1 − z2)

λ1 − λ2

a12
z3

)

= λ1z1 + μ(z1 − z2)z3,

2150079-9



April 23, 2021 17:33 WSPC/S0218-1274 2150079
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ż2 =
a12

λ1 − λ2
ẋ2

=
a12

λ1 −λ2

(
λ2

λ1 −λ2

a12
z2 + μ(z1 − z2)

λ1 −λ2

a12
z3

)

= λ2z2 + μ(z1 − z2)z3,

ż3 =
a12

λ1 − λ2
ẋ3

=
a12

λ1 − λ2

(
λ3

λ1 − λ2

a12
z3 + (z1 − z2)

λ1 − λ2

a12
z2

)

= λ3z3 + (z1 − z2)z2,

which gives (19). The proof is thus completed.
�

Lemma 3. System (13) with τ < −1 and μ = −1,
or with τ ∈ (−1, 0] and μ = 1, is trivial.

Proof. First, for τ < −1 and μ = −1, one has
μ sign(τ + 1) = 1, and the same equality holds for
τ ∈ (−1, 0] and μ = 1. So, under the lemma assump-
tions, the system (13) becomes⎡

⎢⎣
ż1

ż2

ż3

⎤
⎥⎦ =

⎡
⎢⎣

λ1 0 0

0 λ2 0

0 0 λ3

⎤
⎥⎦

⎡
⎢⎣
z1

z2

z3

⎤
⎥⎦

+ (z1 − z2)

⎡
⎢⎣

0 0 1

0 0 1

1 τ 0

⎤
⎥⎦

⎡
⎢⎣
z1

z2

z3

⎤
⎥⎦.

Next, consider the following sign-indefinite
function:

V (z1, z2, z3) =
(−z2

1 − τz2
2 + z2

3)
2

.

From the above system with V (z1, z2, z3), one
obtains

V̇ = −λ1z
2
1 − λ2τz2

2 + λ3z
2
3

+ (z1 − z2)(−z1z3 − τz2z3 + z1z3 + τz2z3)

= −λ1z
2
1 − λ2τz2

2 + λ3z
2
3.

If τ �= 0 then V̇ < 0 for all [z1, z2, z3]� �= 0,
since λ1 > 0, λ2 < 0, λ3 < 0, τ < 0, and there-
fore λ2τ > 0. By Theorem 1, the system (13) with
τ < −1 and μ = −1, or with τ ∈ (−1, 0) and μ = 1,
is trivial, as claimed.

The case of τ = 0 and μ = 1 can be verified
by similar arguments as the proof of Theorem 1,

since the set V̇ here is given by z1 = z3 = 0
and the dynamics on this set are described by
ż1 = 0, ż2 = λ2z2, ż3 = 0, where λ2 < 0. So, any
bounded trajectory will converge to the set where
the restricted invariant dynamics converge to the
origin; therefore, the bounded trajectory converges
to the origin as well. �

3.2. Generalized Lorenz canonical
form

The canonical form of any nontrivial [GLS (1) and
(2)] is specified by the following theorem.

Theorem 4. Every nontrivial GLS [(1) and (2)] is
state-equivalent, under linear transformation (11)
and (12), to the following Generalized Lorenz
Canonical Form (GLCF ):⎡
⎢⎣

ż1

ż2

ż3

⎤
⎥⎦ =

⎡
⎢⎣

λ1 0 0

0 λ2 0

0 0 λ3

⎤
⎥⎦

⎡
⎢⎣
z1

z2

z3

⎤
⎥⎦

+ (z1 − z2)

⎡
⎢⎣

0 0 −1

0 0 −1

1 τ 0

⎤
⎥⎦

⎡
⎢⎣

z1

z2

z3

⎤
⎥⎦, τ > −1,

(22)

where τ is given by (8), and λ1, λ2 are given
by (6), (7).

