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Abstract: To solve the discrete nonlinear observer problem, it is necessary to find a solution of
a certain functional equation. The existence conditions of this functional equation have already
been well established, nevertheless, they are rather restrictive. Moreover, less attention was paid
to the design of numerical methods to find its solution. In this paper, the approximation of the
solution using the finite difference method is presented. From the theoretical point of view, this
method has milder assumptions. The algorithm is thoroughly described and attention is paid
to numerical aspects. The method is illustrated by an example.
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1. INTRODUCTION

Observer problem for nonlinear systems is an important
problem in the modern control theory. This is since in
many practical applications, all quantities necessary for
regulation are not directly measurable.

While the observer problem for linear systems has been
successfully solved in the past, observers for nonlinear
systems are still subject to investigation. There are several
approaches: one can approximate the nonlinearity by a
linear function, then handle the remaining (higher order)
terms as uncertainty, as e.g. in Yu and Shen (2018). For
polynomial systems, one can use also the design of the
observer using the sum-of-squares theory Rehák (2015).
This approximation leads to rather conservative results.
On the other hand, one can easily design an observer
for systems with time delays which is also important
in practice, e.g. in the control of chemical or biological
processes, see e.g. Rehák (2017).

Another approach is represented by the so-called high-
gain observers Khalil (2001). Here, the gain of a linear
observer is adjusted in order to achieve the convergence of
the observation error to zero. The well-known drawback of
this kind of observers is the high sensitivity to noise. Yet,
they find many applications, e.g. in biology: see Čelikovský
et al. (2018) or others.

In the late 1990s, another way for the observer design
for nonlinear system emerged, for continuous systems first
Kazantzis and Kravaris (1998), modified for time delay
systems in Kazantzis and Wright (2005). It is based on
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solution of a partial differential equation that is a direct
counterpart of the Sylvester equation known from the
theory of linear systems. Then, the observer is constructed
using the solution of this equation. Originally, the assump-
tions for existence of this partial differential equations were
rather restrictive - it was required that the linearization of
the observed system is either stable or all its eigenvalues
have positive real parts. This assumption is much more
strict than the assumption guaranteeing existence of a
solution of the Sylvester equation in the linear case. More-
over, a method based on expansion into the Taylor series
was proposed to find the solution numerically, even though
this method is difficult to algorithmize and, on top of that,
it is difficult to determine the domain where the results
are valid. Fortunately, both these drawbacks were over-
come by proposing a numerical method based on finding
certain center manifold in Sakamoto et al. (2014). Later,
approximation of the aforementioned partial differential
equation by the finite element method was investigated in
Rehák (2019) where also an alternative proof of existence
of a solution of the partial differential equation was given
together with definition of a domain where the solution is
guaranteed to exist. For application of these observers to
the problem of state reconstruction of a biological systems
see e.g. Lynnyk and Rehák (2019). This method is based
on successful solution of the regulator equation originating
from the output regulation theory by the center manifolds
(see e.g. Sakamoto and Rehák (2011)) or finite elements
as in Rehák (2011).

Situation in discrete-time systems is less extensively elab-
orated. A ”discrete-time counterpart” of the pioneering
paper Kazantzis and Kravaris (1998) is Kazantzis and
Kravaris (2001). Here, it is shown that the observer for a
discrete-time nonlinear system can be constructed using a
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solution of a functional equation (in contrast to the partial
differential equation in the continuous case). Existence
conditions for the solution were also given, nevertheless,
as in the continuous-time case, they are rather restrictive.
Again, it is assumed that the linearization of the observed
system must be either stable or all its eigenvalues must lie
outside of the unit circle. Moreover, the proposed method
for approximative solution of the functional equation is
again based on Taylor expansions. Paper Brivadis et al.
(2019) investigates other qualitative properties of this ob-
server like existence or uniqueness.

Purpose of the paper: To deliver an easy-to-implement
method for approximation of the solution of the afore-
mentioned functional equation. This method is based on
the finite-difference method known from the theory of
numerical solution of partial differential equations. It gives
an opportunity to obtain an approximation of the solution
on a predefined domain. Moreover, the assumption about
the eigenvalues of the linearization of the observed system
is relaxed.

2. NONLINEAR DISCRETE OBSERVER PROBLEM

Theory of the nonlinear discrete-time observers is de-
scribed in detail in e.g. Kazantzis and Kravaris (2001).
Hence only the most important facts are repeated here.

