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Abstract: The common goal of systems pharmacology, i.e. systems biology
applied to the field of pharmacology, is to rely less on trial and error in de-
signing an input-output systems, e.g. therapeutic schedules. In this paper we
present, on the paradigmatic example of a regulatory network of drug-induced
enzyme production, the further development of the study published by Duin-
tjer Tebbens et al. (2019) in the Applications of Mathematics. Here, the key
feature is that the nonlinear model in form of an ODE system is controlled
(or periodically forced) by an input signal being a drug intake. Our aim is
to test the model features under both periodic and nonrecurring dosing, and
eventually to provide an innovative method for a parameter estimation based
on the periodic dosing response measurement.
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1. Introduction

The physiologically-based pharmacokinetic (PBPK) and pharmacodynamic mod-
els aim to provide time-profiles of the concentrations of the involved substances, e.g.
drugs, receptors, mRNA, metabolizing enzymes, in several parts of the body. Usu-
ally, this is done using compartmental models where it is assumed that substance
concentrations are distributed homogeneously over the entire compartment [7]. The
relevant processes are described based on chemical law of mass action and others
bio-physical laws, taking finally the form of non-linear ordinary differential equa-
tions (ODEs), whose size is at least equal to the total number of substances (further
denoted as state variables).

A well known bottleneck hindering the use of such mathematical models is that
not all the model parameters are available (in our case these include permeability
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coefficients, elimination and production rates, etc.). Consequently, parameter esti-
mation is an integral part of the systems pharmacology modeling process.

The goal of this paper is to highlight some new aspects related to the in silico
computer modeling and simulations involved in PBPK models. On a model intro-
duced by Luke et al. [3] and further developed by Duintjer Tebbens et al. [7], we shall
demonstrate the feasibility of an innovative method for a parameter estimation. In
the next section, this model is described in detail. Section 3 presents related numer-
ical experiments, discusses relevance of our results and possible consequences of the
analysis for more general cases. The last section concludes our work and points out
some future goals.

2. The network of drug-induced enzyme production

We continue in direction of papers devoted to mathematical models describing
the drug-induced enzyme production networks, see [3, 7] and references within there.
In this study, we present the problem of output regulation via a periodic drug intake.

The model for the action of pregnane X receptor (PXR) causing the xenobiotic
(drug) metabolizing enzyme induction is schematically given in Fig. 1. In Table 1
and Table 2, we briefly describe the individual processes it displays and individual
substances – state variables involved, respectively. For more detailed description,
the readers are referred to [7]. Let us comment, that some features of this process
are similar to the well known enzyme kinetics (when an enzyme E acts on another
chemical, so-called substrate S, producing a product P ), see e.g. [6]. However,
here, for a regulatory network containing transcription–translation reactions, the
conservation property can not be applied as it is the case for (bio)chemical networks,
let us see the series of articles of E. Bohl and I. Marek [1, 2, 4].

Figure 1: Graph representation of the network associated to a drug metabolism
and the PXR-mediated drug-induced enzyme production process. Species nodes
(identified by letters) are drawn as circles and reaction nodes identified by numbers
represent reactions and transport between species nodes. Grey species nodes are not
involved in the ODE system here presented.
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No. Description of the respective process within the network Parameters
1 Xenobiotic (e.g. drug rifampicin) enters the cell (by permeation) k1

2 PXR binds to drug, formation of PR dimer (reversible) k2, k4

3 PR dimer binds to DNA (increasing transcription) k5

4 mRNA background production k7

5 mRNA degradation k6

6 translation of mRNA (CYP3A4 production) k8

7 degradation of CYP3A4 protein k9

8 drug degradation (metabolizing by CYP3A4) k3

Table 1: The transport and reaction processes description with respective model
parameters.

No. Description of the respective state variable Old name
1 Xenobiotic (drug) concentration – exterior Xext

2 Xenobiotic concentration – interior Xint

3 PR dimer concentration PR
4 mRNA concentration mRNA
5 CYP3A4 protein concentration CYP3A4

Table 2: The description of model state variables.

Introducing the new notation for state variables, i.e. for a size five vector x
according to

x(t) =


x1(t)
x2(t)
x3(t)
x4(t)
x5(t)

 ≡


Xext(t)
Xint(t)
PR(t)

mRNA(t)
CYP3A4(t)

 ,

then the system of differential equations describing the process under study can be
written as follows

dx(t)

dt
=


x′1(t)
x′2(t)
x′3(t)
x′4(t)
x′5(t)

 = Ax(t) +B(t) +


ad(t)

0
0
0
0

 , (1)

with the constant matrix (the linear part of the system)

A =


−k1 k1 0 0 0
k1 −(k1 + k2kSP ) k4 0 0
0 k2kSP −k4 0 0
0 0 k5 −k6 0
0 0 0 k8 −k9

 , (2)

91



and the vector representing nonlinear (quadratic) and constant (zero order) parts

B(t) =


0

k2 · x2(t) · x3(t)− k3 · x2(t) · x5(t)
−k2 · x2(t) · x3(t)

k7

0

 ; (3)

the initial conditions are

x(0) =


x1(0)
x2(0)
x3(0)
x4(0)
x5(0)

 =


0
0
0
k7
k6

k7k8
k6k9

 . (4)

Elsewhere, e.g. in [7], the initial condition x1(0) represented the amount of drug
just after initially applied dose (x1(0) = 10 µM). Here, the input (drug dosing)
is modeled via a periodic function, and the initial state of drug concentration is
the steady state without dosing, i.e. x1(0) = 0; the other components of initial
state remain the same, i.e. x4(0) = k7

k6
= 7.075 · 10−6µM and x5(0) = k7k8

k6k9
=

6.55 · 10−2µM , which are the steady (initial) state concentrations for mRNA and
CYP3A4, respectively.

