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Abstract
The paper shows that the moment invariants proposed recently in this journal by Hjouji et al. (JMath Imaging Vis 62:606–624,
2020) are incomplete, which leads to a limited discriminability. We prove this by means of circular projection of the image.
In a broader context, we demonstrate that completeness of the invariants leads to a better recognition power.
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1 Introduction

Moments and moment invariants have established a popu-
lar and widely used category of “handcrafted” features for
object description and recognition (see [1] for a compre-
hensive survey). A large amount of effort has been spent
to study moment invariants with respect to various image
degradations such as rotation, affine and projective transfor-
mations and blurring that has led to a huge number of papers
on moments and moment invariants indexed in Scopus. (We
can find there about 13,000 relevant papers published in the
period 2015–2020 and more than 30,000 in total.) Regret-
fully, most authors have focused primarily on the invariance
property of the moments while overlooking other properties
of the same practical importance, such as discriminability
and completeness. They have believed that the invariance is
the principle theoretical challenge (which is true) and that
the other properties are either of low importance or can be
assured just by increasing the order of the moments. No one
of these two assumptions is, however, true. Discriminability
and completeness of the features are in pattern recognition
as important as the invariance. Ignoring this fact resulted in
many systems of invariants, which exhibit theoretical invari-
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ance but are almost useless for applications because their
ability to classify objects/patterns is very limited.

The foundations of a systematic study of completeness
and independence of moment invariants were laid by Flusser
[2,3] in connection with rotation invariants and by Suk and
Flusser [4] in case of affine invariants. Thanks to their work,
the researchers started to understand the practical importance
of these properties. The paper by Hjouji et al. [5] that has
appeared quite recently in this journal belongs to those that
still ignore this issue. In this short paper, we take the oppor-
tunity not only to show the link between [5] and some earlier
papers but also to expose in this example that discriminabil-
ity and completeness of any features should be studied along
with their invariance if we want to get practically useful set
of descriptors.

2 Basic Terms

In this section, we introduce a few basic terms, which are
used throughout the paper. Rotation (x, y) �→ (x ′, y′) by
angle θ is a coordinate transformation given as

x ′ = x cos θ − y sin θ,

y′ = x sin θ + y cos θ.
(1)

Let {πpq(x, y)} be a polynomial basis of the image space.
Moment Mpq(x, y) of image f (x, y) is defined as

Mpq =
∞∫

−∞

∞∫

−∞
πpq(x, y) f (x, y) dx dy (2)
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that can be understood as a projection of f (x, y) onto
πpq(x, y) (provided that the integral converges). If f (x, y)
is compactly supported and piecewise continuous, then it can
be precisely reconstructed from the set of all its moments.1

Numerous moment families have been used in pattern recog-
nition, each of them providing specific pros and cons. The
choice of πpq(x, y) = x p yq yields geometric moments
μpq [6] and πpq(x, y) = (x + iy)p(x − iy)q gener-
ates complex moments cpq [2,7]. Other popular choices
are Legendre moments [8], Chebyshev moments [9], Her-
mite and Gaussian–Hermite moments [10,11], Krawtchouk
moments [12] and Gegenbauer moments [13] in Cartesian
domain, and in polar coordinates Zernike moments [14,15],
Fourier–Mellinmoments [16,17], Jacobi–Fouriermoments [18]
and Chebyshev–Fourier moments [19]. Although numerical
properties of individual moment families are different, they
are all theoretically equivalent thanks to themappingbetween
any two polynomial bases.

Moment invariant to rotation is a function F of moments
such that F(Mk, j | k, j = 0, . . . , r) = F(M ′

k, j |k, j =
0, . . . , r), where M ′

k, j stand for the moments of the rotated
image. A set of invariants F = {F1, F2, . . .} is called com-
plete, if it allows an exact recovery of all moments {Mpq}
except one, which can be chosen almost arbitrary.2 It means
that a complete set of invariants allows an exact reconstruc-
tion of the original image (provided it is compactly supported
and piece-wise continuous) up to a particular orientation.
This is a single degree of freedom, because the orientation
intrinsically cannot be captured by rotation invariants. That is
why we may freely choose the value of a single moment, by
which we actually select the orientation of the reconstructed
image. An example of the moment recovery from a complete
set of invariants is described in [3].

Using a language of pattern recognition, invariancemeans
that all images belonging to the same class should have the
same value of F . An opposite notion is the discriminability,
sometimes also called the recognition power. We say F is
discriminable if its values on images from different classes
are different from each other. In the terminology of the group
theory, where the classes are orbits of the rotation action, F
is constant along each orbit (the invariance) while never gets
the same value between the orbits (the discriminability).

One should understand the difference between discrim-
inability on one hand and invariance and completeness on
the other hand. While the first term depends on the particu-
lar set of images (image classes) we are working with in the
given application and it is meaningless without specifying
the data, the latter two terms are pure theoretical proper-

1 This statement is known asMoment Uniqueness Theorem, see [1] for
more details.
2 For some images, certain moments may be constrained to be zero or
non-zero, so the choice may not be totally free.

ties of F , totally independent of the data. There is of course
a link between completeness and discriminability. If set of
invariants F is complete, then it discriminates any data. If
F discriminates some given dataset, it does not imply its
completeness, it only means the F provides enough recog-
nition power to resolve this task. If F is not complete, then
there always exist two image classes which cannot be distin-
guished.

