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Abstract— This paper discusses synchronization of a network
composed of agents that are nonlinear and minimum phase.
The main tool is feedback linearization. The results are applied
to the problem of synchronization of a network composed of
Hindmarsh-Rose neurons. Using the developed scheme, it is
demonstrated that synchronization is achieved by considering
the membrane potential only, the fact that the neuron is
a minimum-phase nonlinear system implies that the other
states are synchronized as well. The results are illustrated by
simulations.

I. INTRODUCTION

A. Synchronization in the network

The network is a representation of the physical system
or structure [5]. Complex networks (CN) have been inten-
sively studied during the last several decades. The complex
network is usually represented by the graph consisting of
the nodes (vertices) interconnected by the links (edges) in
a certain topology (structure). Most of the real-world and
man-made systems can be described by CN, e.g. communi-
cation networks, social networks, metabolic networks, neural
networks, collaboration networks, economic networks, food
webs, electric power grids, etc. Commonly, the research
of the complex networks was provided via classical graph
theory and random graph theory introduced by [11], but
these basics were extended during the last two decades.
Additionally, there has been an increasing interest in the
synchronization between nodes of the complex networks.
Synchronization is a significant phenomenon in nature and
it is generally understood as a collective state of coupled
systems [4]. Indeed, it is one of the simplest types of the
collective dynamics of the interconnected systems. Studies
of the identical (complete) synchronization of the coupled
systems were started by the papers [13], [29] and the analysis
of the synchronization phenomena between interconnected
chaotic systems was started thanks to the paper [28]. In
case of the identical synchronization (IS), the states of the
interconnected systems to be synchronized should mutually
converge each to other. Besides the IS approach, many other
kinds of synchronizations of the coupled chaotic systems
have been introduced recently [48], [19], [20], [21], [30]. The
quality and the speed of the synchronization of the coupled
systems depend not only on the structure of the network
but also on the presence of different types of disturbances in
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the communication channels, e.g. the limited-band data erase
[1], time delays [37], [35], quantization [34] etc. Presence
of heterogeneous (not equal throughout the network) time
delays has impact on the ability to reach full synchronization
as shown in [38], [37], [39], [43]. The general knowledge
about different types of synchronization between coupled
chaotic systems and complex networks can be found in
review [3] and the books [6], [4].

B. Synchronization of neurons

Neurons exhibit a wide range of complex behavior, this
even in dependence of external input - the external current
of ions. The neuron can rest in a quiescent state if the influx
current is small, then it starts to exhibit periodic spikes. With
increasing of this current, number of spikes during one period
can increase. With further increase of this current, chaotic
behavior is observed. For further details see e.g. [24], [26].
A full understanding of these phenomena is still not achieved,
however, it seems to be of crucial importance for recognizing
causes and proposing of treatment for various health issues
like epileptic attacks, Parkinson disease etc. as well as for
obtaining a thorough insight of neural system function.

To understand function of a neuron, several models were
introduced. As the first one we mention the Hodgkin-Huxley
model [16]. This describes the function of a neuron quite
accurately but is prohibitively complicated so that its use is
limited. On the other hand, the Fitzhugh-Nagumo (FN) [12],
[25] neuronal model is quite simple at the cost of inaccu-
rately illustrating some important phenomena like bursting.
A compromise is the Hindmarsh-Rose (HR) neuron [15] with
ability of fairly precise description of the neuron’s functions
without the need for extremely complicated computations
when modeling a network composed of such neurons. For
a thorough description of bifurcations and oscillatory and
chaotic phenomena occurring in the HR neuron, see [26],
[24] among others.

Synchronization of a neuronal network is a principal
property for its function. Hence it is thoroughly studied.
Synchronization of a neuronal network with a linear feed-
back is presented in [8], master-slave synchronization of
two HR neurons is described in [27]. On the other hand,
nonlinear coupling functions for chaotic synchonization of
HR neuronal models are used in e.g. [7], [14], [10], [50],
[49] investigates enhancement of synchronization by using a
memristor. Synchronization of a network composed of HR
neurons is studied in [2] and coupling by a magnetic flux
is investigated in [22]. Adaptive synchronization allowing to
adjust values of some parameters of the model is presented

2021 29th Mediterranean Conference on Control and Automation (MED)
June 22-25, 2021. Bari, Puglia, Italy

978-0-7381-1098-1/21/$31.00 ©2021 IEEE 1086



e.g. in [45] and of general chaotic systems in [23]. It
is noteworthy that interconnection topology of the neural
network has influence on the firing pattern of the neurons
as pointed out e.g. in [51].

