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ABSTRACT

The field of blind image deblurring was for a long time
dominated by Maximum-A-Posteriori methods seeking the
optimal pair of sharp image–blur of a suitable functional.
Recently, learning-based methods, especially those based on
deep convolutional neural networks, are proving effective and
are receiving increasing attention by the research community.
In 2020, Ren et al. proposed a deblurring method called
SelfDeblur which combines the model-driven approach of
traditional MAP methods and the generative power of neural
nets. The method is capable of producing very high-quality
results, yet it inherits some problems of MAP methods, espe-
cially possible convergence to a wrong local optimum. In this
paper we propose several easy-to-implement modifications of
SelfDeblur, namely suitable initialization, multiscale process-
ing, and regularization, that improve the average performance
of the original method and decrease the probability of failure.

Index Terms— blind deblurring, SelfDeblur, deep image
prior, multiscale

1. INTRODUCTION
Blind image deblurring is a long-standing image processing
problem for which hundreds of solutions have been proposed.
The task consists of recovering the sharp image correspond-
ing to the input image corrupted by an unknown blur. Let us
denote by y the observed blurred image and by x the corre-
sponding sought sharp image. If the blur is spatially invariant
within the input, it can be modeled by a convolution with an
unknown kernel k and the degradation model has the form

y = k ∗ x+ n, (1)

where n denotes observation noise. The objective is to find x
(and usually k) given y.

Vast majority of proposed solutions are formulated as the
MAP estimation of the image–blur pair (x, k), which typ-
ically results in an iterative procedure alternating over the
image- and blur-estimation [1–8]. Recently the field of im-
age deblurring has been flooded with methods based on deep-
learning, where models trained on large datasets of natural
images predict either the blur or the sharp image directly from
the blurred input [9–13]. Both approaches have their advan-
tages and disadvantages. MAP methods are rather slow, sen-
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sitive to parameter tuning, and can end up in a local opti-
mum which does not correspond to the desired or visually
appealing result. On the other hand, the efficacy of learning-
based methods depends strongly on the quality of the training
dataset and procedure; they have difficulty generalizing to un-
seen types of images or large and complex blurs.

In an attempt to mitigate some of these shortcomings, Ren
et al. [14] recently proposed a method called SelfDeblur that
combines the MAP approach with the approximation power
of neural nets. The method is based on a concept called deep
image prior, proposed earlier in [15], in which both the es-
timated image and blur are represented by a generative net
and this implicitly serves as a corresponding prior (a short
overview of this approach follows in Sec. 2.2). These nets
are not pre-trained on any datasets, they are used merely for
their structure which serves as a regularizer of the optimiza-
tion process. SelfDeblur then follows essentially the MAP
approach and, by “training” the aforementioned nets solely
on the blurred input, seeks the optimum of the posterior cor-
responding to the deblurring problem. The resulting method
is capable of achieving impressive deblurring results and re-
portedly beats many established SOTA methods on several
benchmark datasets.

Unfortunately, the method does not entirely escape some
of the typical problems inherent to MAP approach. As an it-
erative method applied to a non-convex problem, it often fails
to converge to the correct optimum. On top of that, the neu-
ral nets are randomly initialized and as a result the method is
non-deterministic – multiple runs on the same input produce
different results with a wide range in quality. In this paper
we address some of these problems and propose several easy-
to-implement modifications or usage protocols, inspired by
similar ideas used in traditional MAP methods, which do not
change to core concept of SelfDeblur or its net architecture
yet substantially improve the results in terms of quality and
consistency.

2. OVERVIEW OF THE PROBLEM

2.1. Maximum-a-posteriori image deblurring

In the MAP deblurring approach, the solution has the form

(x∗, k∗)=argmax
x,k

P (x, k | y)=argmax
x,k

P (y |x, k)P (x)P (k),

(2)
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where P (y|x, k) is the likelihood (data-driven) term and
P (x), P (k) are priors. This corresponds to the minimization
problem

min
x,k

L(x, k; y) +R(x) +R(k), (3)

whereL is the data-term (corresponding to the likelihood) and
R are regularizers (priors). Solving (3) then most commonly
results in the following alternating procedure:
1. Initialize x, k.
2. Update x by solving (3) w.r.t. x.
3. Update k by solving (3) w.r.t. k.

