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Abstract
Finding a point in the intersection of two closed convex sets

is a common problem in image processing and other areas. Pro-
jections onto convex sets (POCS) is a standard algorithm for find-
ing such a point. Dykstra’s projection algorithm is a well known
alternative that finds the point in the intersection closest to a given
point. Yet another lesser known alternative is the alternating di-
rection method of multipliers (ADMM) that can be used for both
purposes. In this paper we discuss the differences in the con-
vergence of these algorithms in image processing problems. The
ADMM applied to finding an arbitrary point in the intersection is
much faster than POCS and any algorithm for finding the nearest
point in the intersection.

Introduction
A common problem in diverse areas of mathematics, physics

and computer sciences is to find a point in the intersection of two
closed convex sets. The problem appears in two variants, the fea-
sibility problem with the aim to find an arbitrary point in the in-
tersection of two closed convex sets; and the best approximation
problem of finding the projection of a given point to the intersec-
tion, i.e. finding the point in the intersection closest to the given
point.

These problems are important on their own but we often find
them as subproblems in constrained optimization, in particular, in
projection methods (interpretable as operator splitting methods)
that combine smooth optimization with projections on a set of
constraints [12]. The best known projection method is the pro-
jected gradient method. Its insufficient speed of convergence was
improved in algorithms such as FISTA [5], the augmented La-
grangian method [16] and its extensions [13]. There are many
applications in various fields, for example mechanics [18], traffic
theory [17], game theory [8] and others. Projection methods have
become a standard tool also in signal and image processing after
their success in total variation denoising [10], deblurring, MRI re-
construction [1], and compressive sensing in general [2]. They are
often applied to smooth problems constrained by sets with closed-
form or otherwise fast projection such as halfspaces [4], spheres
(unit norm sets) and many others [7]. These methods gained pop-
ularity expecially for the simplicity of implementation compared
to for example interior-point methods and good convergence.

If the constraint is given as an intersection of two sets, there
is usually no closed-form formula for the projection. There are
two classical projection-based algorithms solving this particular
problem. For the feasibility problem, we can use the alternating
projection method, also known as the projections onto convex sets
(POCS). It has been rediscovered numerous times [3]. The best

approximation problem is often solved by Dykstra’s projection
algorithm [15].

As an alternative, the general projection methods such as
ADMM can be used to compute both the feasibility and best ap-
proximation problems. Even though the number of projections
can be high, they may be useful when we have an efficient method
for computing the projections [9]. Rate of convergence is dis-
cussed in [14]. One particular advantage of the ADMM algorithm
[16] is that it allows for partial updates, which means that we can
run only several iterations in the subproblem and still have prov-
able and in practice fast convergence. A similar algorithm would
result from [13].

The main purpose of our paper is to compare efficiency of
the POCS and Dykstra’s algorithms with the algorithms based on
ADMM. We also illustrate the fact that although the feasibility
problem can be in theory solved using the best approximation
problem algorithms, this is usually not a good idea because the
latter are in practice much slower.

Alternating projection method
The simplest projection-based method for the feasibility

problem (existence of intersection) is the alternating projection
method. Let us denote the sets as A ∈ Rn and B ∈ Rn, where
n ∈ N, and projections as PA and PB. The algorithm starts with an
arbitrary value y0 ∈ X = Rn and alternately projects on A and B :

xk+1 = PA(yk), (1)

yk+1 = PB(xk+1), (2)

where k∈N. This generates sequences (xk)k≥1 ∈A and (yk)k∈N ∈
B. If the intersection of A and B is nonempty, the sequences
(xk)k≥1 and (yk)k∈N both converge to a point in the intersection
[11]. The method is illustrated in Figure 1.
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Figure 1. Illustration of the alternating projection method.
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Dykstra’s projection algorithm
Dykstra’s projection algorithm [15] is a classical projection-

based algorithm solving efficiently the best approximation prob-
lem. Roughly speaking, it iterates by projections in a clever way
such that the resulting point is a projection of the starting point on
the intersection, i.e. the result is the nearest point to the start-
ing point in the intersection. Unlike the alternating projection
method, there are intermediate steps. Complete discussion about
this type of methods can be found in [14], convergence is proved
in [12].

Dykstra’s algorithm generates sequences (xk)k≥1, (yk)k∈N,
(pk)k∈N and (qk)k∈N as follows: Set y0 ∈ X , p0 := 0, q0 := 0, and
for every k ∈ N compute

xk+1 = PA (yk + pk) , (3)

pk+1 = pk + yk− xk+1, (4)

yk+1 = PB (xk+1 +qk) , (5)

qk+1 = qk + xk+1− yk+1. (6)

The sequence (xk)k≥1 converges to the projection of y0 on the
intersection of A and B.

