
International Journal of Computer Vision (2021) 129:2583–2604
https://doi.org/10.1007/s11263-021-01480-w

Tracking by Deblatting

Denys Rozumnyi1,2 · Jan Kotera3 · Filip Šroubek3 · Jiří Matas1

Received: 29 December 2019 / Accepted: 12 May 2021 / Published online: 22 June 2021
© The Author(s) 2021

Abstract
Objects moving at high speed along complex trajectories often appear in videos, especially videos of sports. Such objects
travel a considerable distance during exposure time of a single frame, and therefore, their position in the frame is not well
defined. They appear as semi-transparent streaks due to the motion blur and cannot be reliably tracked by general trackers.
We propose a novel approach called Tracking by Deblatting based on the observation that motion blur is directly related
to the intra-frame trajectory of an object. Blur is estimated by solving two intertwined inverse problems, blind deblurring
and image matting, which we call deblatting. By postprocessing, non-causal Tracking by Deblatting estimates continuous,
complete, and accurate object trajectories for the whole sequence. Tracked objects are precisely localizedwith higher temporal
resolution than by conventional trackers. Energy minimization by dynamic programming is used to detect abrupt changes of
motion, called bounces. High-order polynomials are then fitted to smooth trajectory segments between bounces. The output is
a continuous trajectory function that assigns location for every real-valued time stamp from zero to the number of frames. The
proposed algorithm was evaluated on a newly created dataset of videos from a high-speed camera using a novel Trajectory-
IoU metric that generalizes the traditional Intersection over Union and measures the accuracy of the intra-frame trajectory.
The proposed method outperforms the baselines both in recall and trajectory accuracy. Additionally, we show that from the
trajectory function precise physical calculations are possible, such as radius, gravity, and sub-frame object velocity. Velocity
estimation is compared to the high-speed camera measurements and radars. Results show high performance of the proposed
method in terms of Trajectory-IoU, recall, and velocity estimation.

Keywords Fast moving objects ·Visual object tracking ·Deblatting ·Deblurring ·Trajectory estimation ·Energyminimization

1 Introduction

The field of visual object tracking has received considerable
attention in recent years; see (Wu et al. 2013; Kristan et al.
2016, 2019). The developed techniques cover many prob-
lems. Various methods were proposed, such as single object
tracking in (Lukežič et al. 2017; Danelljan et al. 2014; Vojíř

Communicated by Simone Frintrop.

This work was supported by the Czech Science Foundation grant
GA18-05360S, the Czech Technical University student grant
SGS17/185/OHK3/3T/13, and by the Praemium Academiae awarded
by the Czech Academy of Sciences. D. Rozumnyi was also supported
by Google Focused Research Award.

B Denys Rozumnyi
rozumden@cmp.felk.cvut.cz; denys.rozumnyi@inf.ethz.ch

Jan Kotera
kotera@utia.cas.cz

Filip Šroubek
sroubekf@utia.cas.cz

et al. 2013; Tang et al. 2018) and multi-object tracking that
employ the tracking-by-detection paradigm in (Hornakova
et al. 2020; Braso and Leal-Taixe 2020). Other methods
include long-term tracking as in (Lukežič et al. 2019), meth-
ods with re-detection and learning in (Kalal et al. 2012;
Mueller et al. 2016; Moudgil and Gandhi 2017; Tao et al.
2017), multi-view methods in (Kroeger et al. 2014), and
multi-camera in (Ristani and Tomasi 2018).

Jiří Matas
matas@cmp.felk.cvut.cz

1 Visual Recognition Group, Department of Cybernetics,
Faculty of Electrical Engineering, Czech Technical University
in Prague, Prague, Czech Republic

2 Department of Computer Science, ETH Zurich, Zurich,
Switzerland

3 The Czech Academy of Sciences, Institute of Information
Theory and Automation, Prague, Czech Republic

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11263-021-01480-w&domain=pdf
http://orcid.org/0000-0001-9874-1349

2584 International Journal of Computer Vision (2021) 129:2583–2604

Fig. 1 Trajectory reconstruction starts with causal Tracking by Deblat-
ting (TbD, left), followed by non-causal Tracking by Deblatting
(TbD-NC, middle). Color denotes trajectory accuracy, from red (com-
plete failure) to green (high accuracy). The ground truth trajectory from

high-speed camera is shown in yellow. Speed estimates are shown on
the right. Ground truth speeds (olive) are noisy due to discretization
and TbD speed estimation (lightgray) is inaccurate, which is fixed by
TbD-NC (purple) (Color figure online)

Detection and tracking of fast moving objects is an under-
explored area of tracking. In a paper focusing on tracking
objects that move very fast with respect to the camera,
(Rozumnyi et al. 2017) presented the first algorithm that
tracks such objects, i.e. objects that satisfy the Fast Mov-
ing Object (FMO) assumption – the object travels a distance
larger than its size during exposure time. However, this
method operates under restrictive conditions – the motion-
blurred object should be visible in the difference image, and
trajectories in each frame should be approximately linear.
The first FMO dataset introduced by (Rozumnyi et al. 2017)
contains only ground truth masks without trajectories, and
it cannot be used to evaluate trajectory accuracy. Deblur-
ring of FMOs also appeared in the paper by (Kotera and
Šroubek, 2018), focusing only on deblurring without taking
into account tracking or detection.

General trackers, both long and short term, provide infor-
mation about the object location in a frame in the form of a
single rectangle, e.g. in the VOT challenge by (Kristan et al.
2019). The true, continuous trajectory of the object center
is thus sampled with the frequency equal to the video frame
rate. For slowmoving objects, such sampling is adequate. For
fast moving objects, especially if their trajectory is not linear
(due to bounces, gravity, friction), a single location estimated
per frame cannot represent the true trajectory well, even if
the fast moving object is inside the reported bounding box.
Moreover, general trackers typically fail even in achieving
that as was shown in (Rozumnyi et al. 2017).

Tracking methods that consider motion blur have been
proposed in (Wu et al. 2011; Seibold et al. 2017; Ma et al.
2016), yet there is an important distinction between models
therein and the problem considered here. Unlike in the case
of object motion, blur is assumed to be caused by camera
motion that creates blur affecting the whole image without
alpha blending of the tracked object with the background.

We propose a novelmethodology for tracking fast-moving
blurred objects. The approach untangles the image forma-

tion by solving two inverse problems:motion deblurring and
image matting. We therefore call the method Tracking by
Deblatting, TbD in short. The deblatting procedure simulta-
neously recovers the trajectory of the object, its shape, and
appearance. This is formulated as an optimization problem,
which is then solved using the Alternating Direction Method
of Multipliers (ADMM); see (Boyd et al. 2011). We intro-
duce a strong prior on the blur kernel and force it to lie on a
1D curve that represents the object trajectory within a frame.
Unlike a standard general tracker, TbD does not need a tem-
plate of the object since the representation of the shape and
appearance of the object is recovered on the fly. Experiments
show that the estimated trajectory is often highly accurate;
see Fig. 1.

TbD is formulated as causal processing of video frames,
i.e. the trajectory reported in the current frame is estimated
using only information from previous frames. Applications
of detection and tracking of fast moving objects do not
usually require online and causal processing. We therefore
also study non-causal Tracking by Deblatting that estimates
continuous trajectory for thewhole sequence by fitting piece-
wise polynomial curves. Non-causal trajectory estimation is
more robust and brings advantages, such as complete and
accurate trajectories, which are among TbD limitations, e.g.
failures at contact with a player or missing detection. We
show that the non-causal analysis of FMOs leads to accurate
estimation of FMO properties, such as nearly uninterrupted
trajectory, velocity, and shape, which can be further used
in applications of temporal super-resolution, object removal,
and gravity estimation.

The paper makes the following contributions:

– We propose Tracking by Deblatting (TbD) to estimate
intra-frame object trajectories that solves an inverse prob-
lem of deblurring and image matting.

– We introduce a global non-causal method, called TbD-
NC, for estimating continuous object trajectories by

123

International Journal of Computer Vision (2021) 129:2583–2604 2585

optimizing a global criterion on thewhole sequence. Seg-
ments without bounces are found by an algorithm based
on dynamic programming, followed by fitting of polyno-
mials using linear least squares. Recovered trajectories
give object location as a function of continuous time.

– Compared to the causal tracker, TbD-NC reduces by a
factor of 10 the number of frames where the trajectory
estimation completely fails.

– We show that TbD-NC increases the precision of the
recovered trajectory to a level that allows good estimates
of object velocity and size. Fig. 1 shows an example.

– We derive an effective solution of the proposed constraint
optimization problemby the alternating directionmethod
of multipliers (ADMM, Sect. 2.1).

This work is an extension of our earlier conference pub-
lications (Rozumnyi et al. 2019) and (Kotera et al. 2019).
Some parts have been reported in Master Thesis by (Rozum-
nyi 2019). In addition to the earlier versions, we improve the
loss function in the dynamic programming part and introduce
an extended TbD dataset that contains slower motions. To
handle such slower motions, we additionally improve poly-
nomial curves fitting. We also include experimental results
in case of all-speed tracking. We further study the influence
of rotation and polynomial degree on the performance of the
proposed method.

The paper is organized as follows. In Sect. 2, the core
idea of TbD is introduced including the concept of causal
long-term tracking; details of the deblatting optimization
problem are deferred to appendix. Sect. 3 introduces the non-
causal extension of TbD and presents trajectory estimation
for thewhole video sequence.Usedparameters and algorithm
settings are explained in Sect. 4. Experiments are divided
into three sections: Sect. 5 provides quantitative evaluation,
Sect. 6 demonstrates the ability of TbD to track objects of
varying speed, and Sect. 8 illustrates applications of object
speed and radius estimation, gravity estimation, and tem-
poral super-resolution. Running time is reported in Sect. 7.
Limitations are discussed in Sect. 9, and the paper is con-
cluded in Sect. 10. Efficient Python (for CPU) and PyTorch
(for speed-up on GPU) implementations are open-sourced.1

2 Tracking by Deblatting

The proposed method formulates tracking as an inverse
problem. Consider a single color video frame I : D → R

3

defined on a rectangular domain D ⊂ R
2, which is either of

size of the video frame or of a small region of interest. In the
frame I , an object F : Do → R

3 moves along a continuous

1 https://github.com/rozumden/deblatting_python.

