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Abstract: In the paper, an algorithm for synchronization of a neural network composed of
interconnected Hindmarsh-Rose neurons is proposed. The interconnections of the neurons are
subject to delays and an additive noise is present. The convex optimization is the tool for
finding the synchronization control, the result is formulated using linear matrix inequalities.
The synchronization of the recovery and adaptation variables is also guaranteed thanks to the
minimum-phase property of the Hindmarsh-Rose neuron. An example illustrates the results.
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1. INTRODUCTION

1.1 Synchronization of complex networks and multi-agent
systems

Complex networks or multi-agent systems were intensively
investigated recently.

We can distinguish several kinds of synchronization: first,
the identical synchronization where the states of all nodes
(agents) composing the interconnected systems have to
mutually converge each to other. Moreover, a number of
other kinds of synchronization were introduced, see e.g.
Celikovsky and Lynnyk (2012); Lynnyk and Celikovsky
(2010); Lynnyk et al. (2019b,a); Plotnikov and Fradkov
(2019D).

Let us note that the structure of the network as well as
presence of different types of disturbances in the commu-
nication channels,time delays Rehdk and Lynnyk (2019);
Rehék and Lynnyk (2019), quantization Rehdk and Lyn-
nyk (2019) etc., is crucial and has an influence on quality
and speed of the synchronization. The information trans-
mission is often carried out through noisy channels: the
received information is perturbed by adding a random
part. The control design must take this into account so
that the control is capable to minimize damage caused by
this phenomenon. In Hu et al. (2015) a multi-agent system
with noise is investigated, a LMI-based design of a synchro-
nization control is derived. A design of a synchronization
control for a stochastic system exhibiting uncertainties and
jumping control signals is presented in Ren et al. (2017).
Let us also mention Ma et al. (2017) where the interested
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reader finds information about further works concerning
this area.

1.2 Synchronization of neurons

Several types of complex behavior that depends on an
external input (external current of ions) can be observed
in neurons. This is described e.g. in Malik and Mir (2020);
Ngouonkadi et al. (2016): as long as the influx current
is small, the neuron rests in a quiescent state. After
increasing this current, the neuron exhibits periodic spikes:
one spike per period. After increasing the current even
more, a number of spikes during one period appears. After
another increase, chaotic behavior takes place. A complete
understanding of these phenomena has not been achieved
yet. It is an intensively studied topic as it is important
for recognizing causes of some health problems such as
epileptic attacks or Parkinson disease. Also, it is crucial
for obtaining an insight into the function of the neural
system.

Several neuronal models were developed to help to un-
derstand its functions. The Hodgkin-Huxley model (HH)
Hodgkin and Huxley (1952) can be mentioned first. This
model is accurate as it describes the function of a neu-
ron precisely but it is too complicated. The Fitzhugh-
Nagumo (FN) FitzHugh (1961); Nagumo et al. (1962)
neuronal model is simple at the cost of inaccurately de-
scribing some phenomena such as bursting. A compromise
between the requirements for simplicity and accuracy is
the Hindmarsh-Rose (HR) neuron Hindmarsh and Rose
(1984). A detailed description of oscillatory and chaotic
phenomena occurring in this neuron can be found e.g.
in Malik and Mir (2020); Ngouonkadi et al. (2016). The
stochastic HR neuron has been studied in e.g. Lepek and
Fronczak (2018).
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Note also that synchronization problem of FN neurons
with delays is investigated in Plotnikov (2015); Plotnikov
et al. (2016). This is a problem closely related to the one
studied here.

All the above papers describe the synchronization of a
network composed of identical neurons. Contrary to this,
Plotnikov and Fradkov (2019b) deals with synchronization
of a heterogeneous networks of FN neurons while desyn-
chronization of FN neurons is dealt with in Plotnikov and
Fradkov (2019a) or Djeundam et al. (2018).

1.8 Purpose of this paper

Synchronization of a network composed of HR neurons
subject to random disturbances and delayed communica-
tion using the exact feedback linearization is investigated.
The aim of this paper is to apply the method from Rehak
and Lynnyk (2019); Rehdk et al. (2018) to a neuronal
network composed of HR neurons. The effects of noise
are studied. This leads to a the need of combining the
aforementioned method with the stochastic version of the
Razumikhin functional.