Proof. Obviously, a12 �= 0 and (9) should hold; oth-
erwise, GLS is trivial by Lemma 1. Thus, assump-
tions of Theorem 2 are satisfied and GLS is state-
equivalent to (13) with μ = −1. Further, note that
a nonsingular linear change of coordinates of the
system will not affect its triviality and, therefore,
all trivial cases of (13) should be excluded. By
Lemma 3, the cases of (13) with μ = −1, τ < −1 are
trivial, while (13) with μ = −1, τ > −1 gives (22).

�

Remark 3.1. Theorem 4 was partly formulated and
proved in [Čelikovský & Chen, 2002a]. The proof
provided there was rather complicated using some
intuitive geometric arguments without explicitly
showing algebraic state transformations (11) and
(12), which are a new contribution of the present
paper, showing the state-equivalence in a pure alge-
braic fashion and rigorously. Another novelty of the
present paper is the closed-form formulas for the
relations between the parameters of GLS [(1) and
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(2)] and that of its canonical form (22); specifically,
τ is given by (8), and λ1, λ2 by (6), (7), with λ3 < 0.
To be convenient in referring to these in the sequel,
all the formulas are rewritten in a more compact
form as follows:

τ = −(λ2 − a11)(λ1 − a11)−1

= 4a12a21(a11 − a22

−
√

(a11 − a22)2 + 4a12a21)−2,

λ1 =
1
2
(a11 + a22 +

√
(a11 − a22)2 + 4a12a21),

λ2 =
1
2
(a11 + a22 −

√
(a11 − a22)2 + 4a12a21),

λ3 = λ3.

(23)

Recall that nontriviality requires a12 �= 0 and,
meanwhile, either a21 �= 0 or a11 < 0. This ensures
that all divisions in (23) are by nonzero quantities,
as already explained in detail right after (8). Par-
ticular cases of GLS [(1) and (2)] and GLCF (22)
are classified in Table 1.

Remark 3.2. The relations in (23) cannot be one-to-
one, because GLS has five parameters while GLCF
has only four. Nevertheless, in [Čelikovský & Chen,
2005] a “pseudo-inverse” parametric relation was
derived, which takes the parameters of GLCF to
the parameters of GLS, as follows:

a11 = λ1 + (λ2 − λ1)(τ + 1)−1,

a12 = −(λ2 − λ1)(τ + 1)−1,

a21 = (λ1 − λ2) + (λ2 − λ1)(τ + 1)−1,

a22 = λ2 − (λ2 − λ1)(τ + 1)−1,

λ3 = λ3.

(24)

Table 1. Relations between the generalized
Lorenz system and its canonical form.

GLS [(1) and (2)] GLCF (22)

a12 = 0: trivial None
a21 = 0 ∧ a11 ≥ 0: trivial None
a21 = 0 ∧ a11 < 0: Lü system τ = 0
a21a12 > 0: Lorenz system τ > 0
a21a12 < 0: Chen system −1 < τ < 0

Here, “pseudo-inverse” simply means that substi-
tuting a11, a12, a21, a22, λ3 from (24) to the right-
hand side of (23) gives, by straightforward but
tedious computations, the identities λ1 = λ1, λ2 =
λ2, λ3 = λ3, τ = τ . Yet, substituting λ1, λ2, λ3, τ
from (23) to the right-hand side of (24) does not
give, in general, similar identities for the parame-
ters a11, a12, a21, a22, λ3 of the “starting” GLS (1).
Instead, it gives GLS (1) with parameters a11, a12,
a21, a22, λ3 as follows:

a11 = a11, a22 = a22, λ3 = λ3,

a12 = −1
2
(a11 − a22 −

√
(a11 − a22)2 + 4a12a21),

a21 = −2(a11 − a22

−
√

(a11 − a22)2 + 4a12a21)−1a12a21.