The optimized objective is highly non-convex, containing
many spurious local minima, which presents serious practi-
cal problems. The outlined procedure often gets trapped in
a local minimum with incorrect kernel k and, by nature of
the blur operation, deblurring with such kernel produces a
visually unpleasant image. A particularly strong minimum is
the so-called no-blur solution, in which x∗ = y and k∗ = δ
(delta function), as this optimizes the data-term. Many solu-
tions have been proposed to mitigate this problem and certain
recurring and time-tested trends can be identified, such as:

• Suitably initialize x or k [16].
• Process y in a multiscale fashion, i.e. downsample y to

a scale corresponding to small size of k, estimate x, k at
this scale level and upsample these estimates to the next
higher level to be used as initialization. Repeat until the
original scale is reached [2].

• Use regularizers designed to increase the probability of
the correct solution and possibly adjust those during the
optimization procedure [1, 4, 6, 17, 18].

• Similarly, use data-term designed to facilitate kernel esti-
mation rather than one implied by noise distribution; pos-
sibly even use a different data-term for x-estimation and
k-estimation [3].

• Perform artificial processing of the current estimate of
either k or x during optimization before estimating the
other variable. Examples include edge enhancement
(shock-filtering, unsharp-masking, over-regularization)
of x or suppression of small values in k [3, 18].

This list is by no means exhaustive but provides the general
idea of the means typically employed to make MAP deblur-
ring work.

2.2. SelfDeblur and Deep Image Prior
For an inverse problem in imaging formulated as

x∗ = argmin
x

L(x; y) +R(x), (4)

the idea of deep image prior (DIP) [15] is to reformulate (4)
as

x∗ = G(θ∗), where θ∗ = argmin
θ

L(G(θ), y). (5)

In other words, the image x is represented using a function
G (typically a generative neural net) parametrized by θ and
this representation implicitly serves as a regularizer. The net
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Fig. 1. Error of the image approximation problem (8) aver-
aged over several sharp and blurred images. Sharp images
are less easily approximated by the net and therefore are not
inherently favored over the incorrect blurred solutions.

is not pre-trained in any way, it is in fact initialized randomly
and its parameters θ optimized as a way of solving (5). After
its publication, DIP was quickly adopted and utilized in many
image processing tasks.

SelfDeblur [14] is an application of DIP in MAP image
deblurring. The problem is then reformulated as

min
θx,θk

‖Gk(θk) ∗ Gx(θx)− y‖22, (6)

s.t. 0 ≤ Gx(θx) ≤ 1 and 0 ≤ Gk(θk), ‖Gk(θk)‖1 = 1. (7)

The functions Gx and Gk are neural nets (deep multiscale
encoder-decoder and shallow fully-connected net, respec-
tively) and their architecture is such that the constraints (7)
are satisfied automatically. The optimization then consists of
a gradient-descent of (6) in the space of net parameters θx
and θk, starting from their random initialization.

Despite being essentially a direct MAP approach without
any artificial additives, the method works impressively well,
which is demonstrated in the original paper [14]. Part of its
appeal is that it does not contain any explicit blur inversion
step which normally causes visual artifacts in the image if the
blur estimation is incorrect. However, it is susceptible to the
previously discussed problems of MAP methods and has its
own shortcomings.

The core idea of DIP, as presented by its authors, is that
the generative nets Gx and Gk, by means of their structure, in-
herently favor generation of the correct x and k – supposedly
by being able to approximate e.g. a sharp image more easily
than a blurred one. In case of deblurring this premise is not
fulfilled, as can be readily demonstrated. Fig. 1 shows the ap-
proximation error of the simple problem minθx ‖Gx(θx)−y‖22
for both sharp and blurred input image y. It is apparent that
blurred images are in fact better and more easily approxi-
mated by the encoder-decoder net, so it cannot be the ap-
proximation capacity of the net that plays the role of a prior
favoring sharp images. It is probably the interplay between
the net structure (i.e. the fact that the image is optimized in
terms of θx rather than x directly) and the optimizer (Adam)
what causes that the no-blur solution is often avoided, though
there is still no guarantee that the non-convex optimization
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Fig. 2. Multiple runs on an identical input; distribution of the
result PSNR of the original SelfDeblur (red) and the proposed
modification (blue) on a random image from the test dataset.

will end up in the correct minimum. Similar phenomenon
was observed and analyzed e.g. in [19]. Another problem of
SelfDeblur is that due to the random initialization of the nets
it is strongly non-deterministic – multiple runs on the same
input produce very different results (in terms of e.g. PSNR;
see demonstration in Fig. 2) and it is therefore difficult to fine-
tune the method’s hyperparameters.