Fig. 2 The image formation model, Eq. (1). Top: known variables –
video frame I with the blurred object (left) and background image B
(right). Middle: estimated variables – motion blur H and the object
model (sharp object and shape mask). Bottom: the first and second
terms of Eq. (1). Note that blur H covers the same domain D as the
input video frame and effectively encodes the position of the object in
the image. Trajectory C(t) is a piece-wise polynomial curve fitted to the
blur. Object appearance F and its shape mask M are defined on domain
Do � D

trajectory C(t): [0, 1] → D in front of background B: D →
R
3. The size of the object domain Do is assumed to be much

smaller than the size of D. The frame formation model then
becomes

I = H ∗ F + (1 − H ∗ M)B, (1)

where ∗ denotes convolution, H : D → R is a blur kernel,
and M : Do → R is the binary mask of the object shape
(i.e. the indicator function of F). We refer to the pair (F, M)

as the object model. The mutual relation between the blur
kernel H and the trajectory C is defined as follows: the blur
is the image of the trajectory rendered into the domain D,

123

https://github.com/rozumden/deblatting_python

2586 International Journal of Computer Vision (2021) 129:2583–2604

Table 1 The most important variables

Var. Domain Description

N ∈ N Number of frames

D ⊂ R
2 Image domain

Do ⊂ D ⊂ R
2 Object domain

I D → R
3 Input image

B D → R
3 Background

F Do → R
3 Object appearance

M Do → R Object mask

H D → R Blur kernel

C(t) [0, 1] → D Parametric trajectory

C f (t) [0, N] → D Full trajectory (Sect. 3)

P N → N Discrete trajectory (Sect. 3)

ε ∈ [0, 1] ⊂ R Exposure fraction (Sect. 3)

i.e. H(x) = ∫ 1
0 δ(x − C(t))dt for x ∈ D, where δ(x − C(t))

is the delta function at position C(t), and the trajectory is a
piece-wise polynomial curve fitted to the blur. The first term
of the formation model is the tracked object blurred by its
own motion, and the second term is the background partially
occluded by the object with blending coefficients given by
H∗M .Apictorial explanationof the formationmodel (1) is in
Fig. 2. Inference in this formation model consists of solving
simultaneously two inverse problems: blind deblurring and
image matting. The solution is the estimated blur kernel H
and the object model (F, M). The most important variables
used in the manuscript are summarized in Table 1.

Motion blur in (1) is modeled by convolution, which
implies an assumption that the object model remains con-
stant during the frame exposure time. Scenarios that satisfy
the assumption precisely are, e.g., an object of arbitrary shape
undergoing only translational motion or a spherical object of
uniform color undergoing arbitrary motion under spatially-
uniform illumination. The object motion must be in a plane
parallel to the camera image plane to guarantee constant size
of the object. In addition, the model assumes that the back-
ground in the close vicinity of the object location (H∗M > 0)
is also constant during the frame exposure time. For the pur-
pose of tracking and trajectory estimation, we claim that the
formation model (1) is sufficient as long as the assumptions
hold at least approximately, which is experimentally vali-
dated on the presented dataset.

The proposedTbDmethod is iterative and processes a new
frame Ii+1 in a causalmanner using only knowledge acquired
from earlier frames I1, . . . , Ii ; see Fig. 3 (shaded area) for
an overview. Inputs are the current estimates of the object
model Fi and Mi , background Bi , and a region of interest Di

in Ii+1, which is the neighborhood of the predicted object
location. Three main steps are performed in TbD:

Fig. 3 Long-term Tracking by Deblatting (Sect. 2). The FMO detec-
tor (FMOd – top left box) is activated during initialization or if the
consistency check fails

Fig. 4 Deblatting, i.e. deblurring and matting – Sect. 2.1, with trajec-
tory fitting – Sect. 2.2

1. Deblatting: Iteratively solve blind deblurring and matting
in the image region Di usingmodel (1) and estimate F ′

i+1,
M ′

i+1, and H ′
i+1; see Sect. 2.1.

2. Trajectory fitting: Estimate physically plausible motion
trajectory (parametric curve) C′

i+1 corresponding to H ′
i+1

and optionally adjust Di according to C′
i+1; see Sect. 2.2.

3. Consistency check & model update: Verify that the error
of the mapping H → C is below threshold τ , predict the
new region of interest Di+1 for the next frame, and update
the object model to Fi+1 and Mi+1.

A more detailed illustration of Steps 1 and 2 is in Fig. 4.
Step 1 stops after reaching either a given relative tolerance or
a maximum number of iterations. Steps 1 and 2 are repeated
only if the newly fitted trajectory C touches the boundary of
the image domain D – in this case the new domain is the d-
neighborhood of trajectory C where d is the object diameter.
This approach helps to eliminate the detrimental influence of
other moving objects on the blur kernel estimation.
Consistency checkThe consistency check (CC) represents the
newly fitted curve C′

i+1 as a blur kernel andmeasures an error
between this blur kernel and H ′

i+1 estimated in the deblatting
step.TheCCpasses if the error is below the threshold τ . Then,
the estimated trajectory is extrapolated to the next frame, and
Di+1 becomes the new d-neighborhood of the extrapolation.

123

International Journal of Computer Vision (2021) 129:2583–2604 2587

To update the object model we use exponential forgetting

Fi+1 = γ Fi + (1 − γ)F ′
i+1 (2)

and similarly for Mi+1.
To enable long-term tracking, the FMO detector (FMOd)

from (Rozumnyi et al. 2017) determines the new input if CC
fails. First, FMOd tries to detect the object in an gradually
enlarged D. If it succeeds, the main TbD pipeline is reinitial-
ized with D set as a neighborhood of the FMOd detection.
If FMOd fails, TbD returns the extrapolation of trajectory Ci
as the best guess of Ci+1 and tracking is restarted anew on
the next frame. The background Bi is estimated as a tempo-
ral median of frames Bi−1, Bi−2, . . ., optionally including
video stabilization by homography fitting if necessary. The
first detection is also performed automatically by FMOd.We
consider color images in this work. The median operator
as well as convolutions are performed on each color chan-
nel separately. The object appearance model is learned “on
the fly” starting trivially with uniform F0 ≡ 1, M0 ≡ 1,
equivalent to a white square. Alternatively, the user provides
a template of the tracked object, e.g. a rectangular region
from one of the frames where the object is still.

More details of deblatting and trajectory fitting are pro-
vided in the next two subsections.

2.1 Deblatting

The core step of TbD is the extraction of motion informa-
tion H from the input frame, which we formulate as a blind
deblurring and matting problem. Inputs are the frame I ,
domain D, background B, and previously estimated (or ini-
tially selected by the user) object appearance F̂ . The inverse
problem corresponding to (1) is formulated as

min
F,M,H

1

2
‖H ∗ F + (1 − H ∗ M)B − I‖22

+λ

2
‖F − MF̂‖22 + αF‖∇F‖1 + αH‖H‖1 (3)

s.t. 0 ≤ F ≤ M ≤ 1 and H ≥ 0 in D, H ≡ 0 elsewhere. The
first term in (3) is fidelity to the acquisition model (1). The
second λ-weighted term is a form of “template-matching”,
an agreement with the prescribed appearance. The template
F̂ is multiplied by the shape mask M because if F̂ is initially
supplied by user as a rectangular region from a video frame,
it contains both the object and the surrounding background.
The template is used to establish the scale of the object
(denoted by Do) and the appearance model (F, M). When
processing the i-th frame, we set F̂ = Fi−1 as the updated
appearance estimate (2) from the previous frame. The first
L1 term is the total variation that promotes smoothness of the

recovered object appearance. The second L1 regularization
penalizes non-sparse blurs.

If M is a binary mask, as initially defined, then the con-
dition F ≤ M states that F cannot be nonzero where M is
zero – pixels outside the object must be zero. Formally, it
means that the support of F is contained in the support of
M . However, we relax the binary restriction and allow M to
attain fractional values in the range [0, 1]. Such relaxation is
beneficial for computational reasons and accounts for mixed
pixels on object borders or for artifacts such as shadows. In
the relaxed setting we consider the appearance model as an
RGBA image where RGB channels are stored in F , and the
alpha channel A is stored in M . The constraint correspond-
ing to this relaxation is then F ≤ M , assuming the intensity
range of F alone limited to [0, 1]. The inequality constraint
H ≥ 0 prohibits unphysical negative values of H . The blur
must also vanish outside its feasibility domain D.
Alternating minimization We solve (3) by minimizing in a
coordinate-descend manner with respect to H and (F, M)

separately. The whole deblatting procedure then consists of
the following steps:

1. Initialize M := Mi−1 (if available from previous detec-
tion) or M ≡ 1; initialize F̂ := Fi−1, F := MF̂ .

2. Fix (F, M) and update H by solving (15).
3. Check convergence, exit if satisfied.
4. Fix H and update (F, M) by solving (21), go to 2.

All the optimization details are provided in Appendix 1. The
minimization w.r.t. H is stated in (15), and w.r.t. (F, M) is
stated in (21).

Examples of the deblatting alone are in Figs. 5 and 6. Fig. 5
contains from left to right: the cropped input frame, the corre-
sponding frame from the high-speed camera, estimated blur
kernel H , and estimated object model (F ,M). In the top row,
we see that the shape of the badminton shuttlecock, though
not circular, is estimated correctly. In the bottom row, we see
that if the non-uniform object undergoes only small rotation
during motion, the appearance estimation can also be good.
In this case, the shape estimation is difficult due to the mostly
homogeneous background similar to the object. Fig. 6 illus-
trates an interesting example of deblatting behavior in the
case of a shadow. The input frame with an object casting a
shadow is in the top left corner, and the corresponding part
from the high-speed camera is below. If we set the size of
F too small, the model cannot cope with the shadow, and
the estimated blur contains artifacts in the locations of the
shadow as is visible in the top row. If instead we make the
support of F sufficiently large, the estimated mask compen-
sates for the shadow, and the estimated blur is clean as shown
in the bottom row.