For synchronization of neurons, it is necessary to apply the
methods for synchronization of nonlinear systems. Methods
based on the exact feedback linearization include those
presented in [41], [36], [40]. It is shown there that the
complex network can be synchronized even if the nodes
have a nontrivial zero dynamics, if the nodes are minimum-
phase systems. This follows from the ideas stemming from
the output regulation theory [31], [42] or [44]. Sometimes
the neurons are assumed to exhibit time delay. This results
in the fact that they are described as nonlinear time delay
systems, often with polynomial nonlinearity. To deal with
such systems, the sum-of-squares method can be practical
[32], [33].

The inverse process to synchronization of a neural net-
work is its desynchronization. Here, synchronization of the
originally synchronized network is terminated by acting of
an external force or changing some parameters. This is also
a very important problem as pathologically strong synchro-
nization is connected with some neurological diseases. Let us
name few results: desynchronization of stochastic HR neuron
by an external perturbation is studied in [9], [17].

All the above papers were devoted to synchronization of
a network composed of identical neurons. Contrary to this,
[30] deals with synchronization of a heterogeneous networks
of FN neurons.

C. Purpose of this paper

Synchronization of a network composed of HR neurons
using the exact feedback linearization is presented in this
paper. This theory was applied to general complex networks
in [41] and further extended to systems with delays in [36],
[40]. As noted in these papers, the dealing with the multi-
agent systems composed of nonlinear subsytems is some-
what similar to the output regulation problem of nonlinear
systems [42], [31]. The method yields results better than
merely approximating the nonlinearities by a linear function
(modeling them as uncertainties of a linear system) as it
allows to match them quite precisely. This is reflected in
a larger domain of states where the algorithm yields good
results. It can be seen that the HR neuron satisfies the
minimum-phase requirement so the aforementioned method
presented in [41] is suitable for application to the problem
of synchronization of a network composed of HR neurons.
Hence this paper was written to demonstrate capabilities of
this method to synchronization of a practical system with a
complex behavior. On the other hand, behavior of complex
networks composed of neurons is still not a fully understood
issue, hence it is a contribution to this area.

II. GRAPH THEORY

The interconnection of the neurons is described by a graph
in the following way: assume the neurons are denoted by
numbers 1, . . . ,N. Define V = {1, . . . ,N} (this set is called

the set of nodes) and the set of edges E ⊂ V × V as
(i, j) ∈ E ) if there exists a connection from node i to node
j. Translated onto the neuronal network terminology, this
means that neuron number i sends signals to neuron j. It is
assumed (i, i) 6∈ E for any i∈ V - no neuron sends signals to
itself. The graph G is defined as a pair G =(V ,E ). For graph
G we define the Laplacian matrix L ∈RN×N as follows: for
i, j ∈ {1, . . . ,N}, i 6= j one defines Li, j = −1 if ( j, i) ∈ E ,
otherwise Li, j = 0. Moreover, Li,i =−∑

N
j=1,i 6= j Li, j.

It is assumed there exists one neuron i0 such that for any
j ∈ V , i0 6= j there exists a path in G from i0 to j but there
is no path from j to i0. Such a node is called the leader.
In our framework, it is a neuron whose behavior should all
other neurons mimic.

Define also matrix L̄ ∈ R(N−1)×(N−1) by removing the i0th
row and column from the matrix L . Paper [46], [47] prove
that there matrix L̄ has eigenvalues with positive real part
and there exists a diagonal matrix D = diag(d1, . . . ,dN) with
di > 0 so that DL̄+ L̄T D > 0. For the space reasons, we will
mostly assume that matrix L has simple real eigenvalues.
The proof of the case when eigenvalues are real but with
multiplicity greater of 1 is technically more demanding.
Here, procedure from [52] can be used. The results obtained
by this procedure are the same as mentioned here. The case
of complex conjugated eigenvalues is mentioned later in the
text.

III. EXACT FEEDBACK LINEARIZATION

A very useful tool for control of nonlinear systems is
the so-called exact feedback linearization. It has became
a classical tool for nonlinear control design so far and is
thoroughly described in [18]. Consider the system

ẋ = f (x)+g(x)u, x(0) = x0, y = h(x) (1)

where f : Rn → Rn, g : Rn → R are sufficiently smooth
(this requirement will be precised later) functions satisfying
f (0) = 0, h(0) = 0.

Lie derivative of function h along the vector field f is
defined as

L f (h)(x) = (
∂h
∂x1

(x), . . . ,
∂h
∂xn

(x)). f (x). (2)

Moreover, the kth-order Lie derivative is defined as follows:
L1

f h = L f h, if k > 1 and Lk−1
f h is defined, then Lk

f h =

L f (Lk−1
f h).

We assume system (1) has relative degree r. This means,
there exists an integer r ≤ n such that

1) LgLr−1
f h(x)(0) 6= 0,

2) for all j = 1, . . . ,r−2 holds LgL j
f h(x)(0) = 0.

Define the transformation ξ = T (x) as follows:

ξ1 =h(x),

ξ2 =L f h(x),
...