Consider the discrete-time system

x(k + 1) =F (x(k)), x(0) = x0, (1)

y(k) =h(x(k)) (2)

where x : N → Rn is the state, y : N → R is the output,
F : Rn → Rn, h : Rn → R are continuous functions.

The following assumption is quite natural:

Assumption 1. Assume the linearization of (1,2) around
he origin is observable.

The observer of the discrete-time system (1,2) is defined
in Kazantzis and Kravaris (2001) as follows:

Definition 1. Let the mapping Ψ : Rn × R → Rn be such
that the dynamical system

z(k + 1) = Ψ(z(k), y(k)) (3)

where y(k) is given by (2), admits a map T : Rn → Rn
that is defined and locally invertible on a neighborhood U
of the origin, T (0) = 0 and the following holds: if x(0) ∈ U
and z(0) = T (x(0)), then

z(k) = T (x(k)) (4)

for all k ∈ N.

Remark 1. The identity observer is obtained with T = Id.

Remark 2. Note that the estimate of the state of the
observed system can be obtained as x̂(k) = T−1(z(k)).
The inversion exists thanks to Assumption 1. Hence one
can see that system (3) carries the same information as
the original equation (1).

Substituting (4) into (3) yields

T (F (x)) = Ψ(x, h(x)), T (0) = 0. (5)

Note that (5) is a functional equation.

In what follows, a linear system is used as the observer:
eq. (3) is supposed to attain the special form as

z(k + 1) = Az(k) + by(k) (6)

where A ∈ Rn×n is a matrix with all eigenvalues in the
interior of the unit circle in the complex plane and b ∈ Rn
is a vector chosen so that the following assumption is
satisfied.

Assumption 2. The pair (A, b) is controllable.

In this case, the observer is stable. Moreover, eq. (5) boils
down to

T (F (x)) = Ax+ bh(x), T (0) = 0. (7)

Remark 3. Paper Kazantzis and Kravaris (2001) presents
a method for the solution of eq. (7) by means of the
power series: the nonlinear functions F and h as well
as the unknown function T are expanded into Taylor
polynomials. Then, comparing the coefficients, one obtains
the approximation of the function T .

For the numerical method based on the finite differences,
the solution of eq. (7) for linearization of the system (1,2)
will be useful. Note that, in this case, this equation reduces
to the Sylvester equation (with F̄ being the Jacobian of F
at the origin, C being the Jacobian of h at the origin):

T̄ F̄ = AT̄ + bC (8)

for an unknown matrix T̄ ∈ Rn×n. This equation has a
solution if and only if there are no common eigenvalues
of matrices F̄ and A, see e.g. Birkhoff and Lane (2017).
This assumption is not a problem as matrix A is a design
parameter, hence its eigenvalues can be determined so that
this requirement is satisfied. Note also that this assump-
tion is much milder that the conditions for existence of a
solution of (5).

It is possible to seek the entire solution of (7) by the finite
difference method. However, since the first-order terms can
be computed exactly via the Sylvester equation (8), we will
decompose the function T into the first-order terms and
the remaining terms denoted by τ as follows:

T (x) = T̄ x+ τ(x) (9)

where function τ vanishes at the origin together with its
derivatives. This approach combining the exactly com-
puted solution of a Sylvester equation with numerically
computed function containing the higher-order terms has
already been successfully applied for computing the non-
linear observer in the continuous-time case in Rehák
(2019). To find the functional equation that function τ
obeys, we make the following notation:

F (x) = F̄ x+ f(x), h(x) = Cx+ γ(x) (10)

where function f and γ vanish at the origin together with
their derivatives. We will also assume eq. (8) has a solution
T̄ .

Substituting both (9) and (10) into (7) yields

T̄ (F̄ x+ f(x)) + τ(F (x)) = AT̄x+Aτ(x) + bCx+ bγ(x).
(11)

Taking (8) into account one arrives to equation

τ(F (x)) = Aτ(x) + bγ(x)− T̄ f(x). (12)

This is the functional equation to be solved here using the
finite differences.