123

2588 International Journal of Computer Vision (2021) 129:2583–2604

Fig. 5 Deblatting examples (top row - shuttlecock, bottom row - volley-
ball). From left to right: the input image I , the corresponding highspeed
camera frame; estimated blur H , estimated appearance F , and shape
M

Fig. 6 Shadow and blur estimation: single example showing different
shadow effects. Top (undersized domain): the domain of F is set too
small and the shadow causes artifacts in H . Bottom (oversized domain):
the domain of F is larger, M can compensate for the shadow and the
blur H is estimated correctly

2.2 Trajectory Fitting

Fitting the blur kernel H , which is a gray-scale image, with
a trajectory C(t): [0, 1] → R

2 serves three purposes. First,
we use the error of the fit in the Consistency Check to deter-
mine if H is the motion blur induced by the tracked object
and thus whether to proceed with tracking, or to declare the
deblatting step a failure and to reinitialize it with different
parameters. Second, the trajectory as an analytic curve can
be used for motion prediction whereas H cannot. Third, C
defines the intra-frame motion, which is the desired output
of the proposed method.

The fitting is analogous to vectorization of raster images.
It is formulated as the maximum a posteriori estimation of
the parametric trajectory C, given blur kernel H , with the
physical plausibility of the trajectory used as a prior. Let C
be a curve defined by a set of parameters θ (e.g. polynomial
coefficients) and HC be a raster image of the corresponding
trajectory C – calculated by rendering the curve into the dis-

crete image. We say that the curve C is the trajectory fit of
H if θ minimizes

min
θ

‖HC − H‖ s.t. C ∈ 	, (4)

where 	 is the set of admissible curves.
We assume that in each frame, the tracked object is in free

flight except for a possible bounce or impulse from other
objects and the environment.We thus define	 as a set of con-
tinuous piece-wise quadratic curves – quadratic to account
for acceleration due to gravity and piece-wise to account for
abrupt change of motion during bounces. The curve C ∈ 	,
C : [0, 1] → R

2 is defined as

C(t) =
{∑2

k=0 c1,k t
k 0 ≤ t < t̃,

∑2
k=0 c2,k t

k t̃ ≤ t ≤ 1,
(5)

s.t.
∑2

k c1,k t̃
k = ∑2

k c2,k t̃
k . Parametrization of the non-

smooth point (bounce) is denoted by t̃ . Since the variable
t represents merely the curve parametrization and does not
correspond to any physical quantity, such as curve length
or exposure time, we can fix t̃ to any suitable value (e.g.
1/2), and the corresponding polynomial coefficients are then
calculated accordingly.When the fitting is done, we reparam-
eterize coefficients c such that the length proportions w.r.t. t
are correct. Single linear or quadratic curves are considered as
special case for which it formally holds: t̃ = 1 and c2,k ≡ 0.
Problem (4) is non-convex, and thus a good initial guess is
important for gradient-descent optimization to perform well.
To this end, we employed a four-step procedure:

1. Identify the most salient linear and quadratic segments in
H by RANSAC.

2. Connect segments to form a curve C of the kind (5).
3. Refine C to be a locally optimal fit of H in terms of point-

wise distance.
4. Calculate the loss (4) and choose the best candidate.

See Fig. 7 for illustrations of the above steps.

Step 1 – Identify Let us view the blur H as a set of pixels with
coordinates x j and intensities w j > 0. Sequential RANSAC
finds line segments as follows: sample two points, find inliers
of the corresponding line, find the most salient consecutive
run of points on this line, and in each round remove the win-
ner from the sampling pool. The saliency is defined as the
sum of pixel intensities in the inlier set. The estimated blur H
sometimes contains gaps, deviating from the expected con-
tiguous line. We therefore relax the term “consecutive” and
allow discontinuities of maximum 2 pixels between points
on the line. The search stops when there are no more points
to sample from, or when the saliency of any new potential
segment falls below one percent of the total intensity of all

123

International Journal of Computer Vision (2021) 129:2583–2604 2589

Fig. 7 Trajectory fitting. Left input image with estimated blur super-
imposed in white, middle linear and parabolic segments found by
RANSAC, right final fitted trajectory

points. This stopping criterion helps to avoid unnecessary
processing, which would anyway improve the line segment
only negligibly. We denote the set of collected linear seg-
ments asM1. Parabolic arcs are found similarly. We sample
four points, find two corresponding parabolas, and project the
remaining points on the parabolas to determine the distance,
the inlier set, and the arc-length parametrization of inliers
(required for correct ordering andmutual distance calculation
of inliers). Then, we again find the most salient consecutive
run. We denote the set of collected parabolic segments as
M2.

Step 2 – Connect The solution will be close to a curve formed
from one or two segments (linear or parabolic) found so far.
Let C1, C2 ∈ M1 be two linear segments. If the intersection
P of the corresponding lines is close to the segments (w.r.t.
some threshold), the curve connecting C1 → P → C2 is a
candidate for the piece-wise linear trajectory fit. This waywe
construct a set M3 of all candidate and similarly M4 with
candidates of parabolic pairs.

Step 3 – Refine Curves in M = ⋃Mi are approximate
candidates for the final trajectory, yet we first refine them
to be locally optimal robust fits to H . Let the blur kernel
H be interpreted as a set of pixels at coordinates x j with
nonzero intensities w j . We say that a curve C defined by a
set of parameters θ is locally optimal fit to {x j } if θ is the
minimizer of the problem

min
θ

∑

x j∈K
wi dist(x j , C) + λd

∫ 1

0
dist(C(t), {x j })dt (6)

where K = {x j | dist(x j , C) < ρ}, dist(x, C) is the distance
of the point x to the curveC anddist(C(t), {x j }) is the distance
of the curve point C(t) to the set {x j }. In the first term, K is
a set of inliers defined by the distance threshold ρ, and C is

the distance-optimized fit to inliers. The second term restricts
curve length. Ideally, the estimated blur kernel H is a curve
1px thick. Therefore, the inlier threshold ρ should be close
to one. We set ρ = √

2, which is the maximum distance of
neighbors in the standard 8-connected neighborhood.

The gradient of (6) is intractable since the distance of
a point x to a non-convex set (in our case the curve C)
is intractable. We therefore resort to a procedure similar
to the Iterative Closest Point (ICP) algorithm. We refine
every curve in M by solving (6) with the ICP-like algo-
rithm. In each iteration, we fix the currently closest curve
counterpart y j = C(t j) for each point x j by solving the
equation t j = argmint dist(x j , C(t)), and in (6) we approxi-
mate dist(x j , C) ≈ ‖x j − y j‖. We proceed analogically for
dist(C(t), {x}). Then, Eq. (6) becomes a tractable function
of θ . We find the solution using the Iteratively Re-weighted
Least-Squares algorithm and proceed with the next iteration
of ICP. The algorithms converges in a few iterations, and the
optimization is fast.

Step 4 – Finalize For each refined curve C ∈ M, we con-
struct HC , measure the error ‖HC − H‖, and choose the best
candidate as the trajectory fit Ci (t) : [0, 1] → R

2 of the
current frame Ii . The TbD Consistency Check is performed
after every deblatting loop (Fig. 3) by evaluating the criterion
of the best trajectory fit Ci

‖HCi − Hi‖/‖Hi‖ < τ. (7)

The goal of TbD is to produce a precise intra-framemotion
trajectory, and not only a single position per frame in the
form of a bounding box. Fig. 7 shows examples of trajec-
tory estimation. The left column is the input image with the
estimated blur kernel superimposed in white, and the right
column shows the estimated motion trajectory. The efficacy
of trajectory fitting is a crucial part of the framework. The
estimated blur can contain various artefacts (e.g. in the top
example due to the ball shadow), and the trajectory fit still
recovers the actual motion.

The TbD outputs are individual trajectories Ci ’s and blur
kernels Hi ’s in every frame. The outputs serve as inputs to
the proposed non-causal TbD method.

3 Non-Causal Tracking by Deblatting

TbD-NC is based on post-processing of individual trajec-
tories from TbD. The final output of TbD-NC consists of
a single trajectory C f (t): [0, N] ⊂ R → R

2, where N is
a number of frames in the given sequence. The function
C f (t) outputs precise object location for any real num-
ber between zero and N . Each frame is assumed to have
unit duration, and the object in each frame is visible only

123

2590 International Journal of Computer Vision (2021) 129:2583–2604

for duration of exposure fraction ε ≤ 1. The sequence is
divided into S segments defined by timestamps ts’s such that
0 = t0 < t1 < ... < ts < ... < tS−1 < tS = N . Splitting
into segments is discussed in Sect. 3.1. Similarly to poly-
nomial fitting in TbD (Sect. 2.2), C f (t) is represented as a
piece-wise polynomial function

C f (t) =

⎧
⎪⎪⎨

⎪⎪⎩

∑d1
k=0 c̄1,k t

k 0 ≤ t < t1,
...

...
∑dS

k=0 c̄S,k tk tS−1 ≤ t ≤ N ,

(8)

In each segment s, we fit x and y polynomials of degree
ds with coefficients c̄s := {c̄s,k |k = 0, . . . , ds}, where
c̄s,k ∈ R

2 are coefficients of the k-th degree. Unlike in TbD
trajectory fitting (5), where we assume at most two quadratic
polynomials (S = 2, ds = 2), here the number of polynomi-
als is equal to the number of segments S, which is typically
more than 2, and the degree ds in each segment can differ.
The degree depends on the number of frames in the segment,
i.e. ts − ts−1, as explained in Sect. 3.2. We also enforce the
final trajectory be continuous, and the segment endpoints be
consistent within the whole trajectory.

Polynomials of degree twomodel only free falling objects
under the gravitational force and were sufficient for fitting
short curves in TbD. However, when fitting curves spanning
longer time intervals, forces such as air friction andwind start
to be noticeable. These forces can be approximated by Tay-
lor expansion, which is equivalent to adding higher degrees
to the fitted polynomials. We validated experimentally, as
shown Fig. 9, that the 3rd and 4th degrees are essential to
explain object motion in standard scenarios. Degrees 5 and
6 provide just a small improvement, whereas degrees higher
than 6 tend to overfit. Notice that circular motion can also be
approximated by (8).