(25)

Parameter relations (24), in combination with (11),
(12), give the following state transformation:

x1 = |τ + 1|1/2(z1 − z2),

x2 = |τ + 1|1/2(z1 + τz2),

x3 = |τ + 1|z3,

(26)

z1 = (τ + 1)−1|τ + 1|−1/2(τx1 + x2),

z2 = −(τ + 1)−1|τ + 1|−1/2(x1 − x2),

z3 = |τ + 1|−1x3.

(27)

Note that the state transformation (26) and (27)
depends only on τ , while (11) and (12) include all
parameters of GLS (1).

Remark 3.3. As a side note, the above property may
offer an asymmetric encryption scheme for chaos-
based encryption with the starting parameters of
GLS being used for a private key and the resulting
parameters of GLCF being used for a public key.
Indeed, a single quadruple of the latter parameters
corresponds to infinitely many quintuples of the for-
mer parameters. Moreover, to reconstruct signals of
the original GLS from its GLCF one needs transfor-
mation (11) and (12) requiring, in turn, knowledge
of all GLS parameters. Another application of uti-
lizing such properties is to study the generalized
synchronization of distinct GLS’s. For definition of
the generalized synchronization, including its study
in complex chaotic networks, see e.g. [Lynnyk et al.,
2020] and some references therein.
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3.3. Hyperbolic generalized Lorenz
canonical form

The most important new result of this paper is now
presented. It shows that the canonical form of any
nontrivial HGLS [(3) and (4)] is given by the unified
formulation presented in the following theorem.

Theorem 5. Every nontrivial HGLS [(3) and (4)]
is state-equivalent to the following Hyperbolic Gen-
eralized Lorenz Canonical Form (HGLCF ):⎡
⎢⎣

ż1

ż2

ż3

⎤
⎥⎦ =

⎡
⎢⎣

λ1 0 0

0 λ2 0

0 0 λ3

⎤
⎥⎦

⎡
⎢⎣
z1

z2

z3

⎤
⎥⎦

+ (z1 − z2)

⎡
⎢⎣

0 0 −1

0 0 −1

1 τ 0

⎤
⎥⎦

⎡
⎢⎣

z1

z2

z3

⎤
⎥⎦, τ < −1,

(28)⎡
⎢⎣
ż1

ż2

ż3

⎤
⎥⎦ =

⎡
⎢⎣

λ1 0 0

0 λ2 0

0 0 λ3

⎤
⎥⎦

⎡
⎢⎣
z1

z2

z3

⎤
⎥⎦

+ (z1 − z2)

⎡
⎢⎣

0 0 1

0 0 1

1 τ 0

⎤
⎥⎦
⎡
⎢⎣

z1

z2

z3

⎤
⎥⎦, τ > 0,

(29)⎡
⎢⎣
ż1

ż2

ż3

⎤
⎥⎦ =

⎡
⎢⎣

λ1 0 0

0 λ2 0

0 0 λ3

⎤
⎥⎦

⎡
⎢⎣
z1

z2

z3

⎤
⎥⎦

+ (z1 − z2)

⎡
⎢⎣

0 0 1

0 0 1

0 1 0

⎤
⎥⎦

⎡
⎢⎣
z1

z2

z3

⎤
⎥⎦, (30)

where τ is given by (8) and λ1, λ2 are given by (6),
(7). The cases of (28) and (29) are obtained via a
linear transformation (11) and (12) while the case
of (30) via (20) and (21).

Proof. The result directly follows from Theorems 2,
3 and Lemmas 2, 3, as well as the fact that a non-
singular linear change of coordinates of the system

will not affect its triviality or nontriviality. Indeed,
for (9), applying Theorem 2 for HGLS (μ = 1) and
then using Lemma 3 lead to the conclusion that
only cases of (28) and (29) might be nontrivial. Fur-
thermore, for (10), i.e. a12 �= 0, a21 = 0, a11 > 0,
a22 < 0, Theorem 3 yields (30). The remaining
cases of a12 = 0 or a21 = 0, a22 > 0 are trivial
by Lemma 2. �

Remark 3.4. Note that λ1 = a11 giving the
HGLCF (30) if and only if λ2 = a22, a21 = 0. This
case is referred to as the hyperbolic Lü system, since
its linear part has a similar upper triangular struc-
ture as the Lü system [Lü & Chen, 2002]. Note also
that formula (8), which defines τ , is meaningful only
for λ1 �= a11. For GLS, λ1 �= a11 was guaranteed
by the nontriviality assumption based on Lemma 1.
For HGLS, λ1 = a11 is no longer excluded, which
changes (30) to be HGLCF of the hyperbolic Lü
system.

