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Abstract— The non-fragile control of complex network with
delayed controls is proposed. The control is designed using the
linear matrix inequalities with application of the descriptor
approach. The system is stabilized even in presence of per-
turbations of the control gain. Moreover, the time delay of
the inputs can be varying, the derivative of the time delay is
not bounded. This makes the proposed algorithm applicable to
the networked control of large-scale systems. The results are
illustrated by example.

I. INTRODUCTION

The problem of controlling networks of interconnected
systems is often met in practice. As such networks cannot
be controlled in a centralized manner, decentralized control
laws were proposed, see e.g. [1], [2]. This paper is focused
on the control problem of complex networks composed of
identical subsystems; these networks are also often encoun-
tered ([3], [4] or others). The goal is to design a control law
that is identical for each subsystem and for any particular
subsystem, the controller uses information about state of
this subsystem only, the control does not depend on the
state of other subsystems. Hence the control law must be
robust enough to mitigate the effects of the interconnections
as explained e.g. in [5] or [6], among others. Usually, the
algorithms are formulated using linear matrix inequalities
(LMI).

However, this is not the only effect making the control
design challenging. Control of large-scale networks usually
required to utilize communication networks for transmitting
signals from sensors to the controller or from the controller to
the actuators. This allows for a cost-effective implementation
of the control strategy but also poses some difficulties. The
transmitted signals may be delayed, e.g. due to the packet
dropouts, hence the control law must be able to stabilize the
system under fast-varying time-varying time delay, see e.g.
[7], [8] or [9] where the Razumikhin functional is used to
derive the control law. In the recent time, application of the
descriptor approach (e.g. [10]) delivered promising results,
such as in [11] for nonlinear networks of interconnected
systems. Application of the sampled control of large-scale
systems is studied in [12]. Other factor to be taken into
account is quantization of signals as discussed in [13], among
others.

If a large number of controllers are to be used, it is
natural to assume that not all of them have exactly the
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same properties. Also, some variations in the controller
might happen. Hence the need for a control law able to
tolerate certain changes in the controller gain. One of the
possibilities is to use additive perturbations, e.g. in [14],
[15] or multiplicative ones as in [16], [17]; these are also
considered in this paper.
Purpose of this paper
• An algorithm for stabilization of an interconnected

network composed of identical systems with delayed
controls is presented,

• Non-fragile control law is proposed allowing for con-
troller gain changes and its perturbations,

• The time delay changes can be rapid, thus the algorithm
is applicable for systems with sampled control.

Notation:
1) If P is a square symmetric positive definite matrix, then

we write P > 0.
2) In symmetric matrices, the elements below the diago-

nal are not written explicitly, they are replaced by an
asterix:

(
a b

bT c

)
=
(

a b
∗ c

)
.

3) Where no confusion can arise, the time argument t may
be omitted for brevity, the time delay is written using
subscript: x = x(t), x(t − τ) = xτ(t) = xτ . If the time
argument is different from t, it is written in full.

4) The symbol Im denotes the m-dimensional identity
matrix.

5) The symbol ‖.‖ denotes the Euclidean norm (even for
matrices).

6) The symbol ⊗ stands for the Kronecker product.

II. PROBLEM SETTING

In this paper, we deal with a complex network (large-
scale system) composed of N identical subsystems (nodes).
This network is defined as follows: First, let A, Ã ∈ Rn×n,
B ∈ Rn×m, G ∈ Rn×q.

For every i = 1, . . . ,N the ith subsystem is described as

ẋi =Axi +Bui +
N

∑
j=1

li jÃx j +Gwi, (1)

xi(0) =xi,0. (2)

Here, xi(t) ∈ Rn is the state of the ith subsystem, the distur-
bance is denoted by wi(t)∈ Rq. The matrix L = (li j)∈ RN×N

is called interconnection matrix. Its elements are defined as
follows: li j=1 if there is a connection directly from the jth
to the ith subsystem, otherwise li j = 0.