A rough overview of the structure of the proposed method
follows. Thewhole approach to estimate the piece-wise poly-
nomial function (8) is based on three main steps. In the first
step, the sequence is decomposed into non-intersecting parts.
Using dynamic programming, each part is converted into a
discrete trajectory by minimizing an energy function. The
energy function combines information from partial trajecto-
ries estimated by the causal TbD, the curvature penalizer to
force smooth trajectories, and the trajectory length penalizer.
In the second step, the discrete trajectory is further decom-
posed into segments by detecting bounces. Then, segments
define frames that are used for fitting each polynomial. In the
third step, we fit polynomials of degree up to six that define
the final trajectory function C f (t). Each step is thoroughly
explained in the following subsections.

3.1 Splitting into Segments

When tracking fast moving objects in long-term scenarios,
objects commonly move back and forth, especially in rallies.
During their motion, fast moving objects abruptly change
direction due to contactwith players, orwhen they bounce off
static rigid bodies. We start with splitting the sequence into
differentiable parts, i.e. detecting bounces – abrupt changes
of object motion due to contact with other stationary or mov-
ing objects. Parts of the sequence between bounces are called
segments. Segments do not contain abrupt changes of motion
and can be approximated by polynomial functions. Theoret-
ically, causal TbD could detect bounces by fitting piece-wise
linear functions in one frame, but usually blur kernels are
noisy and detecting bounces in just one frame is unstable.
This inherent TbD instability can be fixed by non-causal pro-
cessing.

To find segments and bounces, we split the sequence into
non-intersecting parts, where the object does not intersect
its own trajectory, i.e. either horizontal or vertical compo-
nent of motion direction has the same polarity. Between
non-intersecting parts, we always report bounces.We convert
blur kernels Ht from all frames in the given non-intersecting
part into a single discrete trajectory by dynamic program-
ming. The proposed dynamic programming approach finds
the global minimum of the following energy function

E(P) = −
xe∑

x=xb

ts∑

t=ts−1

Ht (x, Px)lt

+κ1

xe∑

x=xb+2

∣
∣
∣(Px − Px−1) − (Px−1 − Px−2)

∣
∣
∣
2

+κ2(xe − xb) ,

(9)

where variable P is a discrete version of trajectoryC, and it
is a mapping that assigns y coordinate to each corresponding
x coordinate. P is restricted to the image domain. The first
term is a data term of estimated blur kernels in all frameswith
the negative sign in front of the sum that accumulates more
values from blur kernels while our energy function is being
minimized. Each blur kernel is multiplied by the trajectory
length lt estimated from TbD in order to normalize each
blur kernel and force each pixel on the trajectory to have
value approximately 1. The second term penalizes direction
changes and is defined as the difference between directions
of two following points – an approximation of the second
order derivative of P . The value is squared, so that several
consecutive small changes aremore preferable than one large
change in direction. This term makes trajectories smoother,
and κ1 serves as a smoothing parameter. Parameter κ1 is set
to 0.5, assuming that values of pixels at trajectory are near 1.
The last term enforces shorter trajectories by penalizing each

123

International Journal of Computer Vision (2021) 129:2583–2604 2591

Fig. 8 Example of dynamic programming. Left image: accumulated
blur kernels (reverted for visualization) from four consecutive frames
between Hts−1 and Hts in the joint coordinate system, with the estimated
discrete trajectory P marked in red. Middle image: value of the energy
function at each pixel from black (lowest) to white (highest). Right
image: pixels where optimal move is downwards are marked in green

(brighter means steeper), upwards in red (brighter means steeper), and
moving straight in gray. Pixels, where reporting a starting point xb is
optimal, are white. The minimal value of the energy function is at the
most right red pixel xe in the left image. The whole trajectory is then
estimated from right to left by backtracking until the next minimizing
pixel is reported as a starting point (white space) (Color figure online)

additional pixel. Parameter κ2 is set to 0.1, which ensures that
values of pixels along the trajectory are on average more that
κ2 and forbids prolonging the trajectory to get pixels with the
value less than κ2. The algorithm is not sensitive to values of
κ1 and κ2, and any value in the range between 0.05 and 0.7
achieves similar results. Discrete trajectory P is defined from
xb until xe, and these two variables are also being estimated.
In short, dynamic programming estimates the trajectories that
correspond to causal trajectories as much as possible, while
being smooth (controlled by κ1) and short (controlled by κ2).
Energy minimization Energy function E (9) is minimized
by a dynamic programming (DP) approach. To account for
camera rotation or objects travelling from top to bottom, we
consider independently two cases: the accumulated blur ker-
nels Ht and rotated Ht by 90 degrees. For both options, we
find the global minimum of E and the one with lower energy
is chosen. We validated experimentally that the pixel with
the lowest energy has an average distance of 2.8 pixels to
the ground truth ending point. Considering both the origi-
nal and the rotated version is important in order to improve
rotation invariance of the proposed method, as experimen-
tally validated in Fig. 12. Let us illustrate the approach for
the original non-rotated case; see Fig. 8. The rotated case is
analogous. DP starts with the second column and processes
columns from left to right. We compute energy E for each
pixel by comparing all options and choosing the one with
the lowest E : either adding to the trajectory one sub-pixel
out of nearest ones in the previous column with y coordinate
difference between+2 and−2, or choosing the current pixel
as the starting point. Threshold ±2 indicates that the non-
causal trajectories cannot have angles more than 60 degrees
in one step. Larger threshold (i.e. angle) can help to find
better trajectories, but then the complexity of the dynamic
programming will increase and also the trajectory will be
less smooth. The pixels are discretized by a step size of 0.2,
which means that 21 possible sub-pixels are checked. The
values in blur kernels are linearly interpolated. Both the min-
imum energy (Fig. 8 middle) and the decision option (Fig. 8
right) in every pixel is stored.When all columns are checked,

a pixel with the minimum energy (Fig. 8 middle) is selected
as the end point and the trajectory is estimated by backtrack-
ing following decision options (Fig. 8 right). Backtracking
finishes when a pixel is reached with the starting-point deci-
sion (white in Fig. 8 right).

Bounces When each non-intersecting part is converted into
1D signal, it becomes easier to find bounces, i.e. points with
abrupt changes of direction. The given point is considered
a bounce when both points on the left and on the right with
the distance w to the given point have a change of direction
greater than 3 pixels with the same sign. Threshold w con-
trols sensitivity of the bounce. In the FMO setting, smaller
trajectories imply low speed and more bounces. Thus, we
set the sensitivity automatically for each point based on the
trajectory length in the closest frame, i.e. w = lt/4. In the
case of circular motion with no bounces, the approach finds
the most suitable point to split the circle. After this step, the
sequence is split into segments that are separated by bounces.

3.2 Fitting Polynomials

The output discrete trajectory P is used to estimate bounces
and define segments. It also determines which frames belong
to the segment and should be considered for fitting polynomi-
als. To this end, we assign starting (Ct (0)) and ending (Ct (1))
points of each frame to the closest segment. For fitting, we
use only frames that completely belong to the segment, i.e.
the whole trajectory in the frame is closer to this segment
than to any other segment. The degree of a polynomial is
a function of the number of frames (Ns = ts − ts−1 + 1)
belonging to the segment

ds = min(6, Ns/3). (10)

We restrict polynomials to degree up to 6, as higher degrees
tend to overfit (Fig. 9). With this setting, we observed no
oscillations that are typical for overfitting, but they were
visible for degrees higher than 8. Our interpretation is that

123

2592 International Journal of Computer Vision (2021) 129:2583–2604

Fig. 9 The influence of maximal polynomial degree. The dotted line
shows the location of the best setting: polynomial of degree 6. Vertical
axis: Trajectory-IoU (14) on the TbD dataset

the trajectories provide sufficiently strong constraints. The
degree is adaptive – if the trajectory is short, the degree is
decreased according to Eq. (10). The polynomials are further
constrained by the continuity conditions between frames.

The polynomial coefficients are found by solving:

min
c̄s

ts∑

t=ts−1

∫ 1

0
‖C f (t + τε) − Ct (τ)‖2dτ, (11)

s.t. C f (ts−1) = Cts−1(0) and C f (ts + ε) = Cts (1). After the
integral approximation as the sumof two end-points, themin-
imization problem becomes

min
c̄s

ts∑

t=ts−1

‖C f (t) − Ct (0)‖2 + ‖C f (t + ε) − Ct (1)‖2, (12)

s.t. C f (ts−1) = Cts−1(0) and C f (ts + ε) = Cts (1), where s
denotes the segment index. The minimization w.r.t. polyno-
mial coefficients c̄s = {c̄s,k |k = 0, . . . , ds} is a linear least-
squares problem for each segment independently. Equality
constraints force continuity of the curve throughout thewhole
sequence, i.e. we get curves of differentiability classC0. The
least-squares objective enforces similarity to the trajectories
estimated during the causal TbD pipeline. The least-square
cost function is a common choice that is computation con-
venient. The final trajectory C f is defined over the whole
sequence. The last visible point in the frame t , i.e. Ct (1),
corresponds to C f (t + ε) in the sequence time-frame. The
exposure fraction ε is assumed to be constant in the sequence.
It is estimated as an average ratio between trajectory lengths
lt and the expected length of full-exposure trajectory:

ε = 1

N − 1

N−1∑

t=1

lt
lt + ‖Ct+1(0) − Ct (1)‖ . (13)

Frames that belong only partially to segments contain
bounces. We replace them with a piece-wise linear polyno-
mial that connects the last point from the previous segment,
bounce point found byDP, and the first point from the follow-
ing segment. Frames between non-intersecting parts are also
interpolated by piece-wise linear polynomial that connects
the last point of the previous segment, point of intersection
of these two segments, and the first point of the following seg-
ment. Frames that are before the first detection or after the
last non-empty Ct are extrapolated by the closest segment.
Fig. 10 shows an example of splitting a sequence into seg-
ments that are used for fitting polynomials. More examples
of full trajectory estimation are in Fig. 11.