In this paper we propose several additions to SelfDeblur
that to a certain degree alleviate these problems and make the
method more consistent, without substantially increasing the
computational burden and altering the core concept or pro-
posed architecture of the original method.

3. PROPOSED SOLUTION

Inspired by the techniques outlined in Sec. 2.1 we augmented
SelfDeblur by the following techniques:
Multiscale processing We initially estimate x and k for a
2× downsampled input y, upsample these estimates by a fac-
tor of

√
2 and use them as initialization (see the next para-

graph) of the deblurring at the next higher scale, until we
reach the original input resolution (i.e. we use three scales in
total). The last scale is processed for 5000 iterations (per orig-
inal SelfDeblur implementation) while the previous scales run
for only 500 iterations, which is sufficient for initialization of
the next scale. The increase of processing time is then approx.
15 % (7.5 % if only two scales are used).
Initialization In the original SelfDeblur, the nets Gx and
Gk are initialized randomly. We propose to initialize them
such that Gx(θx) = x0 and Gk(θk) = k0 for some x0, k0, so
that the deblurring loop has a meaningful starting point. The
first (smallest) scale is initialized with k0 as Gaussian blur
of σ equal to the kernel half-width, while Gx is left random.
Each next scale is initialized with k0 and x0 corresponding to
upsampled estimates from the previous scale. To initialize the
parameters of the net, the following problem must be solved

min
θx
‖Gx(θx)− x0‖22 (8)

(and correspondingly for Gk). This optimization converges
quickly to an acceptable tolerance (we use RMSE=10/255

for Gx and correspondingly scaled value for Gk).

Regularization The loss of the original SelfDeblur con-
sists only of the data-term measuring the degradation model
error k ∗ x − y. This error is measured either by its `2 norm
as in (6) or by SSIM [20] as SSIM(x ∗ k, y). This is not men-
tioned in the original paper and on the other hand the paper
mentions regularizing the image by total variation (TV) – it
can be seen in the code, however, that TV is removed and the
data-term is switched from `2 to SSIM after 1000 iterations.

We learned that using TV for image regularization strongly
pushes the optimization to the no-blur solution, but it can im-
prove the image quality when the optimization is already
close to the correct solution – we therefore use TV after 2000
iterations in the last scale. In addition, we use `2 regulariza-
tion for the kernel values in the initial part of the optimization,
as this increases the loss of the no-blur solution (the kernel
values sum to 1, therefore `2 is decreased when the ker-
nel contains many small values rather than few large). To
summarize, we replace the problem (6) by

min
θx,θk

L (Gk(θk) ∗ Gx(θx); y)+αx‖∇Gx(θx)‖1+αk‖Gx(θx)‖22,
(9)

where L is `2 if iter < 2000, SSIM otherwise, αx = .01 if
iter > 2000, 0 otherwise, and αk = .1 if iter < 2000, 0
otherwise.

The deblurring optimization procedure is identical to that
of SelfDeblur. The proposed modifications are simple in their
implementation and the original code then requires only a few
changes. In the next section we demonstrate their practical
effect.