1.4 Notation

The notation used in this paper is introduced here.

e The Kronecker product is denoted by the symbol ®.

e The expected value of a random variable ¢ is denoted
by E(¢).

e If A B are matrices, then diag(A, B) is a block-
diagonal matrix with blocks A, B on the diagonal.

e The symbol .7 denotes the transposed matrix.

e The time argument t is often omitted: f(t) = f.
However, if dependence on this time argument needs
to be emphasized or the time argument is different
from t, it is written in full.

e The time delay is written in the subscript: f(t —

(1) = [t =7) = f(t) = fr.
2. GRAPH THEORY

The interconnection of the neurons in the network is
described by means of the graph theory: the neurons are
denoted by numbers 0,...,N. Define the set of nodes
V ={0,...,N} and the set of edges E C VxV as (i,j) € £
if and only if there exists a connection from node i to
node j: the neuron 4 can sends signal to neuron j directly.
It is supposed that (i,i) ¢ &£ for any i € V. Then, the
graph G is defined as a pair G = (V,€). The Laplacian
matrix £ € RINHDXWV+D) g defined for the graph G as
for 4,5 € {0,...,N}, i # j one defines £;; = —1 if
(4,%) € &, otherwise £; ; = 0. The diagonal elements are
defined as £;; = — Zle’i# L; j. Define also sets N; C V,
i=1,...,Nas N, = {j € V| (j,i) € £E}. The set N;
contains agents sending information directly to the agent
i.

We assume existence of (exactly) one neuron iy such that
for any j € V, ig # j there exists a directed path in G
from ig to j but there is no such path from j to ig. A node
with this property is called the leader. Here, it is a neuron
whose behavior all other neurons replicate. Without loss

of generality, we suppose ig = 0. For more details, see Ni
and Cheng (2010).

Define matrix L € RY*YN by removing the first row and
column (they correspond to the leader) from the matrix
L. Then one can prove that (Song et al. (2012, 2013))
eigenvalues of L have positive real parts and also there
exists a diagonal matrix D = diag(dy,...,dy) with d; > 0
satisfying

DL+LTD > 0. (1)
Denote dpax = max{d; | i = 1,...,N} and define also
the pinning matriz G € RN*N by G = diag(gi,...,9n)
where g; = 1 if (0,7) € &, otherwise g; = 0. Structure of
the interconnection of these neurons is described by the
matrix L = L — G.

3. SYNCHRONIZATION OF STOCHASTIC
MULTI-AGENT SYSTEMS

Synchronization of linear multi-agent systems is thor-
oughly described e.g. in Hu et al. (2015).

The agents have the form
dro =Axg + oo(xo)dw(t), (2)
dx; =(Ax; + Bu;)dt + oi(x;)dw(t), i=1,...,N. (3)
where x; € R"” is the state of the ith agent, u; is its control,
0; : R — R is the noise intensity function, w(t) is a one-
dimensional Wiener process defined on (€2, F, P) such that
E(w(t)) = 0, E((w(t))?) = dt.

This model is suitable to describe random external distur-
bances acting upon the whole multi-agent system Hu et al.
(2015).

The goal: to find the control u; as a function of x;,x;,j €
N; so that
Jim E([:(t) — 20(6)|) = 0. (4)

4. THE HINDMARSH-ROSE NEURONAL MODEL

The HR neuron is defined by the following equations (see
e.g. Nguyen and Hong (2013)):
i =axt — 23+ w9 — a3+ T +6(tx)dw(t), (5)
By =1+ bx? — 29, (6)
T3 :c(xl + 1.56) — 0.006x3. (7)
The variable x; is the membrane potential, x5 is the
recovery variable associated with the fast current of the
Na™ and/or K* ions. The variable x5 is the adaptation

variable associated with the slow current of Cat ions and
I is the external current.

Values of the above constants are taken from in Nguyen
and Hong (2013): a =3, b= —5, ¢c=0.024 and I = 1.25.

To meet the requirements for the method based on the
feedback linearization (see Khalil (2001)), first define the
output ¥y = x1. The exact feedback linearization yields:

§&1 =21, 2 =22, §3 =13 (8)
’U,:U—F(g), (9)
F)=-a&f - +&-& -1

System (5-7) is changed into:
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) 0 v 0
§—< —&2 >+<0)+<1>. (11)
—0.006&3 0 1.56¢

Variable ¢ is split as follows: & = (1,¢T)T where n = &,
¢ = (&,&3)T. The first equation is called the observable
part while the remaining part is called the non-observable
part. The state  is not observable through the output
y, hence this terminology (note that in order to control
the system (5-7), access of the controller to the state ( is
necessary though). One can define the zero dynamics by

:_( ¢
¢= (—0.0016@) '

The HR neuronal model has an asymptotically stable zero
dynamics - it is a minimum-phase system. As will be shown
in the sequel, this is a crucial property for application of
the synchronization algorithm from Rehdk and Lynnyk
(2019).