4 Choice of Parameters

All parameters of the proposed method can be split into fixed
and adaptive.Most parameters are fixed to a certain value that
has been logically chosen based on the problem characteris-
tics. The correct choice of parameters is validated by running
an additional experiment. Fig. 16 shows examples of several
randomly found YouTube videos with fast moving objects.
Correctly detected objects and estimated trajectories indicate
that the chosen set of parameters can generalize well to other
unseen videos.

Fixed parameters We use the following L1 weight on H in
deblatting (3): αH = 0.2. The TV weight on F in Eq. (3)
is set to αF = 0.001. For deblurring, we set relative tol-
erance to 0.01 and maximum number of iterations to 15.
The background is estimated as a median of last 5 frames.
Template-matching term λ in Eq. (3), (21) is fixed to 0.1, as
it provides the best results (Fig. 13). The threshold for Con-
sistency Check τ in Eq. (7) is set to 0.15. The value of other
fixed parameters is explained directly in the main text when
the parameter is defined.

Adaptive parameters The scale of the object, denoted by
domain Do, is found by the FMO detector from (Rozum-
nyi et al. 2017) as a sphere with radius equal to the maximal
value of the distance transform of the detected stroke. If the
template is given as in TbD-T1, domain Do is given as well
as part of the template. Parameter w of the sensitivity of the
bounce is set adaptively depending on the trajectory length in
one frame. Degree d of the fitted polynomial depends on the
number of frames that belong to the segment. The exposure
fraction ε is also set adaptively based on the average ratio
between consecutive trajectory lengths.

123

International Journal of Computer Vision (2021) 129:2583–2604 2593

5 Experiments

We show the results of Tracking by Deblatting and com-
pare it with other trackers on the task of long-term tracking
of motion-blurred objects in real-life video sequences. As
a baseline, we chose the FMO detector (FMOd, (Rozumnyi
et al. 2017)), specifically proposed for detection and tracking
of fast moving objects, and the Discriminative Correla-
tion Filter with Channel and Spatial Reliability (CSR-DCF,
(Lukežič et al. 2017)), which performs well on standard
benchmarks such as VOT (Kristan et al. 2016). CSR-DCF
was not designed to track objects undergoing large changes in
velocity within a single sequence and would perform poorly
in the comparison. We therefore augmented CSR-DCF by
FMOd reinitialization every time it outputs the same bound-
ing box in consecutive frames, which is considered a fail. We
use FMOd for automatic initialization of both TbD and CSR-
DCF to avoid manual input. We skip the first two frames of
every sequence to establish background B and initializeCSR-
DCF. the background B is estimated as a moving median of

the past 3 - 5 frames. The rest of the sequence is processed
causally.

The comparison with baseline methods was conducted
on a new dataset consisting of 12 sequences with differ-
ent objects in motion and settings: different kinds of sports,
objects in flight or rolled on the ground, indoor/outdoor. The
sequences contain abrupt changes ofmotion, such as bounces
and interactions with players, and a wide range of speeds.
Videos were recorded with a high-speed camera at 240 fps
with exposure time 1/240s (exposure fraction ε → 1). The
sequences for evaluation with 30 fps were generated by aver-
aging 8 consecutive frames. The dataset was annotated with
trajectories obtained from the original high-speed camera
footage. We compare the method performance in predicting
the motion trajectory in each frame. We therefore general-
ize Intersection over Union (IoU), the standard measure of
position accuracy, to trajectories and define a new measure
Trajectory-IoU (TIoU):

Fig. 10 TbD-NC processing steps (Sect. 3). From left to right, top
to bottom: causal TbD output, splitting into segments, fitting polyno-
mials to segments, final TbD-NC output. Top row: trajectories for all
frames overlaid on the first frame, Trajectory-IoU accuracy measure
color coded from red (failure) to green (success) by scale (top left cor-

ner). Bottom row: bounces between segments (magenta, red), fitted
polynomials (green), extrapolation to the first and second frame (yel-
low). Arrows indicate motion direction. Best viewed when zoomed in
a reader (Color figure online)

123

2594 International Journal of Computer Vision (2021) 129:2583–2604

Fig. 11 Trajectory recovery for sequences selected from the TbD
dataset. Top row: trajectories estimated by the causal TbD overlaid
on the first frame. TIoU (14) with ground truth trajectories from a
high-speed camera is color coded by scale in Fig. 10. Bottom row:

trajectory estimates by the proposed TbD-NC that outputs continuous
trajectory for the whole sequence. The yellow curves underneath denote
the ground truth. Arrows indicate the direction of the motion

Fig. 12 The influence of rotation on TbD-NC. All inputs to the method
are rotated by a certain degree (0-360) and compared to the ground truth
rotated by the same angle. The method is invariant to rotations by 90,
180, and 270 degrees. Performance scores repeat with the period of 90
degrees. The lowest performance is achieved when the rotation is 45
degrees due to interpolation errors. Vertical axis: Trajectory-IoU (14)
on the TbD dataset

TIoU(C, C∗; M∗) =
∫

t
IoU

(
M∗

C(t), M∗
C∗(t)

)
dt, (14)

where C is the predicted trajectory, C∗ is the ground-truth tra-
jectory, M∗ is a disk mask with true object diameter obtained
from the ground truth, and Mx denotes M placed at location
x . TIoU can be regarded as the standard IoU averaged over
each position on the estimated trajectory. In practice, we dis-
cretize the exposure time into evenly spaced timestamps and
calculate IoU between the ground-truth and the prediction.

Since the CSR-DCF tracker only outputs positions, it esti-
mates only linear trajectories from positions in neighboring
frames.

The results of the comparison are presented in Table 2.
We evaluated three flavors of TbD that differ in the presence
of the initial user-supplied template F̂ and the learning rate
γ of the object model in (2). The presented flavors are:

– TbD-T0,0:Object template is not available,model update
is instantaneous (memory-less), γ = 0.

– TbD-T0,0.5: Object template is not available, model is
updated with the learning rate γ = 0.5.

– TbD-T1,1: Object template is available, model remains
constant and equal to the template, γ = 1.

– TbD-NC: non-causal TbD-T1,1 with full trajectory esti-
mation (Sect. 3).

Empirical justification of chosen learning rates is presented
in Fig. 13. We evaluated all learning rates from 0 to 1 with
the step size 0.05 for each method, i.e. TbD-T1 and TbD-
T0. For each step size, the average TIoU was computed
over a subset of the TbD dataset, and the best perform-
ing setting was chosen. When the template is not available,
updating model smoothly with the rate between 0.4 and 0.6
generally outperforms other settings irrespective of the cho-
sen template-matching weight λ. We have therefore selected
γ = 0.5, which is slightly better than the instantaneous
update (γ = 0) and no update at all (γ = 1 keeps the first
estimate as the template). When the template is available,

123

International Journal of Computer Vision (2021) 129:2583–2604 2595

Fig. 13 Exponential forgetting factor estimation for TbD-T0 and TbD-
T1 methods. The graph compares performance in terms of Trajectory-
IoU over a subset of the TbDdataset with varying exponential forgetting
factors for updating the object model. TbD-T0 has no object template,
and the best performance is achieved for γ = 0.5. TbD-T1was provided
with the object template, and the best performing setting was for γ = 1

it is preferable to keep the template rather than updating it,
however this conclusion depends on the template quality.
Even when no update is done (γ = 1), it is still necessary to
minimize the loss (3) with respect to F . Template F̂ usually
contains only object-specific details. Image noise and other
phenomena such as shadows or illumination changes should
not be part of the template, but minimization with respect to
F models these variables and helps to correctly estimate H .

The TbD outperforms baseline methods on average by a
wide margin, both in the traditional recall measure (a detec-
tion is called true positive if it has non-zero TIoU) as well as
in trajectory accuracy TIoU. FMOd is less accurate andmore
prone to false positives as it lacks any prediction step and by
design ignores slow objects. CSR-DCF, despite reinitializa-
tions by FMOd, fails to detect fast moving objects accurately.
Among TbD flavors, it is no surprise that availability of the
object template is beneficial and outperforms other versions.
However, even if the template is not available, TbD can learn
the object model, and updating the appearance model grad-
ually during tracking is preferable to instantaneous updates.

To evaluate the performance of the core part of TbD that
consists of deblatting and trajectory fitting alone, we pro-
vide results of a special version of the proposed method
called “TbD with oracle”, TbD-O. This behaves like reg-
ular TbD but with a perfect trajectory prediction step. We
use the ground-truth trajectory to supply the region D to the
deblatting step exactly as if it were predicted by the predic-
tion step, effectively bypassing the long-term tracking logic
of TbD. The rest is identical to TbD-T1,1. TbD with ora-
cle tests the performance and potential of the deblatting and
trajectory estimation alone, because failures do not cause
long-term damage – success in one frame is independent of
success in the previous frame.