Remark II.1. There is some similarity of the large-scale
systems control to the synchronization of multi-agent systems.
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It uses analogous mathematical tools methods and notations.
Still, the problems are not identical. The control of large-
scale systems has this characteristic feature: the control
action of one particular subsystem is computed only from
the state of this subsystem. In contrast, for synchronization
of complex networks, the control is computed from the sum of
differences between the state of this node and the neighboring
nodes. The coupling of the subsystems in the large-scale
interconnected system is represented by matrix Ã which
has no counterpart in the case of complex networks. The
notion of the disagreement vector has no sense for the large-
scale systems. On top of that, the couplings in the large-
scale interconnected system are representations of physical
interconnections of the subsystems. More can be found in
[18]. Let us also not an important distinctive feature between
the multi-agent systems and interconnected networks with
time delays. If the time delays are not equal, then, in general,
the synchronization error in the multi-agent system may not
converge to zero ([19], [20], [21], [22]) while, as shown e.g.
in [11], stabilization of the interconnected network can still
be achieved if delays in the subsystems are not equal.

Assumption II.2. The interconnection matrix L is symmet-
ric. Moreover, we assume that lii = 0 for each i = 1, . . . ,N.

This assumption implies that matrix L has N real eigenval-
ues with multiplicity 1 and its eigenvectors are orthogonal:
there exists an orthogonal matrix T ∈ RN×N and a diagonal
matrix D so that

L = T T DT. (3)

As eigenvalues of matrix L are real, we can write without
loss of generality D = diag(d1, . . . ,dN) and d1 ≤ ·· · ≤ dN ,
di ∈ R.

Assumption II.3. There exists a constant τ̄ > 0 and mea-
surable functions τi : [0,∞)→ [0, τ̄].

These functions are used to express the time delays.
Assume there are matrices DK ∈ Rm×µ , EK ∈ Rµ×n and an

N-tuple of measurable matrix-valued functions Fi,K : [0,∞)→
Rµ×µ , i = 1, . . . ,N so that, for every t ∈ [0,∞) and every
i = 1, . . . ,N holds ‖Fi(t)‖ ≤ 1.

The goal is to find a matrix K ∈ Rm×n so that the control
laws given by

ui = (Im +DKFi,KEK)Kxτi (4)

stabilizes the overall system for any (unknown) set of
functions Fi. Let x = (xT

1 , . . . ,x
T
N)

T , w = (wT
1 , . . . ,w

T
N)

T , x̃ =
(xT

1,τ1
, . . . ,xT

N,τN
)T and u = (uT

1 , . . . ,u
T
N)

T . Then the N-tuple
of subsystems (1) can be written compactly as

ẋ =(IN⊗A)x+(L⊗ Ã)x+(IN⊗B)u+(IN⊗G)w. (5)

System (5) is called the overall system. With the control law
(4), one can write

ẋ =(IN⊗ (A+BK))x+(L⊗ Ã)x+(IN⊗BK)x̃

+(IN⊗BDK)diag(F1,K(t), . . . ,FN,K(t))(IN⊗EKK)x̃

+(IN⊗G)w. (6)

III. H∞ CONTROL AND NON-FRAGILE CONTROL FOR
DELAYED SYSTEMS

Our investigations are based on the following result (for
its proof, see [23], Proposition 5.3)

Theorem III.1. Consider the system

ζ̇ = A ζ +BK ζτ +G ω (7)

where A ∈ Rn×n, B ∈ Rn×m, K ∈ Rm×n, G ∈ Rn×q, the
time delay τ satisfies Assumption II.3. Let there exist n×n-
dimensional matrices P > 0, Q nonsingular, R > 0, S > 0
and M , a m×n-dimensional matrix Y and scalars γ > 0
and ε > 0. Assume also matrix Ω given as

Ω11 =A T Q+QT A −R+S ,

Ω12 =P−QT + εA T QT ,

Ω22 =− ε(Q+QT )+ τ̄
2R,

Ω33 =− (R+S ),

Ω14 =BY +R−M ,

Ω44 =−2R+M +M T ,

Ω =


Ω11 Ω12 M Ω14 G QT

∗ Ω22 0 εBY εG 0
∗ ∗ Ω33 R−M T 0 0
∗ ∗ ∗ Ω44 0 0
∗ ∗ ∗ ∗ −γIq 0
∗ ∗ ∗ ∗ ∗ −In


satisfies

Ω < 0 (8)

and, moreover, let (
−R M
∗ −R

)
< 0. (9)

Let also
K = Y Q−1. (10)

Then, system (7) is H∞-stable.