Table 2 summarizes various cases of HGLS (1)
and relates them to HGLCF. Precise relations
among the parameters of possibly nontrivial cases
of HGLS (3) and HGLCF are the same3 as for GLS,
namely (23).

Remark 3.5. The same precise formulas relating
parameters of HGLS to respective HGLCF apply,
in the same way as detailed for GLS in the previ-
ous subsection. Similarly, the pseudo-inverse trans-
formation (24) of parameters can be applied to
HGLCF as well, including respective coordinate
transformations (26) and (27), depending only on
τ . The only distinction is that HGLCF (30) con-
tains the hyperbolic Lü system (18) via the specific
transformations (20) and (21) respectively.

Table 2. Relations between HGLS and its canonical form
HGLCF.

HGLS (3) HGLCF

a12 = 0: trivial None
a21 = 0 ∧ a22 ≥ 0: trivial None
a21 = 0 ∧ a22 < 0: HGLCF (30): τ = ±∞

hyperbolic Lü system
a21a12 > 0: HGLCF (29), τ > 0

hyperbolic Lorenz system
a21a12 < 0: HGLCF (28), τ < −1

hyperbolic Chen system

3This excludes the hyperbolic Lü system, in which τ does not exist because λ1 = a11. Table 2 includes τ = ±∞, since this
case is approached as λ1 → a11, which gives τ those two limiting “values” in (23).
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Remark 3.6. Another interesting yet challenging
problem remains open. To date, chaotic behaviors
were not found from systems (29) and (30), and it
also seems to be very difficult, if not impossible, to
prove that they are trivial. Therefore, the following
open problem is posted:

Either find some values of parameters −λ2 >
λ1 > −λ3 > 0 and τ > 0 such that systems (29)
and (30) exhibit chaotic behaviors, or prove that
these systems are trivial.

3.4. The special case of τ = −1

The case of τ = −1 was studied before with simu-
lations shown in [Čelikovský, 2004]. However, this
case clearly does not correspond to any of the
canonical forms (22), (28); it neither corresponds
to (1) and (2) nor to (3) and (4). Indeed, τ = −1
only if the matrix A in (5) satisfies λ1 = λ2, which is
excluded by both (2) and (4). Moreover, (13), which
generates (22) and (28), does not allow τ = −1,
regardless of the definition for sign(0). To include
τ = −1 into the context of (22) and (28), one may
recall the following theorem given in [Čelikovský,
2004].

Theorem 6. The following system⎡
⎢⎣
ż1

ż2

ż3

⎤
⎥⎦ =

⎡
⎢⎣

λ1 0 0

0 λ2 0

0 0 λ3

⎤
⎥⎦

⎡
⎢⎣
z1

z2

z3

⎤
⎥⎦

+ (z1 − z2)

⎡
⎢⎣

0 0 −1

0 0 −1

1 −1 0

⎤
⎥⎦

⎡
⎢⎣

z1

z2

z3

⎤
⎥⎦ (31)

is both state- and time-scaling equivalent to the
Shimizu–Morioka model [Shimizu & Morioka, 1976]

dx

dθ
= y,

dy

dθ
= x(1 − z) + λy, (32)

dz

dθ
= −αz + x2,

through the following state transformations and
time scaling :

x = (λ1 − λ2)1/2(−λ1λ2)−3/4(z1 − z2),

y = (λ1 − λ2)1/2(−λ1λ2)−5/4(λ1z1 − λ2z2)1/2,

z = (λ2 − λ1)(λ1λ2)−1z3,

θ = t(−λ1λ2)1/2.