We illustrate the method in Figure 2. We again successively
project on both sets but in addition to what we do in the alternating
projection method, we also remember the direction vector of pro-
jection denoted p and q. Except for the first two iterations, where
the algorithm is the same as the alternating projection method,
we add the direction vectors to the last point before the point is
projected on the other set. If any of sets A and B is linear, the
corresponding direction vector is parallel to the direction of pro-
jection and the intermediate step is not needed. If both sets are
linear, Dykstra’s algorithm reduces to the alternating projection
method, using mathematical induction and

xk+1 = PA (yk + pk) = PA (yk) , (7)

yk+1 = PB (xk+1 +qk)=PB (xk+1) , (8)
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Figure 2. Illustration of the Dykstra’s projection algorithm.

Alternating direction method of multipliers
The alternating direction method of multipliers (ADMM)

[16], a variant of the augmented Lagrangian method [20, 6] with
partial updates, is a popular optimization tool to minimize the sum
of two functions

min
x

f (x)+g(Gx), (9)

where functions f and g are convex not necessarily differentiable
and G a linear operator. It consists of iteratively executing three
update steps

x ← argmin
x

f (x)+
µ

2
‖Gx− y−d‖2 , (10)

y ← argmin
y

g(y)+
µ

2
‖Gx− y−d‖2 , (11)

d ← d− (Gx− y) , (12)

where scalar µ > 0 is a parameter, y is an auxiliary variable (for
sparsity applications representing a sparse domain counterpart of
x) and d a dual variable. For G = I, both x and y converge to the
minimum of (9). As a stopping criterion, we can use the distance
of Gx and y, see discussion in [7].

ADMM for the feasibility problem
ADMM can be adapted to solve the feasibility problem con-

sidering indicator functions of the convex sets A and B. The indi-
cator function of a subset C in a space X is a function IC : X →
{0,1} defined as

IC(x) =

{
1 i f x ∈C,

0 i f x /∈C,
(13)

i.e. the value of the indicator function is 1 for all elements of C
and 0 for all elements of X not in C.

In our case, G is identity and f and g in (9) are indicator
functions of A and B, giving iterations

xk+1 = PA (yk−dk) , (14)

yk+1 = PB (xk+1 +dk) , (15)

dk+1 = dk + xk+1− yk+1, (16)

where y0 ∈ X , d0 := 0 and k ∈ N.
The method is illustrated in Figure 3. Because we start with

zero direction vector d0, the first two iterations are again the same
as in the alternating projection method or Dykstra’s method. After
getting y1, you remember the direction vector d1 = x1−y1, which
you subtract or add to a point before projecting it on A and B,
respectively. In the next step you add the vector x2 − y2 to d1
and continue analogically. In our example, the method converged
in two iterations. In practice, iterations must be stopped using a
suitable convergence criterion - either the difference between x
and y, or checking if x is in the intersection. The method finds
an arbitrary point in the intersection, not necessarily closest to the
starting point.

ADMM for the best approximation problem
ADMM can be used to solve the best approximation prob-

lem, as well. Let IA and IB be indicator functions of A and B,
respectively. Let us solve the best approximation problem as

min
x

1
2
||x− z||2 + IA(x)+ IB(x). (17)

Denoting f (x) = 1
2 ||x− z||2 + IA(x) and g(x) = IB(x) gives the

ADMM as

x ← argmin
x

IA(x)+
1
2
||x− z||2 + µ

2
‖x− y−d‖2 , (18)

y ← PB (x−d) , (19)

d ← d− (x− y) . (20)
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In the first line

1
2
||x− z||2 + µ

2
‖x− y−d‖2 = (21)

=
1+µ

2
xT x− xT (z+µ (y+d)) (22)

+
1
2
‖z‖2 +

µ

2
‖y+d‖2 (z+µ (y+d)) (23)

=
1+µ

2

∥∥∥∥x− z+µ (y+d)
1+µ

∥∥∥∥2
(24)

+
1
2
‖z‖2 +

µ

2
‖y+d‖2 . (25)

It means that the first line is still a projection and the algorithm
becomes

x ← PA

(
1

1+µ
z+

µ

1+µ
(y+d)

)
, (26)

y ← PB (x−d) , (27)

d ← d− (x− y) . (28)

Figure 4 illustrates the modified method of ADMM for µ =
1
2 .

For another modification, making ADMM approach more
symmetric, we can consider f (x) = 1

2 ||x− z||2 + IA(x) and g(x) =
1
2 ||x−z||2+ IB(x) (rigorously 1

4 but because of the indicator func-
tions, it does not matter). We get

y ← argmin
y

IB(y)+
1
2
||y− z||2 + µ

2
‖x− y−d‖2 , (29)
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Figure 3. Illustration of the alternating direction method of multipliers.
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Figure 4. Illustration of the ADMM for the best approximation problem.

which is analogous to the first case (18) and the algorithm be-
comes

x ← PA

(
1

1+µ
z+

µ

1+µ
(y+d)

)
(30)

y ← PB

(
1

1+µ
z+

µ

1+µ
(x−d)

)
, (31)

d ← d− (x− y) . (32)

This can be simplified by substitution x′ = µ

1+µ
x, analogously for

y, d and z′ = 1
1+µ

z, giving

x′ ← µ

1+µ
PA
(
z′+ y′+d′

)
y′ ← µ

1+µ
PB
(
z′+ x′−d′

)
,

d′ ← d′−
(
x′− y′

)
.

and finally recovering x = 1+µ

µ
x′.