For the sake of the following section, let us note that
mapping τ is composed of functions τk : Rn → R with
k = 1, . . . , n.
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3. SOLUTION OF THE FUNCTIONAL EQUATION
USING FINITE DIFFERENCES

The finite difference method is a well-known method that
has long tradition for solution of partial differential equa-
tions or to solve the boundary problems of ordinary differ-
ential equations. This method is based on approximating
the function values on a grid, that is usually equidistant.

Due to the space reasons, the topic of this paper is solely
to introduce the algorithms, the proof of the convergence
of the approximations to the solution of (12) is left for a
future publication.

3.1 Algorithm 1

If approximating a partial or ordinary differential equa-
tion, the derivatives are approximated by difference quo-
tients. This is not the problem we face here since equation
(12) contains no derivatives. On the other hand, one has
to deal with the problem of defining the function values
in the points given as F (xd) for any point xd from the
original grid.

Let Ω ⊂ Rn be a domain such that 0 ∈ Ω. Define also a
grid Ωd ⊂ Ω which is a finite set.

For every point xd ∈ Ωd compute the value F (xd). Then,
for a fixed xd ∈ Ωd one can solve the equation

t(F (xd)) = At(xd) + bγ(xd)− T̄ f(xd) (13)

for the unknown values t(xd) which are approximations
of the function values of T . This is a set of n algebraic
equations. However, the value F (xd) does not, in general,
belong to the set Ωd. Then, one has to interpolate the value
F (xd) on the grid: one has to find M points x1d, . . . , x

M
d

so that F (xd) ∈ conv(x1d, . . . , x
M
d ) and if a point x′d ∈ Ωd

satisfies x′d ∈ conv(x1d, . . . , x
M
d ) then x′d ∈ {x1d, . . . , xMd }.

(Roughly speaking, the point F (xd) is a convex combina-
tion of the points x1d, . . . , x

M
d and, moreover, among all the

points of the grid, points x1d, . . . , x
M
d are closest points to

F (xd). Assume F (xd) = α1x
1
d + · · · + αMx

M
d . Then, one

can approximate the value t(F (xd)) by

t(F (xd)) ≈ α1t(x
1
d) + · · ·+ αM t(x

M
d ) (14)

which, in fact, corresponds to the linear approximation of
the function τ on the set conv(x1d, . . . , x

M
d ). One obtains

the set of equations

α1t(x
1
d)+· · ·+αM t(xMd ) = At(xd)+bγ(xd)−T̄ f(xd). (15)

The method, as described above, suffers from several
issues. First, it is difficult to find the points x1d, . . . , x

M
d

for every xd. Then, the resulting set of algebraic equations
(15) is large and it is not obvious whether it is solvable.
Hence an improved algorithm is proposed.

3.2 Algorithm 2

The problem of interpolating the values on the grid points
is circumvented in this algorithm. The crucial idea is
to approximate the mapping τ by n-tuple of n-variate
polynomials T kd , k = 1, . . . , n such that the polynomial T kd
approximates the function τk. Assume their degree is δ ≥ 2
(if δ = 1, one has the linear approximation of T which
is determined by matrix T̄ ). Polynomials T id are a linear

combination of a finite number of monomials xι11 . . . xιnn
where ιi are positive integers; let us denote the total
number of these monomials by ν̃. Then, one can introduce
an ordering of these monomials: mi(x) for i = 1, . . . , ν̃
where mi(x) is the ith monomial in this chosen ordering.

With this notation,

T kd (x) =

ν̃∑
i=2

tk,id mi(x), k = 1, . . . , n (16)

where tk,id ∈ R are the coefficients to be determined.
Then, for every point x ∈ Ω one can construct the n-
tuple of equations (with b = (b1, . . . , bn)T and f(x) =
(f1(x), . . . , fn(x))T ):

ν̃∑
i=1

tk,id mi(F (x))

=

n∑
j=1

Ak,j

ν̃∑
i=1

tj,id mi(x)

+bkγ((x1, . . . , xn)T )−
n∑
j=1

T̄kjfj(x1, . . . , xn).

(17)

This is a set of equations that are linear in all tk,id . Denote
also the sequence of all coefficients in the approximation

of the polynomial τk by τ̃k = (tk,id ), i = 1, . . . , ν̃. Finally,
denote by τ̃ the matrix whose elements are all coefficients

tk,id : τ̃ = (tk,id )k=1, . . . , n; i = 1, . . . , ν̃.