Remark III.2. The proof is given in [23] as Proposition 5.3.
The cited version corresponds precisely to this proposition.
Note that there is only one delay τ . As the topic of this
paper are multidimensional systems, a MIMO version of this
theorem is necessary. However, inspection of the proof in
[23] reveals that this generalization is quite straightforward.
Hence it is not presented here for the space reasons.

Remark III.3. Under H∞-stability of system (7), the fol-
lowing is understood: If w = 0 for all t ∈ [0,∞) then (7) is
asymptotically stable. If, on the other hand, if ζ (t) = 0 for
all t ∈ [−τ̄,0], then ‖ζ‖ ≤ γ‖w‖.

Now let us focus attention on the case when the control
gain matrix is subject to perturbations. To be specific, assume
there are matrices DK ∈ Rn×p and EK ∈ Rp×n and a mea-
surable matrix-valued function F : [0,∞)→ Rp×p satisfying
‖F (t)‖ ≤ 1 for all t ∈ [0,∞). Finally, the control gain matrix
can be expressed as the sum of a constant term (called
nominal control gain, denoted by K0) and a perturbation,
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hence it is time-dependent. The multiplicative perturbation
will be used here:

K (t) = (Im +DKF (t)EK)K0. (11)

This implies that matrix Y is also time-dependent. From
(10) follows that

Y (t) = (Im +DKF (t)EK)Y0 (12)

where Y0 = K0Q
−1. Substituting this into the definition of

matrix Ω leads to the definition of a matrix valued function
Ω′(t). To be specific, the time varying terms appear on the
positions (1,4) and (2,4). Let

Ω
′
14(t) =BY0 +BDKF (t)EKY0 +R−M ,

Ω
′
24(t) =εBY0 + εBDKF (t)EKY0,

Ω
′(t) =


Ω11 Ω12 M Ω′14(t) G QT

∗ Ω22 0 Ω′24(t) εG 0
∗ ∗ Ω33 R−M T 0 0
∗ ∗ ∗ Ω44 0 0
∗ ∗ ∗ ∗ −γIn 0
∗ ∗ ∗ ∗ ∗ −In


Define the following matrices:

Ω
′
11 =Ω11 +λBDKDT

K BT ,

Ω
′
12 =Ω12 +λεBDKDT

K BT ,

Ω
′
14 =BY0 +R−M ,

Ω
′
22 =Ω22 +λε

2BDKDT
K BT ,

Ω
′
44 =Ω44 +

1
λ

Y T
0 E T

K EKY0.

Proposition III.4. With matrices B, DK etc. defined above,
the following LMI holds for every λ > 0:Ω11 Ω12 Ω′14(t)

∗ Ω22 Ω′24(t)
∗ ∗ Ω44

≤
Ω′11 Ω′12 Ω′14
∗ Ω′22 εBY0
∗ ∗ Ω′44


Proof. Simple application of the Young inequality.

The following corollary of this proposition will be useful:
first, matrix Ω′′ as:

Ω
′′ =


Ω′11 Ω′12 BY0 +R−M 0
∗ Ω′22 εBY0 0
∗ ∗ Ω′44 Y T

0 E T
K

∗ ∗ ∗ −λ Ip


Corollary III.5. Under the above assumptions, the following
implication holds for all t ∈ [0,∞):

Ω
′′ < 0⇒Ω

′(t)< 0 (13)

Proof. Application of the Schur complement to the right-
hand side of the LMI in Proposition III.4.

Define now the following matrix:

Ω
′′′ =

Ω′11 Ω′12 M Ω′14 G QT 0
∗ Ω′22 0 εBY0 εG 0 0
∗ ∗ Ω33 R−M T 0 0 0
∗ ∗ ∗ Ω44 0 0 Y T

0 E T
K

∗ ∗ ∗ ∗ −γIq 0 0
∗ ∗ ∗ ∗ ∗ −In 0
∗ ∗ ∗ ∗ ∗ ∗ −λ Ip


.