(33)

Here, parameters of (32) and (31) are related via
λ = (λ1 + λ2)(−λ1λ2)−1/2, α = λ3(−λ1λ2)−1/2.

Remark 3.7. The so-called “Liu–Liu–Liu–Liu sys-
tem” [Liu et al., 2004] was shown to be state-
and time-scaling equivalent to the Shimizu–Morioka
model (32) in Corollary 3.4 of [Čelikovský & Chen,
2005].

In view of (13) and the ambiguous specifica-
tion of sign(0) therein, it is reasonable to consider
yet another system possibly including also the case
of τ = −1, in the following form:⎡

⎢⎣
ż1

ż2

ż3

⎤
⎥⎦ =

⎡
⎢⎣

λ1 0 0

0 λ2 0

0 0 λ3

⎤
⎥⎦

⎡
⎢⎣
z1

z2

z3

⎤
⎥⎦

+ (z1 − z2)

⎡
⎢⎣

0 0 1

0 0 1

1 −1 0

⎤
⎥⎦

⎡
⎢⎣

z1

z2

z3

⎤
⎥⎦. (34)

However, this option is not so interesting, as it is a
trivial system. Indeed, one has the following result.

Lemma 4. System (34) is trivial for all cases with
λ1 > 0, λ2 < 0 and λ3 > 0.

Proof. Theorem 1 can be directly applied, with the
function V = (−z2

1 + z2
2 + z2

3)/2, to yield

V̇ = −λ1z
2
1 + λ2z

2
2 + λ3z

2
3 + (z1 − z2)

× (−z1z3 + z2z3 + z3z1 − z3z2)

= −λ1z
2
1 + λ2z

2
2 + λ3z

2
3 < 0,

which holds for all (z1, z2, z3)� �= 0, since λ1 > 0,
λ2 < 0 and λ3 < 0, by the lemma assumption. �

Remark 3.8. Notably, (13) as the unified form equiv-
alent to both GLS (μ = −1) and HGLS (μ = 1)
has ambiguous extensions to the case of τ = −1,
depending on how the signum function is defined at
zero:

If one defines sign(0) = +1, then (13) with τ = −1
becomes (31) for μ = −1 and (34) for μ = 1.
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If one defines sign(0) = −1, then (13) with τ = −1
becomes (34) for μ = −1 and (31) for μ = 1.

Therefore, the situation can be seen as that both
GLS-equivalent systems (with μ = −1) and HGLS-
equivalent systems (with μ = 1) in (13) “shake
hands” at τ = −1. Moreover, since system (34) is
trivial, it is reasonable to relate the case of τ = −1
only to system (31).

In [Čelikovský & Chen, 2005], the following
theorem was established.

Theorem 7. Let τ �= −1. Then, the system⎡
⎢⎣

ż1

ż2

ż3

⎤
⎥⎦ =

⎡
⎢⎣
λ1 0 0

0 λ2 0

0 0 λ3

⎤
⎥⎦
⎡
⎢⎣

z1

z2

z3

⎤
⎥⎦

+ (z1 − z2)

⎡
⎢⎣

0 0 −1

0 0 −1

1 τ 0

⎤
⎥⎦

⎡
⎢⎣
z1

z2

z3

⎤
⎥⎦ (35)

is state-equivalent to the system⎡
⎢⎣

ẋ1

ẋ2

ẋ3

⎤
⎥⎦ =

⎡
⎢⎣

a11 a12 0

a21 a22 0

0 0 λ3

⎤
⎥⎦

⎡
⎢⎣
x1

x2

x3

⎤
⎥⎦

+ x1

⎡
⎢⎣
0 0 0

0 0 −sign(τ + 1)

0 1 0

⎤
⎥⎦

⎡
⎢⎣
x1

x2

x3

⎤
⎥⎦, (36)

where the parameters of (36) are computed from the
parameters of (35) by using formulas (24), and the
state-equivalence transformations are given by (26)
and (27).