Define the following matrix function: Γ : Rn → Rν̃ given
so that for every x ∈ Ωd holds:

Γ(x) = (m1(x), . . . ,mν̃(x))T (18)

and function ∆ : Rn → Rn so that

∆(x) =
(
bγ(x)− T̄ f(x)

)
. (19)

Then, equation (7) is approximated by

τ̃Γ(F (x)) = Aτ̃Γ(x) + ∆(x). (20)

This equation resembles the so-called non-homogeneous
generalized Sylvester equation, see Bouhamidi and Jbilou
(2008); Kaabi (2014); Wu et al. (2008) or others. Moreover,
its solvability for over-determined systems of equations is
a matter of research. Hence we are going to show existence
of an approximation of its solution (in the sense of mean
squares) under an additional assumption.

Assumption 3. Matrix A is diagonal:
A = diag(a1, . . . , an).

This assumption is not restrictive as this matrix is the
design parameter. However, note that one has still to
ensure validity of Assumption 2.

Under this assumption, the set of equations (17) splits into
n sets of equations, each set governs the τ̃k for k = 1, . . . , n.
Namely (with (∆(x))k denoting the kth element of the
vector ∆(x))

τ̃kΓ(F (x)) = τ̃kakΓ(x) + (∆(x))k. (21)

Eq. (21) cannot be evaluated at all x ∈ Ω but only on all
xd ∈ Ωd. Let
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Ξk =
(

Γ(F (x1d)), . . . ,Γ(F (xNd ))
)
− ak

(
Γ(x1d), . . . ,Γ(xNd )

)
,

(22)

ζk =
(

(∆(x1d))k, . . . , (∆(xNd ))k

)
. (23)

Then, we can rewrite (21) into

τ̃kΞk = ζk. (24)

The number of equations in (24) is equal to the number of
points in the grid, hence it is usually much greater than
the number of variables to be determined. Hence equation
(24) cannot be solved precisely, but, using the least squares
method, one can use this approximation:

τ̃k = ζkΞ−k (25)

where Ξ−k is the right pseudoinverse of the matrix Ξk.
Moreover, if desirable, using the weighted least squares,
one can achieve a better fitting in some of the grid points.
This can typically be the case of points close to the origin
where one can obtain not only the function values of
the polynomials Td but also its derivatives to be close
to zero. Note that a suitable choice of the polynomials
mi and of the parameters ak can ensure existence of the
pseudoinverse Ξ−k .

Let us describe the computation algorithm in detail:

Algorithm:

(1) Compute F (Ωd).
(2) Choose the order of polynomials T id approximating

the mapping T . Denote by ν̃ the number of monomials
used to construct the polynomials T id.

(3) For k = 1, . . . , n:
(4) Compose the matrix Ξk ∈ Rν̃×N by (22).
(5) Define the row vector ζk ∈ RN by (23).
(6) Solve the least-squares problem (25).
(7) construct the polynomial T kd (x) by (16).

To reconstruct the states of the observed system, one has
to find the inverse transformation of the function T . How-
ever, as shown in Brivadis et al. (2019), a neighborhood
of the origin where function T is injective exists. Hence
this question can be positively answered. Therefore this
problem does not lie in the focus of this paper.

Remark 4. Note that, in order to achieve the approxi-
mation of mapping T , the following is required besides
Assumptions 1 and 2: first, the linear Sylvester equation
(8) must be solvable. Moreover, pseudoinverse Ξ− must
exist. However, unlike Kazantzis and Kravaris (2001) it
is not necessary to require that the eigenvalues of the
linearization of the observed system lie all inside or all
outside the unit circle.

Remark 5. The choice of the grid requires also some at-
tention. As noted above, when solving partial differential
equations using the finite difference method, a rectangular
grid with equidistant points is usually (but not necessarily)
used as such grid facilitates the discretization of the partial
derivatives. This problem is not encountered in the case
of functional equations. Thus, one can make use of a
nonuniform grid without any precautions. To be specific,
the grid should be dense around the origin to precisely
capture the fact that the derivatives of the function τ
vanish at the origin. This is rather important since in the

opposite case, convergence of the observation error to zero
might be violated.

4. EXAMPLE

Consider the system

x1(k + 1) = x2(k),

x2(k + 1) =−x1(k)− 1

2

x31(k)

1 + x21(k)
,

y(k) = x1(k).