4. EXPERIMENTAL EVALUATION

We tested the proposed modification and compared its per-
formance to that of the original SelfDeblur method on a
dataset of images with synthetic blur. Eight images from the
Kodak dataset [21] were each blurred with eight different
blur kernels, resulting in 64 test images in total. Because
the method is non-deterministic, each of these inputs was
processed ten times. To better demonstrate the behavior of
the tested methods, instead of reporting only the mean result
we present the results in the form of a distribution of the
restoration performance on the whole dataset, as this better
illustrates the spread and modes of the method performance.
Also, we report the performance in terms of ISNR (improve-
ment in PSNR w.r.t. the input), otherwise results for inputs
of different difficulty would be compared absolutely, which
is incorrect. The corresponding distribution is in Fig. 3. It is
apparent that the modified method in general performs better
(the whole distribution is shifted to the right), the mode of
complete fails (subzero or near-zero results) is lower while
the mode of great successes (over +5dB improvement) is
significantly more prominent. The numerical results in terms
of mean ISNR and mean standard deviation (across identical
inputs) is in Tab. 1. Due to the proposed modifications the
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Fig. 3. Distribution of result ISNR (improvement in PSNR
w.r.t. the input) on the Kodak test dataset; the original Self-
Deblur (red) and the proposed modification (blue).

deblurring method achieved significantly better performance
in average with even slight decrease in the randomness of re-
sults (naturally, the randomness can be attenuated by suitable
regularization but that in turn compromises the top achievable
performance).

The proposed modification was also tested on the well-
known dataset of real-blurred images by Levin et al. [22], on
which the original SelfDeblur method was developed and pre-
sented. The original method already performs very well on
this dataset, yet the modification still slightly improves the
mean performance, as can be seen in Tab. 1. Examples re-
sults are in Fig. 4, which contains the best (left) and the worst
(right) results (in terms of ISNR) of the proposed method on
the Levin dataset.

Kodak dataset Levin dataset
Method ISNR Std. dev. ISNR Std. dev.
Original SD 2.48 dB 2.52 7.62 dB 1.36
Proposed 5.49 dB 2.12 8.23 dB 1.21

Table 1. Mean performance of the original method and the
proposed modification on the synthetic Kodak dataset and real
Levin dataset. The proposed modifications substantially im-
prove the restoration performance with even slight decrease in
randomness on the synthetic set; on the real set the improve-
ment is less significant but still there.

4.1. Other attempted modifications
To make our contribution more complete, we will also list and
briefly describe other modifications, mostly based on tech-
niques that were previously successfully used in traditional
MAP deblurring, which proved ineffective or detrimental
when combined with deep image prior in the optimization
framework utilized in SelfDeblur.
Image over-regularization It has been relatively common
in MAP to apply strong image regularization during the initial
iterations and decrease it slowly to its natural value through-
out the optimization. We observed that with SelfDeblur this
results in very quick convergence to the no-blur solution.
Overuse of multiscale In MAP it is common to start with
very small kernels (3 × 3 or 5 × 5) and use many multiscale

ISNR 13.1 dB ISNR 3.6 dB
Fig. 4. The best (left) and the worst (right) result of the pro-
posed method on the Levin dataset of images with real blur;
the top row contains input images, the bottom row are results.

levels to reach the original resolution. We observed that for
too small kernel the method again tends to converge to the
no-blur solution from which it does not escape. We therefore
advocate using larger initial kernels (the smallest we used is
7× 7) and then fewer multiscale levels are required.

Image pre-filtering It was proposed by Xu et al. [3] and
then adopted by many authors to artificially enhance edges in
the current image estimate before the kernel-estimation step
in the optimization loop. We tried applying shock-filtering
to the image and while the technique slightly decreases the
probability of no-blur or similarly “underestimated” solution,
in average on the whole test set it did not help and produced
slightly inferior results.

Combined SSIM and `2 loss Using SSIM as the data-term
in the loss function instead of `2 can significantly improve the
results (and it is surprising that such finding was not reported
by the authors of SelfDeblur), but in certain cases the opti-
mization starts to deteriorate after switching from `2 to SSIM
and the deblurring fails. We experimented with combining
SSIM and `2 but were not successful in getting the “best of
both worlds.” Depending on hyperparameters, the optimiza-
tion behaves either like `2 or SSIM alone.

5. CONCLUSION

We proposed and evaluated several modifications of the Self-
Deblur method by [14]. These modifications are simple to
implement and increase the processing time only minimally
while improving the average performance and consistency of
the original method. They do not alter the core principle of
the original method nor do they depend on or modify the ar-
chitecture of the nets, which makes them universal and not
particular to the SelfDeblur implementation.
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