Flusser [2] proposed a general method which allows to
construct a complete set of rotation invariants from geomet-
ric and complex moments. In case of other moments, the
same idea can be adopted [20] or an indirect method of image
normalization into a canonical position can be used [21]. In
case of moments defined in polar coordinates, where the con-
struction of rotation invariants is much simpler, a complete
set was proposed by Wallin [15]. So, current literature offers
enough solutions to resolve the completeness problem in full
for any kind of rotation moment invariants regardless of the
particular polynomial basis used for moment calculation.

3 Recalling the Invariants by Hjouji et al.

In [5], Hjouji et al. proposed the following set of rotation
moment invariants

Φn =
n∑

k=0

(
n

k

)
μ2k,2n−2k, n = 0, 1, . . . (3)

[checkEq. (5) of [5]]. Then, they appliedGram–Schmidt-like
orthogonalization and showed that certain linear combina-
tions of {Φn} canbeviewedasmomentswith respect to anOG
basis of polynomials. The orthogonalization was applied in
order to make the computation faster and more stable thanks
to recurrent relations and to eliminate information redun-
dancy among the individual invariants. It has no influence on
invariance, completeness and discriminability because {Φn}
and the OG invariants generate exactly the same subspace of
the moment space. From this point of view, the definition of
invariants {Φn} performs the key result of [5].

Hjouji et al. concluded their paper saying that they “...
introduced invariants of infinite order .... whileHu [6] derived
only seven invariants of a finite order”. This conclusionmight
give an impression that their invariants have a very good dis-
criminability. In the next section, we show that the opposite
is true because the set {Φn} is highly incomplete.

4 Exposing the Problems

First of all, let us point out that the invariants {Φn} are the
same as complex moments. Particularly, Φn = cnn , as can
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Fig. 1 Original image of the radar tower (a) and its circular projection P f (b)

be seen directly from the definition

cnn =
∞∫

−∞

∞∫

−∞
(x + iy)n(x − iy)n f (x, y) dx dy

=
∞∫

−∞

∞∫

−∞
(x2 + y2)n f (x, y) dx dy

=
∞∫

−∞

∞∫

−∞

n∑
k=0

(
n

k

)
x2k y2n−2k f (x, y) dx dy

=
n∑

k=0

(
n

k

)
μ2k,2n−2k = Φn . (4)

So, the set of invariants {Φn} is incomplete, because instead
of a full moment matrix {ck j } (which is a complete feature
set) it contains its main diagonal only. Thanks to Eq. (4), we
can also immediately recognize that the set {Φn} is just a
small subset of (incomplete) invariants proposed by Mostafa
[7] and of the complete system by Flusser [2].

Expressing cnn in polar coordinates

cnn =
∞∫

0

2π∫

0

r2n f (r , θ)r dr dθ

provides us with the insight what image features are actually
captured by {Φn}. Let us define circular projection P f of
image function f as

(P f )(r) = 1

2π

2π∫

0

f (r , θ) dθ. (5)

This projection maps the image space onto the space of all
circularly symmetric functions (see Fig. 1). Operator P is
linear and idempotent as P(P f ) = P f . Obviously, it is
not a one-to-one mapping as many different images may be
mapped onto the same symmetric function. It is important
to note that P is a “moment preserving/vanishing” opera-
tion because c(P f )

mn = δmnc
( f )
mn , where δmn is the Kronecker

symbol.
(Detailed discussion about moments vanishing on sym-

metric patterns can be found in [22].) It means the invariants
{Φn} can be understood as complex moments of P f . On
one hand, this clearly shows their invariance (P f itself
is a rotation-invariant pattern, so all its moments must be
invariant, too) but on the other hand it explains their low dis-
criminability. The invariants {Φn} are able to discriminate
only the images having distinct circular projections. If we
have P f = Pg, then Φn( f ) = Φn(g) for any n and f and g
are not discriminable, even if they are visually very different
(see Fig. 2 for some examples). In other words, knowing an
(infinite) sequence {Φn( f )}, we can reconstruct the projec-
tion P f but not the image f itself.
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Fig. 2 Three sample pairs of images having the same circular projection, which is shown on the right. These images cannot be distinguished from
each other by invariants {Φn} even if n is taken arbitrary high. a, b The city of Prague, Czechia; d, e Low Tatra Mountains, Slovakia; g, h Jizera
Mountains, Czechia

5 Conclusion

In this paper, we showed that the invariants proposed in
[5] form a highly incomplete system, which leads to a low
recognition power.We explained this phenomenon bymeans
of circular projection of the image, the complex moments

of which are equal to the invariants from [5]. Overall, we
demonstrated the necessity of studying completeness of any
invariants onewants to use in practice, because only complete
invariant sets maximize the recognition power.
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