Application in Image Processing
In this section, we show an application of the projection

methods on a simplified image processing problem. Let us as-
sume we have two JPEG images of a slightly shifted scene. The
goal is to improve the image quality using the projection methods.

JPEG compression
To understand the incorporation of the projection methods

in the algorithm, we first shortly describe the principles of JPEG
compression. JPEG uses a lossy form of compression based on
the quantization of the discrete cosine transform (DCT). The basic
workflow to create a JPEG file is as follows. First, colour images
are transformed into YCBCR colour space and then each channel
is handled separately. The next step is to downsample the chromi-
nance channels CB and CR. DCT is then performed on blocks of
usually 8× 8 pixels. Finally, this converted matrix is quantized
by a quantization table where we minimize the higher frequencies
over the lower frequencies. This stage is the main lossy part of
the algorithm.

The lossy part of JPEG compression can be expressed as

y = [QCDx] , (33)

where x is the vectorized original image, y the vector of coeffi-
cients stored in the JPEG file, Q, C and D are matrices and the
square brackets denote rounding to the nearest integer. D is a
downsampling matrix which returns the average value for every
non-overlapping window of usually 2× 2 pixels. C is a block-
diagonal matrix of the block DCT and Q is a diagonal matrix of
coefficients from the quantization table stored in each JPEG file.
We denote the coefficient vector as q, thus Q = diag(1/q) .

The fact that JPEG works on the 8×8 grid is the reason why
we need the two images to be shifted by a number of pixels not
divisible by 8, otherwise they would be identical. If the 8× 8
grids in JPEG are not aligned, we get different JPEG files which
provide complementary information that can be used to obtain an
image of higher quality.
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Denoting the coefficients in input JPEG images as vectors y1
and y2, equation (33) implies that the image x should satisfy

QCDx ∈
〈

y1−
1
2
,y1 +

1
2

)
, (34)

QCDSx ∈
〈

y2−
1
2
,y2 +

1
2

)
, (35)

where S is the operator of shift between input images. The inter-
vals in (34) and (35) are multi-dimensional intervals correspond-
ing to the rounding in (33). Equations (34) and (35) specify two
convex sets, the original image x should belong to. Therefore, the
aim is to find an image x in the intersection of the sets using the
projection methods described in the previous sections.

Experiments
In this section, we demonstrate convergence properties of the

projection methods applied on the image processing problem de-
scribed above. We used a set of 59 images of resolution 433×650
pixels. We crop the images by taking 392× 608 pixels from the
upper-left and bottom-right corners to simulate the shift. The im-
ages are saved as JPEG files using Matlab with the quality setting
of 80. The first of the images is then used as the initial image in
the projection algorithms.

All projection algorithms require the sets that we project on
to be closed. Therefore, instead of intervals (34) and (35) we work
with intervals

〈
y− 1

2 ,y+
1
2 −δ

〉
where δ is sufficiently small. We

also need the projections onto the intervals. It can be shown that
the projections can be expressed as

PQCDx∈〈y− 1
2 ,y+

1
2−δ〉(z) = z− 1

k
DTCT diag(q) · (36)

·
(

QCDz−PQCDx∈〈y− 1
2 ,y+

1
2−δ〉 (QCDz)

)
, (37)

where constant k is a downsampling factor (1/4 for 2× 2 down-
sampling) [19].

The quality of the resulting images improved on average
from 37.47db to 38.37db. This is not a big difference and in prac-
tice, the algorithm would have to incorporate stronger assump-
tions such as sparse priors. The purpose of this experiment was
to illustrate the difference in convergence between available algo-
rithms, though.

Figure 5 shows the speed of convergence for each method.
The value on y-axis is the mean error, i. e. the mean distance from
the point of convergence. As expected, Dykstra algorithm and
the ADMM for the best approximation problem follow a similar
curve, converging after about 1100 iterations. These two methods
are significantly slower than POCS, with about 380 iterations to
converge, which is in turn much slower than the ADMM for the
feasibility problem, which converged on average in 12 iterations.

Conclusion
In this paper, we compare efficiency of the classical al-

gorithm for computing points in the intersection of two sets,
POCS and Dykstra’s algorithms with the algorithms based on
the ADMM. The ADMM algorithm for the feasibility problem
is much faster than POCS, which is a well known fact from lit-
erature. The Dykstra’s algorithm is comparable with the ADMM

for the best approximation problem. In practice, it is important to
distinguish between the feasibility and best approximation prob-
lems and, if possible, to use much faster algorithms for the feasi-
bility problem. Even the simple POCS algorithm applied on the
feasibility problem is much faster than all best approximation al-
gorithms.
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