(12)

Let us consider the network composed of N + 1 neurons
denoted by 0, ..., N with the neuron 0 being the leader. If
i € {1,..., N} then the ith neuron with coupling can be
described as

i1 =axl; — ot wai — w5+ 1+ ui + 0yt w1 ) dw(t),

(13)
Zo; =14+ bx%i — T2, (14)
3,4 =C($17i +1.56) — 0.006x3 ;. (15)

Here, the variable u; is the input signal to be designed.

The noise intensity functions o; is supposed to satisfy the
condition (analogous to Assumption 2 in Hu et al. (2015)):
Assumption 1. The noise intensity functions o; satisfy
the following Lipschitz condition: there exists a constant
3 >0 so that

(Ui(t,u) —Uo(t,v))2 < 2|y — v|? (16)

holds for alli=1,...,N, u,v € R and t > 0.

For simplicity, we suppose the time delay, denoted by 7, is
equal for all neurons in the network, but it is not constant.
On the other hand, it is bounded: there exists 7 > 0 so that
7 :[0,00) — [0, 7] is a measurable function. The control u;
of the ith neuron equals to

U; = _F(xz> +k Z (xl,j;'r - xl,i;T) + gik(xl,O;T - xl,i;r)
JEN;

(17)
where the symbol k is called coupling gain. It is assumed
the signals from the other neurons are delayed. The aim is
to find the parameter k so as (4) is reached. This parameter
is equal for all neurons. Note also that the control signal
of the ith neuron is expressed by the formula

v; = k( Z (140 —&ryir) T 9i(E0r — fl,i,r))

JEN;

(18)

after the erxact feedback linearization.

Define n= (7717"'777N)T, C = (C,lravcg\})T and

‘7(7% C) = (Ul (nla Cl)) IRRE] O-N(nNa CN))T Then7 introduce
the compacted form of notation of the observable parts as

1= k(Ln; +Gno..) +o(t,n)dw = kLn, + o(t,n)dw. (19)

5. SYNCHRONIZATION OF THE MEMBRANE
POTENTIAL IN THE STOCHASTIC NEURONAL
NETWORKS

The first goal is to synchronize the observable parts of the
neurons. For this purpose, we introduce the synchroniza-
tion error e; = 1; —ng for i =1,..., N and also introduce

di(ei, Gi) = 0i(mi,Gi) — a0(no, Co)-

The complete synchronization is equivalent to e; = 0.
This is not achievable due to the noise added to the first
variable. As presented e.g. in Hu et al. (2015), this should
be relaxed to (4) - this is equivalent to

N
lim > E(Jes(t)[*) = 0. (20)

t—o0

The suitable tool to prove the main theorem is the adapta-
tion of the Razumikhin theorem for stochastic dynamical
systems (see e.g. Theorem 3.1 in Huang and Deng (2009)):
Theorem 1. Consider system (19) and let V : R™ —
[0, 00) be a twice differentiable function satisfying a1 ||e|? <
V(e) < azlle||? for some constants 0 < a; < «g. Let
there exist a constant & > 1 such that for all t > 0 the
following implication hold: if for all t' € [t — 7,t] holds
E(V(e(s)) < 6E(V(e) then E(F(V(e)) < —E(|le||?). Then
the solution of (19) satisfies limy_,o, E(||e(t)]|?) = 0 for
any initial condition e(t),t € [—7,0].

Remark 1. The proof presented in Huang and Deng
(2009) is derived for general pth moments, thus for more
general functions V. The formulation presented in Theo-
rem 1 is sufficient for our purpose. For further extensions
of this approach see e.g. Zhou and Luo (2018).

Before the formulation of the main theorem of this section,
choose parameters r, 51, 225, ¢ so that

r>1 (21)

LYDL < 5D, (22)
LTL < 54D, (23)

DL+ L"D > xD. (24)

With these constants, we formulate the result:
Theorem 2. Assume parameters r, >, #s satisfy inequal-
ities (21-24). Assume there also exist positive constants
Q,Z,W,R,S and also a scalar y satisfying with

E =y +207(Z + W)+ 2007 + 32)Q + 22Q
the following LMIs hold:

=<0, (25)

Zy Wy
(Z8)=0 () §) =0 (20)
R+S<Q, (27)
(Ph)zo (B0 F)z0 o

then lim;_,o E(||e]|?) = 0 for any initial condition e(t),t €
[-7,0] and k = yQ~ L.