The initial conditions are x1(0) = x1,0, x2(0) = x2,0. Note
that linearization of this system has eigenvalues lying on
the unit circle.

To define the observer, the following choices were made
(note that here, the only requirements to be satisfied are
controllability of the pair (A, b) and the restriction on the
position of eigenvalues of matrix A - the maximum of their
real parts must be smaller than the minimum of the real
parts of the Jacobian of the linearization of the original
system; this is satisfied with this choice):

A =

(
0.2 0
0 0.1

)
, b =

(
1
1

)
(26)

Note that function γ = 0 in this example as the output
function is linear. Equation (12) attains the form

τ(

(
0 1
−1 0

)(
x1
x2

)
+

 0

−1

2

x31
1 + x21

) = Aτ(x)

−T̄

 0

−1

2

x31
1 + x21

 .

(27)

This equation is solved numerically.

First, the matrix T̄ is computed using the linear equation
(8). The result is

T̄ =

(
−0.1923 −0.9615
−0.0990 −0.990

)
.

The functional equation was discretized on the square-
shaped domain Ω = [−1, 1]× [−1, 1] with the nonuniform
grid defined as follows: let

Ω ={−1,−0.98,−0.96, . . . ,−0.22,−0.2}
∪ {−0.18,−0.175, . . . ,−0.025,−0.02}
∪ {−0.015,−0.014, . . . , 0.014, 0.015}
∪ {0.02, 0.025, . . . , 0.175, 0.18}
∪ {0.2, 0.22, . . . , 0.98, 1}

and
Ωd = Ω× Ω.

Using the method presented in the previous section,
one can obtain that approximation of the function τ =
(τ1, τ2)T solving (27) by polynomials of third order:

τ1(x1, x2) =−0.0016775x31 − 0.0221048x1x
2
2,

τ2(x1, x2) = −0.0008425x31 − 0.0116150x1x
2
2.

The function τ1 is depicted in Fig. 1 while Fig. 2 shows
function τ2.
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The simulation results are seen in Fig. 4. The symbol ”+”,
for better clarity of the presentation interpolated by the
dashed straight line, represents the state of the observed
system with initial conditions (0.9, 0), the diamonds in-
terpolated by the solid line illustrate the observer that
was started with initial condition (0, 0). Note that the
figure is in the transformed coordinates (that means, the
z-coordinates; see (4)). One can see that the observation
error converges to zero. Since the transformation T de-
fined in (5) is a diffeomorphism, the same holds for the
observation error in the original coordinates.

Remark 6. The order of the approximating polynomials
must be chosen high enough to capture the behavior of
the mapping τ . On the other hand, too high order of
these polynomials requires many grid points. Moreover,
the computation can be too demanding on the computer
resources, both memory and time.

Remark 7. Paper Kazantzis and Kravaris (2001) (and, in
the continuous-time case, Kazantzis and Kravaris (1998)
and Kazantzis and Wright (2005)) use expansions to
Taylor polynomials to find the solution of (5). Even though
this is probably the simplest method for presentation since
this method is easy to explain and understand, it suffers
from serious drawbacks. To mention at first, let us mention
that the result is only “local” in nature: this means,
convergence is generally guaranteed only in an unknown
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Fig. 3. Observation error in the transformed coordinates
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Fig. 4. Observer system and observer

neighborhood of the origin. Moreover, precision of the
approximation decreases with distance from the origin. In
contrast with the Taylor polynomial-based method, the
approach presented here gives results whose precision on
the set Ω (which was chosen a-priori) is guaranteed by the
finite difference solver. It is also important to notice that
computation of the Taylor polynomials usually requires
lengthy calculations, even for the polynomials of low order
(e.g. third order). Hence the results are difficult to obtain
without the software for symbolic computations.

The algorithm presented here requires some knowledge
of the finite difference method. However, unlike other
methods stemming from the numerical methods for partial
differential equations (like FEM), this method is also quite
easy to understand and can be implemented without the
use of any specialized software.

5. CONCLUSIONS

An algorithm for a numerical approximation of a solution
of the functional equation originating from the discrete
nonlinear observer problem was presented. This method is
based on approximating the function by finite differences.
This allowed to relax some assumption and also to deliver
a computationally tractable algorithm. An example was
provided to illustrate the properties of the method.
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