ξr =L(r−1)
f h(x)
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and for j = r+1, . . . ,n we define

ξ j = x j. (3)

Moreover, define also functions F , G by F(ξ ) =

L(r)
f h(T −1(x)), G(ξ ) = LgL(r−1)

f (T −1(x)). Let also
η = (ξ1, . . . ,ξr)

T , ζ = (ξr+1, ξ̇n)
T and ϕ(η ,ζ ) =

( fr+1(T
−1(x)), . . . , fn(T −1(x))).

In the transformed coordinates, system (1) attains the form

y =ξ1,

ξ̇1 =ξ2,

...

ξ̇r−1 =ξr,

ξ̇r =F(ξ )+G(ξ )u,

ζ̇ =ϕ(η ,ζ ).

Defining
v = F(ξ )+G(ξ )u, (4)

the transformed system can be written as

η̇ =


0 1 0 . . . 0 0
0 0 1 . . . 0 0

...
...

0 0 0 . . . 0 1
0 0 0 . . . 0 0

η +


0
...
0
1

v, (5)

ζ̇ =ϕ(η ,ζ ), (6)
y =ξ1. (7)

The system (5) will be called the observable part while
system (6) is the unobservable part.

Note that even a more general form with function ϕ

depending on the control input u can be defined but for our
purpose, this formulation is sufficient.

IV. NEURONAL MODEL

As explained in [27], the HR neuron is described by the
following nonlinear system:

ẋ1 =ax2
1− x3

1 + x2− x3 + I, (8)

ẋ2 =1+bx2
1− x2, (9)

ẋ3 =c(x1 +1.56)−0.006x3. (10)

The constants attain the following values:

a 3
b -5
c -0.024
I 1.25

TABLE I
VALUES OF PARAMETERS OF THE HR NEURONAL MODEL

The meaning of the variables is as follows: x1 is the
membrane potential, x2 stands for the recovery variable
associated with the fast current of the Na+ and/or K+ ions,

x3 is the adaptation variable associated with the slow current
of Ca+ ions, finally I is the external current.

It is noteworthy that behavior of the HR neuron varies
significantly in dependence on the external current. For
example, for I > 3.25, one can observe a periodic spiking.
Chaotic behavior is exhibited for I ∈ (2.75,3.25). For I <
2.75, periodic bursting is observed, however, for I < 1.14,
the quiescent state appears.

As the coupling is done through the variable x1, we set
y= x1. Then proceeding as in the previous section, we define
ξi = xi, F(ξ1,ξ2,ξ3) =−aξ 2

1 −ξ 3
1 +ξ2−ξ3. Moreover, η =

ξ1, ζ = (ξ2,ξ3)
T . The zero dynamics reads

ϕ̃(ζ ) =

(
−ζ1

−0.006ζ2

)
. (11)

As one can see from (11), the system has exponentially stable
zero dynamics (it is a exponentially minimum-phase system;
for further details, see [18]). Hence the synchronization
algorithm described in [41] can be used.

The problem solved here is more general than synchro-
nization of a pair of neurons as mentioned in [27] as not
only a pair of neurons but a connected neuronal network is
synchronized.

The ith neuron with coupling is described as

ẋ1,i =ax2
1,i− x3

1,i + x2,i− x3,i + I +ui, (12)

ẋ2,i =1+bx2
1,i− x2,i, (13)

ẋ3,i =c(x1,i +1.56)−0.006x3,i (14)

where ui is the input signal guaranteeing synchronization. It
is assumed to be in form

ui =−F(xi)+ k ∑
j∈Ni

(x1, j− x1,i). (15)

with coupling gain k. Here, the coupling gain k which must
be designed comes into play. It describes the strength of
coupling between neuronal pairs. It is assumed to be constant
throughout the network. If we denote ηi = ξ1,i then control
of the ith neuron after the transformation (4) turns into

vi = k ∑
j∈Ni

(η j−ηi).

Then, the observable part of the ith neuron in the neuronal
model after feedback linearization reads

η̇i = k ∑
i∈Ni

(η j−ηi). (16)

To write it compactly, for the observable parts holds (with
η = (η1, . . . ,ηN)

T ):
η̇ = kLη . (17)

V. SYNCHRONIZATION OF A NETWORK COMPOSED OF
HR NEURONS

Obviously, the problem of synchronization of a network
composed of neurons (12-14) boils down to the problem of
synchronization of a network of a multi-agent systems where
the agents admit exact feedback linearization in form (5,6).
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This problem has already been solved, method developed in
[41] will be used here.

Lemma V.1. The system (17) is stabilized for k < 0.

As mentioned above, matrix L has eigenvalues with pos-
itive real part. Let matrices D, T (T nonsingular) satisfy
L = T−1DT and D is the real Jordan canonical form of L.
Then, with η ′ = T η , system (17) is converted into η̇ ′ =
kDη ′, hence the result.