Non-causal Tracking by Deblatting (TbD-NC) is based
on the TbD-T1,1 version. TbD-NC provides a performance
boost both in recall and TIoU. Recall is 100% in all cases
except for one, where the first detection appeared only on the

Table 2 Trajectory Intersection over Union (TIoU) and Recall (Rcl)
on the TbD dataset – comparison of CSR-DCF tracker and the FMO
method in Rozumnyi et al. (2017) to TbD and TbD-NC. CSR-DCF
proposed by Lukežič et al. (2017) is a standard, well-performning as
shown in Kristan et al. (2019), near-real time tracker. TbD tracker set-
tings: TbD without template and with exponential forgetting factors (2)

γ = 0 (TbD-T0, 0) and γ = 0.5 (TbD-T0, 0.5), TbD with template
and γ = 1 (TbD-T1, 1), non-causal version of the previous TbD set-
ting (TbD-NC), TbD with oracle (TbD-O). The highest TIoU for each
sequence is highlighted in bolditalics and the highest recall in italics.
TbD-O shows the highest attainable TIoU for TbD as a reference point
when predictions are precise

Sequence name Frames CSR-DCF FMO method TbD-T0, 0 TbD-T0, 0.5 TbD-T1, 1 TbD-NC TbD-O

TIoU Rcl TIoU Rcl TIoU Rcl TIoU Rcl TIoU Rcl TIoU Rcl TIoU

Badminton_white 40 .286 0.39 .242 0.34 .659 0.92 .657 0.92 .694 0.97 .783 1.00 .792

Badminton_yellow 57 .123 0.22 .236 0.31 .615 0.89 .626 0.89 .677 0.91 .780 1.00 .788

Pingpong 58 .064 0.12 .064 0.12 .581 0.89 .590 0.89 .523 0.91 .643 1.00 .697

Tennis 38 .278 0.64 .596 0.78 .596 0.92 .554 0.89 .673 0.97 .750 1.00 .827

Volleyball 41 .533 0.82 .537 0.72 .552 0.87 .591 0.90 .795 0.97 .857 1.00 .836

Throw_floor 40 .287 0.71 .272 0.37 .760 1.00 .776 1.00 .810 1.00 .864 1.00 .864

Throw_soft 60 .470 0.97 .377 0.57 .584 0.90 .564 0.90 .652 0.97 .765 1.00 .707

Throw_tennis 45 .444 0.95 .507 0.65 .693 1.00 .777 1.00 .850 1.00 .880 1.00 .872

Roll_golf 16 .331 1.00 .187 0.71 .414 1.00 .346 1.00 .873 1.00 .894 1.00 .898

Fall_cube 20 .324 0.67 .408 0.78 .597 1.00 .590 1.00 .721 1.00 .757 1.00 .744

Hit_tennis 30 .329 0.93 .381 0.68 .564 0.93 .570 0.93 .667 0.93 .725 1.00 .828

Hit_tennis2 26 .214 0.79 .414 0.71 .476 0.83 .496 0.83 .616 0.83 .682 0.92 .738

Average 39 .307 0.68 .352 0.56 .591 0.93 .595 0.93 .713 0.96 .782 0.99 .799

123

2596 International Journal of Computer Vision (2021) 129:2583–2604

Table 3 Comparison of TbD-NC with TbD. TbD failure is defined as
frames where TIoU (14) equals to zero. TbD-NC decreases the number
of frames with failure by a factor of 10

TbD TbD-NC TbD TbD-NC
[TIoU] [TIoU] [%] [%]

TbD Fails 0.000 0.382 4.7 0.4

TbD TIoU> 0 0.744 0.800 95.3 99.6

seventh frame, and extrapolation to the first six frames was
not successful. Table 3 shows that TbD-NCcorrects complete
failures of causal TbD when TIoU is zero, e.g. due to wrong
predictions or other moving objects. TbD-NC also improves
TIoU of successful detection by fixing small local errors,
e.g. when the blur is misleading, or fitting in one frame is not
precise.

A visual demonstration of the tracking by the proposed
method on the TbD dataset is shown in Fig. 11. Each image
shows results of tracking in one sequence from the evaluation
dataset superimposed on a single image from the sequence.
Arrows depict trajectories detected in a particular frame, and
the color encodes the corresponding TIoU from green=1 to
red=0 (false positive). We can see that the causal TbD tra-
jectories are estimated successfully with the exception of
frameswhere the object is in direct contactwith othermoving
objects, which throws off the local estimation of background.
This instability is fixed by the non-causal TbD in the bottom
row.

Table 4 shows aggregated results for the FMO dataset
introduced by (Rozumnyi et al. 2017). This dataset does not
contain ground-truth trajectory data. Therefore, we report
traditional precision/recall measure that is derived from
the detection and ground-truth bounding-box IoU. On this
dataset, the proposed TbD and TbD-NCmethods are slightly
better in recall, owing to the fact that initial detection is done
by FMOd – if FMOd fails, then TbD cannot start the track-
ing. However, the proposed methods are significantly better
in terms of precision. TbD-T1 is not evaluated, as templates
for FMO dataset are not available.

6 All-Speed Tracking

The inner part of the TbD method consists of deblatting and
fitting that allow estimating robust intra-frame object loca-
tions. Speed of the object can be arbitrary, albeit performance

Table 5 Trajectory Intersection over Union (TIoU) and Recall (Rcl) on
the eTbD dataset. Extended version of the TbD dataset is used to evalu-
ate the performance of TbD-NC in long-term scenarios and on objects
with different speeds, ranging from still objects to very fast moving
objects. The number of frames is denoted by “#” sign. The proposed
TbD-NC performs better than the baselines FuCoLoT in (Lukežič et al.
2019) and the FMOmethod in (Rozumnyi et al. 2017). TIoU and Recall
are lower than on the TbD dataset (Table 2) due to more challenging
tasks in the eTbD dataset

Sequence # FuCoLoT FMO TbD-NC

TIoU Recall TIoU Recall TIoU Recall

badmin._w. 125 .232 0.40 .142 0.19 .635 0.85

badmin._y. 125 .155 0.33 .229 0.30 .536 0.84

pingpong 95 .062 0.10 .100 0.15 .604 0.98

tennis 118 .245 0.84 .554 0.74 .420 0.58

volleyball 72 .500 0.79 .430 0.56 .814 0.97

throw_floor 73 .147 0.34 .153 0.21 .896 1.00

throw_soft 150 .516 0.98 .303 0.51 .790 1.00

throw_ten. 71 .232 0.99 .347 0.46 .867 1.00

roll_golf 16 .360 1.00 .187 0.71 .894 1.00

fall_cube 28 .414 0.77 .341 0.65 .759 1.00

hit_tennis 57 .330 0.96 .225 0.42 .772 1.00

hit_tennis2 26 .226 0.79 .414 0.71 .681 0.92

Average 80 .285 0.69 .285 0.47 .722 0.93

The highest TIoU for each sequence is highlighted in bolditalics and
the highest recall in italics.

is better for higher speed when the object is not perfectly
round and homogeneous. We evaluated the performance of
the TbD-NC method on the extended TbD dataset (eTbD)
that contains the same sequences as the TbD dataset but with
on average around twice more frames with objects slowing
down and staying still. Originally, the eTbD dataset was cre-
ated first. Then, the TbD dataset was made by cropping the
eTbD dataset, such that all speeds are represented equally.

For normalization, we represent speed in radii per expo-
sure that measures the number of radii the object travels in
one exposure time, as shown in Fig. 15. Speeds less than
one radii per exposure [r/ε], i.e. not FMOs, represent half
of frames in the eTbD dataset, and the other half contains
FMOs. Table 5 shows results on the eTbD dataset for the
TbD-NC method and compares it to other baselines.

In Fig. 14, we report histograms of performance of all-
speed tracking for every method, measured by the average

Table 4 Precision and recall of the TbD tracker (setting: TbD without template and with exponential forgetting factor (2) γ = 0.5), TbD-NC on
top of it, and the FMO method in (Rozumnyi et al. 2017). We report the average on the 16 sequences of the FMO dataset

FMO method TbD-T0, 0.5 TbD-NC

Precision Recall Precision Recall Precision Recall

Average 59.2 35.5 81.6 41.1 83.4 45.1

123

International Journal of Computer Vision (2021) 129:2583–2604 2597

Fig. 14 All-speed tracking. Trajectory-IoU and recall on the extended
TbD dataset (eTbD) for different algorithms (from left to right) – CSR-
DCF in (Lukežič et al. 2017), FuCoLoT in (Lukežič et al. 2019),
FMO algorithm in (Rozumnyi et al. 2017), and non-causal Tracking

by Deblurring (TbD-NC). Horizontal axis denotes speed measured in
radii per exposure. Vertical axis: the success rate measured by TIoU
and the recall

Fig. 15 Objects with varying speeds (0, 1, 3, 5, 7, 9) in radii per expo-
sure, which removes dependence on camera settings and object size

TIoU in blue and by recall in cyan. Histogram bins repre-
sent different speeds ranging from 1 to 9 radii per exposure.
We also compare TbD-NC to FuCoLoT tracker proposed
by (Lukežič et al. 2019), which is a long-term extension of
CSR-DCF tracker. General trackers such as CSR-DCF and
FuCoLoT have similar performance that declines quickly
for higher speeds. The FMO method proposed by (Rozum-
nyi et al. 2017) has peek performance for speeds between 3
and 5 radii per exposure. Lower or higher speeds decrease
TIoU and recall drastically. The FMOmethod is based on dif-
ference images. Thus, very high speeds cause low contrast
images, whichmakes the object almost invisible in the differ-
ence image. The FMOmethod was not designed to track not
so fast moving objects. Its performance also drops for slow
objects. The TbD method solves both problems and indeed
connects the world of fast moving objects and the world of
slow or still objects. For very high speeds, the TbD method
does not suffer from low contrast images, because the image
formationmodel is still valid. TbD-NChas a slightly decreas-
ing TIoU for higher speeds, but its recall is close to one in all
cases. Lower TIoU for higher speeds can be explained by the
difficulty of deblatting and fitting when the object is severely
blurred.When a severely blurred object has a color similar to
the background, the part of the loss function that minimizes
the L1 norm of the blur kernel penalizes the blur too much.
For sequences where this is the case, we lowered the weight

αH of the L1 term that enforces sparsity of the blur kernel
and reduces small non-zero values.

All-speed tracking posed another problem of estimating
background when the object is close to still. The median
of previous several frames is not sufficient. To this end, we
increased the number of frames used for estimating the back-
ground to 20 previous frames, which is used when object
speed is less than a threshold. For still objectswith zero speed,
the background is not updated.

7 Running Time

When theTbD tracker is initialized and frame-to-frame track-
ing operates smoothly, the average speed is close to 2 seconds
per frame. When TbD fails, the necessary reinitialization
takes 10-15 seconds. In total, the average speed on the dataset
is 4 seconds per frame. TbD-NC is used only once for the
sequence and takes on average 5 seconds per sequence. Run-
times are reported for Matlab implementations on a single
CPU.More efficientCPU implementation inPython (approx-
imately speed-up by 2) and GPU implementation in PyTorch
(speed-up by 10) are open-sourced. In comparison, the FMO
detector from (Rozumnyi et al. 2017) needs on average 1.5
seconds per frame. State-of-the-art trackers, such as CSR-
DCF, are real-time and run at 30 frames per second.