Remark 1: Our setting of the input variable, i.e. using a dosing function is
more general than it is made otherwise, e.g. in [3], where the dosing function d(t) is
not used. Instead, the administered dose is incorporated by putting the initial value
of Xext to equal this dose (thus, it is only the Cauchy initial value problem which can
be analysed).

Remark 2: Assume the input is nonzero in a finite interval. Then the state
of (1) converges to a finite value. This value depends on the input. Since (1) is not
linear, this dependence is nonlinear as well. For inputs with a constant value the
limit value of the state x4 is depicted in Fig. 2. The magnitude of the input is on the
x-axis. One can see that, for larger input values, the growth of the limit value of the
state x4 gets slower. From this, one can infer that using a linear model, where this
dependence is inevitably linear, may not be precise enough to obtain satisfactory
results.

3. Model parameters estimation

The model parameters in the resulting dynamical system (1), comprised in ma-
trices (2)–(3), are the rate constants which can be taken from previously published
papers; their values are reported in the following Table 3.
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Figure 2: Dose dependent induction of mRNA (state variable x4) in the absence or
presence (1, 2, 5, 10, 15, 20 µM) of drug rifampicin (on the x-axis).

JDT-Param. Value Unit Source New name
kup 6.55 · 10−3 min−1 Luke k1

kassoc kdis/5.6 µM−1min−1 Svecova k2

kmRNA 39.3 min−1 Luke k5

kmRNA,deg 0.04 min−1 Luke k6

kcyp 2.5 min−1 Luke k8

kcyp,deg 2.7 · 10−4 min−1 Luke k9

kmet 2.47 · 10−5 µM−1min−1 Luke k3

kdis 1.03 · 10−4 min−1 Luke k4

kmRNA,back 1.36·10−7 µM min−1 JDT2019 k7

sPXR 9.31 · 10−7 µM JDT2019 kSP
d(t) 0– 20 µMmin−1 Luke&JDT ad(t)
aper 0– 20 µM dose per period aper

Table 3: The values of model parameters.

Here the function ad(t) represents the dosing rate (units [µM/min]) of drug added
into the system, and kup[1/min] is the first order diffusion coefficient encompassing
the permeability coefficient and area of the membrane, kassoc [1/min], and kdis [1/min]
are corresponding association, and dissociation constants, respectively. An impor-
tant parameter (shown in [7]) is the total concentration (binded and free) of PXR,
i.e., sPXR, here denoted as kSP [µM ].

Values of some parameters ki, i = 1, . . . , 9 cannot be easily obtained. In this
section, an algorithm for estimation of the parameter k3 is described. A similar
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procedure can be developed for the estimation of the parameters k4 and k5. Let us
briefly introduce the procedure: The response of the system to the periodic input (the
periodic dosing) converges to a periodic function. Hence, with a small error, one can
apply the fast Fourier analysis on the response of the system. However, the results
of the FFT are dependent on the parameter k3. Nevertheless, the function that
describes the relation between the value of the parameter k3 and these coefficients
can be approximated. Another fact that needs to be taken into account is a limited
availability of certain quantities: only the values of the function x4 are measurable.

Estimation of the parameter k3 – algorithm description

Now the procedure is described in a more detailed way. First, we make the
following assumption:

Assumption: Assume that the value of the parameter k3 lies in the interval
[k3,min, k3,max] ⊂ [0,∞).

As we are going to deal with solutions of (1) (especially with x4) with different
values of k3 in the subsequent text, the following notation will be useful.

Notation: Let k ∈ [k3,min, k3,max]. Denote by x4,k the solution x4 of (1) with the
parameter k3 satisfying k3 = k.

Choose an integer N > 1 and define a sequence {ki3 | i = 1, . . . , N} so that

k
(1)
3 = k3,min, k

(N)
3 = k3,max and k

(i)
3 < k

(i+1)
3 for all i = 1, . . . , N − 1.

Assume also that the response of the periodic function ad(t) and (4) converges to
a periodic signal with the period denoted by T . This period is determined only by the
period of the input (the dosing) and is independent of the value of the constant k3.
Hence, for a pre-selected ε > 0 there exists t > 0 so that |x

4,k
(i)
3

(τ)−x
4,k

(i)
3

(τ+mT )| ≤
ε for every m ∈ N, τ ≥ t and every i = 1, . . . N .