Denote δ = 1
2 (dN−d1), d̄ = 1

2 (d1 +dN).
The unobservable part is not controlled. However, as

shown in [41], since it is asymptotically stable, its syn-
chronization is achieved. In the aforementioned paper, the
proof of convergence is formulated for nonlinear functions
ϕ . However, as in the case of the HR neuron, this function is
linear, the result holds globally and is simplified. The direct
counterpart of Theorem 5.4 in [41] is

Lemma V.2. Under assumption of Lemma V.1, the unbserv-
able part of the neurons described by (12-14) is synchro-
nized.

For the sake of completeness, a sketch of the proof is
presented here. First, let ζi = (ξ2,i,ξ3,i)

T . From (11) follows
that

ζ̇i− ζ̇i0 =

(
−1 0
0 −0.006

)
(ζi−ζi0)+

(
−(ηi−ηi0)
c(ηi−ηi0)

)
. (18)

From Lemma V.1 follows that limt→∞ ‖ηi−ηi0‖ = 0. This
and exponential stability of the zero dynamics imply also
limt→∞ ‖ζi−ζi0‖= 0.

Thus, we have

Theorem V.3. Under assumptions of the Lemma V.1 and V.2,
if the control input is defined as

ui =−F(xi)+ k ∑
j∈Ni

(x1, j− x1,i).

then limt→∞ ‖xi− xi0‖= 0.

This is a direct consequence of the previous lemmata and
the fact that the exact feedback linearization together with
the control input transformation (4) is a diffeomorphism.

VI. SIMULATIONS

A network of 6 neurons was used for simulations with
neuron 1 being the leader. All parameters were as in Table
I. The interconnection of the neurons is depicted in Fig. 1.

654321

Fig. 1. Connection of neurons.

The corresponding matrix L has eigenvalues
4.1149, 3.6180, 0.1392, 1.3820, 1.7459. Hence d̄ = 2.2
and δ = 2.
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Fig. 2. Master neuron

Use k = 4.8932 as this coupling gain guarantees stability
of (17). The state trajectories of the master neuron on a large
time scale are shown in Fig. 2.

Comparison of the corresponding variables is shown in
Figs 3 - 5. The solid line shows the corresponding state of the
neuron 4 while the dotted line depicts the leader’s state. One
can see that the spikes are not precisely tracked, however,
the times of the spikes and their overall shape is well copied.

Norm of errors e1 =
(

∑
6
i=2 ‖x1,i − x1,1‖2

) 1
2
, e2 =(

∑
6
i=2 ‖x2,i − x2,1‖2

) 1
2

and e3 =
(

∑
6
i=2 ‖x3,i − x3,1‖2

) 1
2

is
shown in Fig. 6. One can see that, apart from the points
where the spike occurs, the state is well synchronized.

VII. CONCLUSIONS

Synchronization of a neuronal network composed of
Hindmarsh-Rose neurons was considered in this paper. To
synchronize the neurons, the method based on the feedback
linearization was used. It is shown that all three components
of the neuron model are synchronized.

In future, robust synchronization of the neuronal network
as well as the case of delayed coupling will be investigated.
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[11] P. Erdös and A. Rényi. On the evolution of random graphs.
Publications of the Mathematical Institute of the Hungarian Academy
of Sciences, 5:17–61, 1960.

[12] R. FitzHugh. Impulses and physiological states in theoretical models
of nerve membrane. Biophysical Journal, 1(6):445 – 466, 1961.

[13] H. Fujisaka and T. Yamada. Stability theory of synchronized motion in
coupled-oscillator systems. Progress of Theoretical Physics, 69(1):32–
47, 1983.

[14] I. T. Hettiarachchi, S. Lakshmanan, A. Bhatti, C. P. Lim, M. Prakash,
P. Balasubramaniam, and S. Nahavandi. Chaotic synchronization of
time-delay coupled hindmarsh–rose neurons via nonlinear control.
Nonlinear Dynamics, 86:1249 – 1262, 2016.

[15] J.L. Hindmarsh and R.M. Rose. A model of neuronal bursting using
three coupled first order differential equations. Proceedings of the
Royal Society of London. Series B, Containing papers of a Biological
character. Royal Society (Great Britain), 221(1222):87–102, 1984.

[16] A. L. Hodgkin and A.F. Huxley. A quantitative description of
membrane current and its application to conduction and excitation
in nerve. The Journal of physiology, 117:500 – 544, 1952.

[17] S. Huang, J. Zhang, M. Wang, and C.-K. Hu. Firing patterns transition
and desynchronization induced by time delay in neural networks.
Physica A: Statistical Mechanics and its Applications, 499:88 – 97,
2018.

[18] H. Khalil. Nonlinear systems. Prentice Hall, New Jersey, 2001.
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