As a matter of fact, Theorem 7 seemingly puts
together Theorem 4 and the case (28) of Theorem 5.
Yet, Theorem 7 uses different transformations com-
paring to Theorem 4 and the proof of Theorem 5.

As already noted, the cases of (29) and (30) in
Theorem 5 are newly found, unknown before, which
constitutes the most significant contribution of the
present paper.

Table 3, presented in [Čelikovský & Chen, 2005]
as “Table 1”, is not as interesting as the above
new result, since it does not cover all possible cases
shown in Tables 1 and 2 of this paper. Neverthe-
less, Table 3 is included here for completeness of the

Table 3. Relations between the generalized Lorenz system
and its canonical form.

System (35) Equivalent Systems

τ < −1 HGLS (3) with λ1 < a11

τ = −1 Shimizu-Morioka model
τ ∈ (−1, 0) GLS with a12a21 < 0 ; Chen system
τ = 0 GLS with a21 = 0; Lü system
τ > 0 GLS with a12a21 > 0; classical Lorenz system

presentation, which can also be viewed as a com-
plementary interpretation for Theorems 6 and 7 of
this paper.

It should be noted that Table 1 in [Čelikovský &
Chen, 2005], namely Table 3 of this paper, was cor-
rect but was not appropriately explained, which
refers only to Theorems 6 and 7 in this paper. It
is important to underline that neither Table 1 in
[Čelikovský & Chen, 2005] nor Table 3 here covers
the cases of (29) and (30) in Theorem 5; thereby,
system (35) is not simply referred to as GLCF as
in [Čelikovský & Chen, 2005]. Instead, for a clearer
classification, the present paper has introduced two
separate canonical forms: GLCF and HGLCF.

Now, using Theorems 4 and 5, all tables are
finally fully justified and explained. This is another
new contribution of the present paper.

Finally, it is noted that all cases given in Table 3
allow to quite easily tune and simulate chaotic-like
behaviors [Čelikovský & Chen, 2002a, 2002b; Lü &
Chen, 2002; Čelikovský, 2004]. From this perspec-
tive, the above “open problem” in Remark 3.6 is
indeed a challenging one, since the cases of (29)
and (30) in Theorem 5 are both newly derived cases
in addition to those shown in Table 3.

4. Conclusions

This paper completes the description of the (hyper-
bolic) generalized Lorenz systems and their canoni-
cal forms, presented earlier by Čelikovský and Chen
in their joint papers cited above.

Specifically, this paper derives explicit state
transformations to prove the equivalence between
GLS to GLCF, which was shown in [Čelikovský &
Chen, 2002a] by using geometric arguments. More-
over, it provides complete and rigorous proofs of
a couple of not-so completely justified statements
made in [Čelikovský & Chen, 2005]. Most signif-
icantly, it presents complete formulations of the
generalized Lorenz canonical systems and forms, as
well as their hyperbolic settings.
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This paper also has some interesting by-
products. For example, it shows how to determine
the triviality or nontriviality of a dynamical system,
so as to exclude or include possible chaotic behav-
iors, e.g. in some possibly nontrivial cases of (hyper-
bolic) generalized Lorenz systems. It moreover
shows precise relations to the previously suggested
limiting parameter transformations, with the possi-
bility for designing asymmetric encryption schemes
for chaos-based encryption. Another possible appli-
cation is to use the parameter redundancy and
“pseudo-inverse” parameter relation given by (24)
to develop generalized synchronization in chaotic
networks [Lynnyk et al., 2020].

It is expected that this paper offers some
insightful ideas and methodologies that could
inspire future investigations of generalized and
canonical formulations of some other types of
nonlinear dynamical systems, especially chaotic
systems.
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