8 Applications

Among the most interesting applications of the proposed
method are temporal super-resolution and speed, shape, and
gravity estimation, which are studied in the following sub-
sections.

123

2598 International Journal of Computer Vision (2021) 129:2583–2604

Fig. 16 Examples of sequences found on YouTube that contain fast
moving objects. Estimated object trajectories by TbD from multiple
frames are rendered in red into the last frame. The bottommiddle image
shows an examplewhere the proposedmethod fails because of the object

that is far from spherical and that is also undergoing significant rota-
tion. The bottom right image shows a failure due to the object motion
towards the camera. A list of videos with timestamps of FMO events is
available at http://cmp.felk.cvut.cz/fmo

8.1 Temporal Super-Resolution

Among other applications of TbD-NC are fast moving object
removal and temporal super-resolution. The task of tempo-
ral super-resolution stands for creating a high-speed camera
footage out of a standard video and consists of three steps.
First, a video free of fast moving objects is produced, which
is called fast moving object removal. For all FMOs that are
found in every frame, we replace them with the estimated
background. Second, intermediate frames between adjacent
frames are calculated as their linear interpolation. Objects
that are not FMOs look natural after linear interpolation.
Then, trajectory C f (t) is split into the required number of
pieces, optionally with shortening to account for the desired
exposure fraction. Third, the object model (F, M) is esti-
mated and used to synthesize the formation model according
to (1). Examples of these applications are provided in the
supplementary material.

8.2 Speed Estimation

Tbd-NC provides the trajectory function C f (t), which is
defined for each real-valued time stamp t between 0 and the
number of frames. Taking the norm of the derivative of C f (t)
gives a real-valued function of object velocity, measured in
pixels per exposure. To normalize itwith respect to the object,
we divide it by the radius and report speed in radii per expo-
sure. The calculated velocity is a projection of real velocity to
the image plane, e.g. perceived velocity. The results are visu-
alized in Fig. 17, where sequences are shown together with
their speed functions. The ground-truth speed was estimated
from a high-speed camera footage with 8 times higher frame
rate. The object center was detected in every frame. Then, the
ground-truth speedwas calculated from the distance between
the object centers in adjacent frames. Deliberately, we used
no prior information (regularization) to smooth the speed
from high-speed camera. Therefore, it is noisy as can be
seen in Fig. 17. We also report average absolute differences
between the speed from the high-speed camera and the esti-

123

http://cmp.felk.cvut.cz/fmo

International Journal of Computer Vision (2021) 129:2583–2604 2599

Fig. 17 Speed estimation using TbD-NC on selected sequences from
the TbD dataset. Trajectories estimated by TbD-NC are overlaid on the
first frame of each sequence. Graphs contain the speed estimation by
TbD (lightgray) and TbD-NC (purple) in radii per exposure compared

to speed calculated from the high-speed camera (olive). The noise and
oscillations in high-speed camera estimates are caused by discretization.
Errors for all sequences are shown in Table 7

Table 6 Speed estimation compared to the radar gun (GT).We used the
last 10 serves of the final match of 2010 ATP World Tour. The lowest
error for each serve is marked in bolditalics

Serve Duration GT (Hrabalík 2017) TbD-NC

[frames] [mph] Speed Error Error
[mph] [%] [mph] [%]

1 23 108 105.6 2.2 108.0 0.0

2 32 101 103.8 2.8 101.6 0.6

3 62 104 106.5 2.4 110.4 6.1

4 75 113 101.7 10.0 115.8 2.5

5 82 104 91.9 11.6 106.9 2.8

6 30 127 127.4 0.3 126.3 0.6

7 34 112 116.1 3.7 107.5 4.0

8 78 125 123.2 1.4 130.3 4.2

9 67 99 88.3 10.8 89.7 9.4

10 90 108 110.2 2.0 106.2 1.6

Mean 57 110.1 107.5 4.7 110.3 3.2

mated speed in Table 7. The error is mostly due to the noise
in high-speed camera estimates.

Fig. 18 Estimating object speed from blur kernels. In four consecutive
frames (top row), object trajectories were estimated with TbD. The
bottom plot shows the speed calculated from intensity values of blur
kernels (solid red - averaged by a uniform filter of length 10) and from
positions detected on a high-speed footage (olive - no averaging). Gray
lines show the average velocity per frame calculated from the trajectory
length (Color figure online)

In sports, such as tennis, radar guns are commonly used to
estimate the speed of serves. In this case, only the maximum
speed is measured. The strongest signal usually happens
immediately after the racquet hits the ball. (Hrabalík 2017)
gathered the last 10 serves of the final match of 2010 ATP
World Tour. The serves were found on YouTube from a spec-
tator’s viewpoint. Ground truth was available from another

123

2600 International Journal of Computer Vision (2021) 129:2583–2604

footage that showed the measured speeds from radar guns
(example in Fig. 19). A real-time version of FMO detector
in (Hrabalík 2017) achieved accurate estimates of the speeds
with the average error of 4.7 %, where the error is computed
as an absolute difference to the ground truth velocity divided
by the ground truth velocity.

Unfortunately, the ATP footage from spectator’s view-
point is of a very poor quality. The tennis ball is also visible
only as several pixels.Deblurringdoes not performwellwhen
a video has low resolution, or the object of interest is poorly
visible. To test only the performance of non-causal part of the
proposed method (TbD-NC), we manually simulated FMO
detector by annotating only start and end points of the ball tra-
jectory in several frames after the hit for every serve. Then,
the time-stamp thi t is found, such that the final trajectory
C f (thi t) at this point is the closest to the hit point. Then,
‖C′

f (thi t)‖ is the speed measured by TbD-NC. The pixel-to-
miles transformation was computed by measuring the court
size in the video (1519 pixels) and dividing it by the tennis
standards (78 feet). The camera frame ratewas set to the stan-
dard 29.97 fps. Additionally, due to severe camera motion,
the video was stabilized by computing an affine transforma-
tion between consecutive frames using feature matching as
in (Rozumnyi et al. 2017). Table 6 compares the speed esti-
mated by TbD-NC and FMO methods to the ground truth
from the radar. The proposed TbD-NC method is more pre-
cise than the FMO method. In several cases, the speed is
estimated with GT error close to zero.

Apart from estimating speed by taking the norm of the
derivative of C f (t), we can also directly estimate speed from
the blur kernel H . The values in the blur kernel are directly
proportional to time the object spent in that location, i.e.
object speed is inversely proportional to the intensity value
in the blur kernel. For example, if half of the exposure time
the object was moving with a constant velocity, and then it
stopped and stayed still, the blur kernel will have constant
intensity values terminated with a bright spot that will be
equal to the sum of intensities of all other pixels. Fig. 18
illustrates the speed estimation from the blur kernel and com-
pares with rough estimation from the blur length. In practice,
the speed estimation from the blur kernel is not very reliable
due to the noise in H .

8.3 Shape and gravity estimation

In many situations, gravity is the only force that has non-
negligible influence. In such cases, fitting second-degree
polynomials is sufficient. If coefficients of the polynomial
are estimated correctly, and the real gravity is given, then
transforming pixels to meters in the region of motion is feasi-
ble. The coefficient a of the second-degree term corresponds
to the gravity in units [px(1

f s)
−2], where f is the frame

rate. Assuming that the gravity of Earth is g ≈ 9.8[ms−2].
and that f is known, the formula to convert pixels to meters
becomes p = g/(2a f 2), where p is in meters per pixel on
the object in motion. The radius estimation by this approach
is shown in Table 7.We use only sequences fromTbD dataset
with objects that were undergoing motion given only by the
gravity: throw, fall, ping pong, volleyball. In other cases,
such as roll and hit, the gravity has almost no influence,
and this approach cannot be used. The badminton sequences
have large drag (air resistance), and the tennis sequence was
recorded outside during strong wind. When gravity was the
only strong force, the estimation has an average error of 4.1
%. The variation of gravity on Earth is mostly negligible
(< 0.2 %), but knowing exact location where videos have
been recorded might even improve results.

Alternatively, when the real object size is known, we
can estimate gravity, e.g. when throwing objects on another
planet and trying to guess which planet it is. In this case,
the formula can be rewritten to estimate g. Results are also
shown in Table 7, and the average error is 5.3 % when com-
pared to the gravity on Earth. This shows robustness of the
approach in both estimating radius and gravity. If the fast
moving object is a cloth in the wind, more physical quanti-
ties can be estimated as in (Runia et al. 2020).

9 Limitations

The introduced method has several limitations.

9.1 Stabilized Camera

Since the method requires an estimate of the background,
the camera motion must be negligible within 3 to 5 frames
needed for the estimate. However, we argue that in usual sce-
narios the background moves slowly in comparison to a fast
moving object. Therefore, in the experiments, we stabilized
all sequences by fitting a homography between consecutive
frames. The method works best when the camera is nearly
static.

9.2 Object Appearance

We model the motion blur in Eq. (1) by convolution, which
is obviously a simplification of the general case and is valid
only if, from the camera vantage point, the object appearance
F and its silhouette M remain constant during the exposure
time. We thus make the following assumptions about the
object and its motion:

– The object is spherical or can be approximated by a
sphere. Fig. 16 (bottom middle image) illustrates a fail-
ure when this assumptions is grossly invalid. However,

123

International Journal of Computer Vision (2021) 129:2583–2604 2601

Table 7 Estimation of radius,
speed, and gravity by TbD-NC
on the TbD dataset. The speed
estimation is compared to GT
from a high-speed camera.
Radius is calculated when
assuming Earth gravity, or vice
versa. Standard object sizes are
taken as GT for radius

Sequence Speed Radius Gravity

Mean Diff. GT Est. Err. Est. Err.
[r/ε] [cm] [cm] [%] [ms−2] [%]

Badminton_white 0.57 – – – – –

Badminton_yellow 0.65 – – – – –

Pingpong 0.66 2.00 1.99 0.3 9.53 2.8

Tennis 0.56 – – – – –

Volleyball 0.45 10.65 10.47 1.7 10.50 7.2

Throw_floor 0.61 3.60 3.47 3.7 10.21 4.2

Throw_soft 0.42 3.60 3.72 3.3 9.52 2.9

Throw_tennis 1.31 3.43 3.69 7.6 9.19 6.2

Roll_golf 2.54 – – – – –

Fall_cube 2.24 2.86 2.63 8.0 10.66 8.8

Hit_tennis 0.43 – – – – –

Hit_tennis2 1.28 – – – – –

Average 0.98 – – 4.1 9.93 5.3

Fig. 19 Radar gun measurements. Speed was automatically estimated by the TbD-NC method from the video on the left. Ground truth acquisition
from YouTube video is shown in the middle and the right images. Table 6 compares estimates to the ground truth

if this assumption is only moderately inaccurate, e.g. in
the case of a cube, a shuttlecock, or a toast (Fig. 16), the
proposed method is still applicable.