Let t > 0 be as above. For every i = 1, . . . , N define x̄i = x
4,k

(i)
3
|[t,t+T ]. Then, an

integer M > 0 is chosen and for every i, the FFT is applied to the sequence x̄i(tj)
where

tj = t+
T

M − 1
(j − 1), j = 1, . . . ,M. (5)

For every i, the result is a sequence of Fourier coefficients ξi,j ∈ C, i = 1, . . . , N ,
j = 1, . . .M .

The next step is to apply the polynomial interpolation of coefficients ξi,j. This
means, for every j = 1, . . . ,M , real-valued polynomials of one real variable pr,j(κ),
pi,j(κ) are sought so that

N∑
i′=1

‖pr,j(k(i′)
3 ) + ipi,j(k

(i′)
3 )− ξi′,j)‖2 (6)

is minimal. The order of the interpolating polynomials must be determined a-priori.
The above procedure is carried out using simulations, hence it does not require

any experimental data. However, if experimental data (denoted as x4) with the
same period of dosing are available, one can estimate the parameter k3 governing the
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experimental system as follows: taking equal value of t as it was used in simulations,
let us denote x̄ = x4|[t,t+T ]. Then, apply the FFT on the sequence x̄(tj) where the
points tj satisfy (5). Denote the result of this application of the FFT by ξj

Then, one searches for a parameter k ∈ [k3,min, k3,max] so that

M∑
j=1

‖pr,j(k) + ipi,j(k)− ξj‖2 (7)

is minimized.

Numerical example

Let us demonstrate the algorithm on the following example having some similar-
ities with our work [5]. First, for the purpose of this paragraph, denote by k3,nom

the value 2.47 × 10−5 which is the value of the parameter k3 in Table 3. It will be
called the “nominal value”. Then, the simulations were computed for 10 different
values of the parameter k3 (thus i = 10), namely for 0.25k3,nom, 0.5k3,nom, 0.75k3,nom,
0.8k3,nom, k3,nom, 1.05k3,nom, 1.25k3,nom, 1.5k3,nom, 1.75k3,nom and finally 2k3,nom. In
all these computations the input was periodic with the period T = 1 day. The dosing
was approximated by a sine curve with the amplitude of 1

21600
with the added con-

stant 1
21600

(hence the dosage attains values between 0 and 1
10800

). The simulations
were conducted in the software package Simulink.

After inspecting the simulations, it was chosen t = 4 days, hence the restrictions
of the solutions of (1) on the interval corresponding to the fifth day were used to
obtain the Fourier coefficients.

For the sake of illustration, Fig. 3 shows the real part (top) and imaginary parts
(bottom) of coefficients ξ4,j (corresponding to k3 = 0.8k3,nom) and ξ7,j (corresponding
to k3 = 1.25k3,nom). The total number of Fourier coefficients for one value of i
was M = 144.

This choice requires to find 288 polynomials approximating both real and imag-
inary parts of all 144 Fourier coefficients. The way how to choose the number of
Fourier coefficients used for estimation of the parameter k3 will be investigated in
the near future. It turned out that a suitable choice was to use polynomials of
third order. As no real-world data were available, the value k3 = 0.9× k3,nom which
is 90% of the value from Table 3 was used to emulate the measured values. A simu-
lation with this value was conducted. Again, the restriction of the function x4 on the
interval corresponding to the fifth day was used to obtain the Fourier coefficients.

Then the minimization algorithm with the cost functional defined by (7) was
started. Here, the minimization was computed with help of the function fminsearch
which is a part of the Matlab package. The algorithm yields as a resulting value
k3 = 0.894×k3,nom. How the iterations converge to this value illustrates Fig. 4. The
number of iteration is on the x-axis while the resulting value of k3 (expressed as the
multiple of k3,nom) is on the y-axis. It can be seen that the convergence is quite fast,
the minimization procedure yields the resulting value after 20 iterations.
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Figure 3: The real part (top) and imaginary parts (bottom) of Fourier coefficients
ξ4,j corresponding to k3 = 0.8k3,nom (marked by ×) and ξ7,j which correspond to
k3 = 1.25k3,nom (marked by +). The second index j (in ξi,j) refers to the Fourier
coefficient number (in x-axis).
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Figure 4: Minimization of the functional (7).

4. Conclusion

Resuming, on the paradigmatic example of rifampicin metabolism and the PXR-
mediated Xenobiotic Metabolizing Enzyme (XME) induction process, we exposed
an appealing tool of control engineering applied to systems biology, i.e. regulation
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based on periodic input signal, being the xenobiotic (drug rifampicin) dosing. After
testing the model features under both periodic and nonrecurring dosing, we finally
proposed an innovative method for a parameter estimation based on the periodic
dosing response measurement.

Though the final goal for future work, to provide an input-output regulation using
an exosystem, which can be further used for an optimization of drug delivery, is out
of reach for the moment, we made a first step that might contribute to its realization.
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mation in an in vitro compartmental model for drug-induced enzyme production
in pharmacotherapy. Applications of Mathematics 64 (2019), 253–277.

97


		webmaster@dml.cz
	2021-05-06T14:58:31+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