Then, combining Theorem III.1 with Corollary III.5, one
obtains the following lemma:

Lemma III.6. Consider the system (7) where A ∈ Rn×n,
B ∈ Rn×m, K ∈ Rm×n, G ∈ Rn×q, the time delay τ satisfies
Assumption II.3. Let there exist n×n-dimensional matrices
P > 0, Q nonsingular, R > 0, S > 0 and M , a m×n-
dimensional matrix Y and scalars γ > 0, λ > 0 and ε > 0.
Assume there exist matrices DK ∈ Rn×p and EK ∈ Rp×m such
that the control gain satisfies (4) with some matrix-valued
function F satisfying ‖F (t)‖ ≤ 1 for all t ∈ [0,∞). Denote
also Y0 = K0Q

−1. Let also

Ω
′′′ < 0, (14)(

−R M
∗ −R

)
< 0. (15)

Then system (7) is H∞-stable.

IV. NON-FRAGILE CONTROL OF LARGE-SCALE
INTERCONNECTED SYSTEMS

Results of the previous section will be applied to the
overall system (6). Note that, up to the term L⊗ Ã and the
uncertainty in the control gain, all other matrices can be
expressed as the Kronecker product of the identity matrix IN
with another matrix. Hence matrices P , Q, R, S , M and
Y0 will also be supposed to attain this form.

Assume there exist n× n-dimensional matrices P, Q, R,
S and M and a m× n-dimensional matrix Y0. With these
matrices, define matrix Γ as follows: in matrix Ω′′′, replace
matrix A by the matrix IN⊗A+L⊗ Ã, B by IN⊗B, G by
IN⊗G, DK by IN⊗DK , EK by IN⊗EK , P by IN⊗P, Q by
IN⊗Q, R by IN⊗R, S by IN⊗S, M by IN⊗M and finally
Y0 by IN⊗Y0. Substitute also nN for n and Nµ for p.

Then, the immediate consequence of Lemma III.6 is

Lemma IV.1. Consider system (6) satisfying Assumption
II.3. Assume there exist n× n-dimensional matrices P > 0,
R > 0, S > 0, Q nonsingular and M, a m× n-dimensional
matrix Y0 and scalars λ > 0, γ > 0 and ε > 0 so that

Γ <0, (16)(
−(IN⊗R) (IN⊗M)
∗ −(IN⊗R)

)
<0. (17)

Then system (6) is H∞ stable with control gain K = Y0Q.

Proof. This is a reformulation of Lemma III.6 for the in-
terconnected system (6), the terms IN ⊗BK and IN ⊗EKK
can be rewritten as (IN⊗B)(IN⊗K) and (IN⊗EK)(IN⊗K),
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respectively. Hence the control gain matrix in (6) is IN ⊗K
which equals (IN⊗Y0)(IN⊗Q) = IN⊗Y0Q.

The LMI problem formulated in Lemma IV.1 can be used
for obtaining the stabilizing control. However, the size of this
set of LMIs is rather large: it is proportional to the number
of subsystems. This number will be reduced in the sequel.

For this reduction, two cases of interconnections will be
distinguished. First, a rather special case is the “symmetri-
cally interconnected system” - this means, every subsystem
is connected with every other subsystem. In this case, as [1],
Chapter 12 shows that, with matrix T ′ defined as

T ′ =
1
N


N−1 −1 . . . −1 −1
−1 N−1 . . . −1 −1

...
...

. . .
...

...
−1 −1 . . . N−1 −1
1 1 . . . 1 1

 , (18)

the following relation holds for the interconnection matrix
L:

L = T ′−1diag(−1, . . . ,−1︸ ︷︷ ︸
N−1 times

,N−1)T ′ (19)

Thanks to the properties of the Kronecker product, one
sees that

(T ′⊗ In)
−1(IN⊗A+L⊗ Ã)(T ′⊗ In) =

IN⊗A+diag(−1, . . . ,−1︸ ︷︷ ︸
N−1 times

,N−1)⊗ Ã. (20)

Hence the term IN ⊗A+L⊗ Ã is transformed into a block-
diagonal matrix.