First, some useful notations are introduced. Then we prove
three propositions. Let P = Q~ ', k = yP.

Proposition 1. Let the assumptions of Theorem 2 hold.
Then the following is satisfied (LT DL @ kP(R+ S)Pk) <
(D@ (Z+W)).
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Proof. Let us multiply (26)by diag(1l, P) from the left
and right. Then, use the Schur complement. This yields
Z > Kk?P and W > k%P which, with help of (27), implies
Z +W > k?P%(R + S). This means LY DL ® k*P?(R +
S) < LTDL ® (Z + W). Using (22) finally gives the
claim. O

Proposition 2. Under assumptions of Theorem 2, the
first inequality in (28) and (23) imply LTL @ R™'k? <
rxe(D ® P).

Proof. We multiply the first inequality in (28) by diag(P, 1)
from the left and right. Then, application of the Schur
complement yields rP > k*R~1. This with (23) results
into LTL® k?R™1 < LTL®rP < sr(D ® P). O

The proof of Theorem 2 is omitted due to space reasons.

6. SYNCHRONIZATION OF THE ADAPTATION
AND RECOVERY VARIABLES

The non-observable part of the system describing the HR
neuron is not controlled. However, Rehdk et al. (2018)
shows that these parts can be synchronized as well as
the HR neuron is a minimum-phase system. The afore-
mentioned paper presents the proof of convergence of the
non-observable parts for nonlinear zero dynamics if it is
exponentially stable. In the HR neuron, this is satisfied.
The Theorem 5.4 in Rehdk et al. (2018) useful for the
proof of thsi claim, reads

Theorem 3. Under assumptions of Lemma 2, the non-
observable part (13-15) achieves synchronization.

Proof. Eq. (12) yields that
éi - éio = <01 _00006> (Cl - Czo) + (C((;]?:_qzzo))) . (29)

Theorem 2 yields lim;_, oo E(Hm — Mig H) = 0. This and the

exponential stability of the zero dynamics imply
lim o0 B (/G = Gil) = 0.

The main result is formulated as follows:

Theorem 4. Let assumptions of Theorem 2 and Theorem
3 hold. Let also the control input be defined as in (17).
Then limy_ o0 E(||z; — 24, ||) = 0.

Proof. Theorem 3 implies that lim;_, E(HQ — Gip H) =0.

This is since the exact feedback linearization converting
(13-15) into (11) and the control input transformation (9)
is a diffeomorphism. O

7. EXAMPLE

A network composed of 6 neurons was simulated, the
neuron 0 is the leader. The parameters are as in Section
4. The interconnection topology is shown in Fig. 1.

Then, this interconnection topology implies that D =
diag(0.2866, 1.007,1.8044, 2.435, 2.689) which satisfies (1).
Moreover, » = 0.5, 2y = 7, 5 = 33. Further, ¥ was
chosen as ¥ = 0.1 and r = 200 while the maximal time
delay was 0.1s. Finally, the algorithm yields k = —6.94.

L 7
L 2

Fig. 1. Connection of neurons.

Fig. 2 illustrates the state of the leader. Note that there
is no noise in the leader. The type of the curves mean:
solid line: state x1, dashed line: state x5 and dash-dot line:

state x3. Difference \/2?21(333,1‘ — x30) in Fig. 4 (note the
different time range). As the synchronization is obtained
through the potential only, the synchronization is fairly
good in the first state, with the exception of the points
with rapid changes of the potential. Synchronization of
this part is improved since the nonlinearities (the function
F) are exactly matched.

Fig. 2. State of the leader neuron

Fig. 3. Norm of synchronization error in the membrane
potential

8. CONCLUSION

A synchronization algorithm for a neuronal network that is
composed of Hindmarsh-Rose neurons with additive noise
was derived. The observable part is synchronized by a
control law that is obtained by solving a set of LMIs
based on the Razumikhin theorem. The synchronization of
the non-observable part results from the minimum-phase
property of the Hindmarsh-Rose neurons. The algorithm
is illustrated by an example.
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Fig. 4. Norm of the synchronization error in the adaptation
variable
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