A similar procedure can be conducted if the intercon-
nections satisfy (3) but are not, in general, symmetrically
connected. Then

(T ⊗ In)
−1(IN⊗A+L⊗ Ã)(T ⊗ In) = IN⊗A+D⊗ Ã. (21)

Again, this procedure converts the state matrix into a block-
diagonal form.

Remark IV.2. Note that the symmetrically interconnected
systems also satisfy condition (3). However, it is worth to
point out that a special case of the transformation matrix
T is applicable in this case. First reason is that using
the transformation matrix in form (18) avoids the need to
compute the eigenvalues of matrix L. The second one is that
an alternative formulation can exhibit different properties
in terms of feasibility of the resulting set of LMI, yields a
different value of the constant γ , etc. Hence, it can be useful
to consider both options for a symmetrically interconnected
system.

V. REDUCING THE DIMENSION OF THE LMI
OPTIMIZATION PROBLEM

As noted in the previous section, there are two ways how
to diagonalize matrix L, one being applicable only for the
symmetrically interconnected systems. Denote as D = D if
the more general way based on eigenvalues computations

of matrix L is chosen; if the system is symmetrically in-
terconnected and this special structure is utilized, then let
D= diag(−1, . . . ,−1︸ ︷︷ ︸

N−1 times

,N−1). Analogously, define T as T = T

in the first case and T = T ′ if one uses the symmetrical
interconnection structure.

Either way, one has

(T−1⊗ In)(L⊗ Ã)(T ⊗ In) = (D⊗ In). (22)

Define matrix Γ from matrix Ω′′′ as follows: replace matrix
A by IN⊗A+D⊗ Ã, the other substitutions are the same as
in the definition of matrix Γ. Define also matrix T as
T = diag(T ⊗ In,T ⊗ In,T ⊗ In,T ⊗ In,T ⊗ Iq,T ⊗ In,T ⊗ Iµ).
Then

T−1
ΓT= Γ. (23)

To proceed further, let us define the following matrix-
valued functions:

Λ11(d) =(A+dÃ)T Q+QT (A+dÃ)−R+S+λBDKDT
KBT ,

Λ12(d) =P−QT + ε(A+dÃ)T QT +λεBDKDT
KBT ,

and matrices

Λ14 =BY0 +R−M,

Λ22 =− ε(Q+QT )+ τ̄
2R+λε

2BDKDT
KBT ,

Λ33 =− (R+S),

Λ44 =−2R+M+MT

and finally the matrix-valued function Λ by

Λ(d) =

Λ11(d) Λ12(d) M Λ14 G QT 0
∗ Λ22 0 εBY0 εG 0 0
∗ ∗ Λ33 R−MT 0 0 0
∗ ∗ ∗ Λ44 0 0 Y T

0 ET
K

∗ ∗ ∗ ∗ −γIq 0 0
∗ ∗ ∗ ∗ ∗ −In 0
∗ ∗ ∗ ∗ ∗ ∗ −λ Iµ


.

Consider now the case when D = D. Then there exists a
permutation matrix Π so that

Π
T

ΓΠ = diag(Λ(d1), . . . ,Λ(dN)). (24)

If the special structure of the symmetrically connected sys-
tems is used, then a permutation matrix Π′ exists so that

Π
′T

ΓΠ
′ = diag(Λ(−1), . . . ,Λ(−1)︸ ︷︷ ︸

N−1 times

,Λ(N−1)). (25)

Note that function Λ(d) is convex in d. Thus, either way,
eqs. (24) and (25) show that it is sufficient to verify negative
definiteness of Λ(d) for only two values of d: for d = d1
and d = dN in the “general” case while it is sufficient
to investigate for Λ(−1) and Λ(N − 1) if one uses the
symmetrical interconnection structure.

For completeness, note that validity of (9) is guaranteed
by the LMI (

−R M
∗ −R

)
< 0. (26)
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To sum up, the results can be formulated in form of the
following theorem:

Theorem V.1. Consider system (6) satisfying Assumption
II.3. Let also Assumption II.2 holds. If there exist n× n-
dimensional matrices P > 0, R > 0, S > 0, Q nonsingular
and M, a m× n-dimensional matrix Y0 and scalars λ > 0,
γ > 0 and ε > 0 so that at least one of the following sets of
conditions is valid:

1)

0 >Λ(d1), (27)
0 >Λ(dN), (28)

0 >

(
−R M
∗ −R

)
, (29)

2) the system is symmetrically interconnected and

0 >Λ(−1), (30)
0 >Λ(N−1), (31)

0 >

(
−R M
∗ −R

)
. (32)

Then the system is H∞-stable if every subsystem is fed by the
control (4) with K =Y0Q−1 even in presence of multiplicative
perturbations of the control gain given by the term DKFi,KEK .

Remark V.2. Usually, it is required that influence of the
disturbance w on the controlled system is minimized, hence
one can add the optimization objective

minimize γ (33)

to the set of LMIs (27 - 29), resp. (30 - 32) in Theorem V.1.

Remark V.3. As noted above, the proof of this theorem
relies upon a MIMO version of Proposition 5.3 of [23].
Since this generalization of the aforementioned Proposition
is straightforward we do not present its proof here. The main
change is to reformulate the Lyapunov-Krasovskii functionals
as a sum of N “sub-functionals” each of which is acting on
one subsystem only. Then, one can easily see that unequal
delays in different subsystems do not matter.

VI. EXAMPLE

Consider the large-scale network composed of 10 identical
subsystems (nodes). Every subsystem is a linear oscillator,
the subsystems are interconnected:

ẋ1,i =x2,i, ẋ2,i =−x1,i +ui +wi +Ii

where wi denotes the perturbation and the term Ii describes
the interconnections. This term is defined as follows:

Ii =0.1(x1,i−1 + x1,i+1) for i = 2, . . . ,9,
I1 =0.1(x1,2 + x1,10) for i = 1,

I10 =0.1(x1,1 + x1,9) for i = 10.

Hence the subsystems are interconnected in a circular (ring)
topology, see Fig. VI. Ring topology is one of the possible

topology of complex network [24]; synchronization of com-
plex networks with ring topology is studied rigorously by
authors in [25], [26], [27], [28]. From this interconnection

54321

678910

Fig. 1. Connection of subsystems (nodes).

follows that the interconnection matrix L has eigenvalues in
the interval [−2,2]. Without control, the overall intercon-
nected network is unstable.

The control is delayed, the delays at the subsystems are
time-varying, with τi ∈ [0,0.3]s, the changes of the time
delay can be rapid (there is no limit on the derivative of
the time delay). In the example, all the time delays have the
sawtooth shape with derivative of the delay being 1 up to
the points where the time delay is discontinuous. Moreover,
the control gain matrices are perturbed. To be specific, the
nominal control gain is designed so that stabilization of the
plant is guaranteed if it is perturbed up to 20% of its nominal
value. Hence, in (4), we set DK = 1, EK = 0.2.

LMIs (27)-(29) from Theorem V.1 with inclusion of the
minimization objective (33) yields the solution of the LMI
optimization problem as K0 = (0.1770, −1.301) while for
the disturbance attenuation constant holds γ = 244.

The initial conditions of the first state were randomly
selected within the interval [−1,1], the second state was zero
in all subsystems at the beginning of the simulations. The
control gain multiplicative perturbations were also random
within the allowed bounds.

Fig. 2 shows the state x1 of the first subsystem (solid line),
third subsystem (longdash-shortdash line), sixth subsystem
(dashed line) and ninth subsystem (dash-dot line). The con-
trol signals for this selection of subsystems is depicted in
Fig. 3, meaning the line types remains unchanged. One can
see oscillations in the control signals. They are caused by
time varying disturbances in the control gain. The norm of
vector x of the controlled network is shown in Fig. 4.

VII. CONCLUSIONS

An algorithm for stabilization of a network composed of
identical subsystems was presented. The controls of each
subsystem can be delayed, the delays are not equal in every
subsystem but they have to obey a common bound. The
derivative of the time delay is not supposed to be bounded,
hence this algorithm is capable of dealing with networked
control. Moreover, the control gain can be perturbed within
given bounds, hence the proposed control law is non-fragile.
This was achieved by adapting the descriptor approach to the
case of a large network.
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