– The object inner rotation and longitudinal motion do
not produce significant changes to the perceived object
appearance and size. This implies that the object must
travel approximately parallel to the camera plane. An
example where this assumptions is violated and the pro-
posed method fails is shown in Fig. 16 (bottom right
image).

– Thebackground in the close vicinity of the object location
in the frame is constant during exposure.

These assumptions serve to justify the simplifications made
in (1) and establish the intended target scenarios of the pro-
posed method. Generalization for the case of changing size,
e.g. when the object is not moving in a plane orthogonal to
optical axis is covered in a follow-up article by (Rozumnyi
et al. 2020).

10 Conclusion

We proposed a novel approach – Tracking by Deblat-
ting – intended for sequences in which the object of interest
undergoes non-negligible motion within a single frame,
which needs to be specified by intra-frame trajectory rather
than a single position. The proposed methodology is based
on an observation that motion blur is related to the motion
trajectory of the object. Motion trajectories are estimated by
a robust method combining blind deblurring, image matting,
and shape estimation, followed by fitting a piecewise linear
or quadratic curve that models physically plausible trajecto-
ries. As a result, we can precisely localize the object with
higher temporal resolution than by conventional trackers.

As a second contribution we proposed non-causal Track-
ing by Deblatting (TbD-NC) that estimates accurate and
complete trajectories of fast moving objects. TbD-NC is
based on globally minimizing an optimality condition by
dynamic programming. High-degree polynomials are then
fitted to trajectory segments without bounces.

123

2602 International Journal of Computer Vision (2021) 129:2583–2604

The proposed method was evaluated on a newly created
TbD dataset of videos recorded with a high-speed camera
using anovelTrajectory-IoUmetric that generalizes the tradi-
tional Intersection over Union and measures the accuracy of
the intra-frame trajectory. The proposedmethod outperforms
baseline techniques both in recall and trajectory accuracy.
The TbD-NC method performs well on the TbD dataset
with complete failures appearing 10 times less often than
the causal TbD. From the estimated trajectories, we are able
to calculate precise object properties such as the object size
and velocity. The speed estimation is compared to the data
obtained from a high-speed camera and radar guns. More
applications such as fast moving objects removal and tempo-
ral super-resolution are shown in the supplementarymaterial.

Due to simplifications in blind deblurring to make opti-
mization feasible, the method is currently limited to objects
that do not significantly change their perceived shape and
appearance within a single frame. The method works best
for approximately round and uniform objects.

Funding Open Access funding provided by ETH Zurich.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

ADeblatting

The objective of the deblatting operation is solving (3), which
we do in a coordinate-descend manner. We fix F and M and
solve the corresponding problem for H (“H -step”). Then, we
fix H and solve for F and M simultaneously (“FM-step”).
These two steps are repeated until convergence. However,
both steps lead to nonlinear equations if solved directly.
Therefore, it is convenient to split them further into simpler
subproblems. Motivated by this, we use the ADMM (see
e.g. (Boyd et al. 2011) and references therein). We introduce
suitable variable substitutions and turn the original problem
into a constrained problem. Then, the constrained problem
is solved using the augmented Langrangian method – a
weighted quadratic penalty corresponding to each substi-
tution constraint is added to the standard Langrangian. By
minimizing the Langrangian alternatingly w.r.t. the individ-
ual variables, the original problem effectively splits into
multiple elementary subproblems that are easy to solve.

In the H -step we solve the problem

min
H

1

2
‖H ∗ F + (1 − H ∗ M)B − I‖22 + αH‖H‖1, (15)

s.t. H ≥ 0. To separate the quadratic data term from the
non-smooth L1 regularizer and the positivity constraint, we
introduce substitution z := H . According to the above out-
lined procedure, see also (Boyd et al. 2011, eqs. (3.5-7)),
solving (15) then results in the following iteration steps per-
formed in a loop:

z := argminz
(
αH‖z‖1 + ρ

2
‖H − z + u‖22

)
s.t. z ≥ 0,

(16)

H := argminH

(
1

2
‖H ∗ F + (1 − H ∗ M)B − I‖22 (17)

+ 1

2

ρ

2
‖H − z + u‖22

)

,

u := u + H − z, (18)

where u is a new variable corresponding to the Lagrange
multiplier of the constraint z = H (initialized to zero), and
ρ is a positive weight of the quadratic augmentation of the
Langrangian (a fixed user-defined parameter).

The update step (18) is trivial and dictated by the ADMM.
The problem (16) presents a separate scalar problem for each
pixel zi . By direct differentiation w.r.t. zi and inspection, it
can be seen that the solution is a soft-thresholding of the
minimizer of the quadratic term combined with projection
onto R

+
0 ,

z = max

(

H + u − αH

ρ
, 0

)

. (19)

By differentiating w.r.t H , the problem (17) leads to a linear
system for H

(
(F − BM)∗(F − BM) + ρ

)
H

= (F − BM)∗(I − B) + ρ(z − u), (20)

where F and M are operators performing convolution with
F and M , respectively, and (·)∗ denotes the corresponding
adjoint operator. In practice, we use vector-matrix nota-
tion. All variables are vectors representing the vectorized
images. Then, operators are matrices, and adjoints are their
transpositions. Multiplication of two images is performed
elementwise. We solve this linear system using the conju-
gate gradient method.

In the FM-step, we solve

min
F,M

1

2
‖H ∗ F + (1 − H ∗ M)B − I‖22

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

International Journal of Computer Vision (2021) 129:2583–2604 2603

+λ

2
‖F − MF̂‖22 + αF‖∇F‖1, (21)

s.t. 0 ≤ F ≤ M ≤ 1. We introduce two substitutions,

z1 := ∇F and z2 :=
[
F
M

]

, to isolate minimization of the

total variation term and the convex constraint, respectively.
Then, the optimization of the resulting constrained problem
consists of the following iteration steps performed in a loop:

z1 := argminz1

(
αF‖z1‖1 + ρ1

2
‖∇F − z1 + u1‖22

)
, (22)

z2 := argminz2

(
ρ2

2

∥
∥
∥
∥

[
F
M

]

− z2 + u2

∥
∥
∥
∥

2

2

)

s.t. z2 ∈ C, (23)

[
F
M

]

:= argminF,M

(
1

2
‖H ∗ F + (1 − H ∗ M)B − I‖22

[
F
M

]∥
∥
∥
∥

2

2

+ λ

2
‖F − MF̂‖22 + ρ1

2
‖∇F − z1 + u1‖22

+ ρ2

2

∥
∥
∥
∥

[
F
M

]

− z2 + u2

∥
∥
∥
∥

2

2

)

, (24)

u1 := u1 + ∇F − z1, (25)

u2 := u2 +
[
F
M

]

− z2, (26)

where, similarly to the H -step, u1 and u2 are Lagrange mul-
tipliers of the constraints corresponding to the substitutions
(both initialized by zero), andρ1 andρ2 are fixed user-defined
weights of the quadratic augmentation terms of the Lan-
grangian. The setC constraints each “pixel” of the combined
variable z2 and is defined as C = {[f1, f2, f3,m]T ∈ R

4;
0 ≤ fi ≤ m ≤ 1}. Note that C ⊂ R

4, since each pixel
in F has three (RGB) channels, and M is a single-channel
mask. Therefore, the constraint z2 ∈ C must be interpreted
pixelwise.

The update step (22) is analogous to (16) and leads to
element-wise soft-thresholding of the image derivatives,

z1 = sign(∇F + u1)max

(

|∇F + u1| − α f

ρ1
, 0

)

. (27)

The problem (23) amounts to projection of the minimizer of
the quadratic term to C ,

z2 = projC

([
F
M

]

+ u2

)

. (28)

This projection can be implemented directly but we employ
a different yet equally fast approach. The set C is an inter-
section of 4 convex sets, one axis-aligned orthant and three
half-spaces. Each of these sets is easy to project to. There-
fore, we use the alternating projection method by (Boyle and
Dykstra 1986) (best see (Tibshirani 2017)), which converges

in just a few iterations. Lastly, by differentiating w.r.t. F and
M , the update step (24) leads to a linear system for (F, M),

[
H∗H + ρ1∇∗∇ + λ + ρ2 −H∗B − λF̂

−H∗B − λF̂ H∗B2H + λF̂2 + ρ2

] [
F
M

]

= [H, −BH]∗(I − B) + ρ1∇∗(z1 − u1) + ρ2(z2 − u2),

(29)

where H denotes operator performing convolution with H .
As in the H -step, we solve this system using the conjugate
gradient method. Values of the ρ(·) parameters were chosen
experimentally. In our experience, too large values slowdown
the convergence, while too low values cause oscillations.

References

Boyd, S., Parikh, N., Chu, E., Peleato, B., & Eckstein, J. (2011).
Distributed optimization and statistical learning via the alter-
nating direction method of multipliers. Foundations and Trends
in Machine Learning, 3(1), 1–122. https://doi.org/10.1561/
2200000016.

Boyle, J. P., & Dykstra, R. L. (1986). A method for finding projections
onto the intersection of convex sets in hilbert spaces. Advances
in Order Restricted Statistical Inference (pp. 28–47). New York,
New York, NY: Springer.

Braso, G., & Leal-Taixe, L. (2020) Learning a neural solver for multiple
object tracking. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR).

Danelljan, M., Hager, G., Shahbaz Khan, F., Felsberg, M. (2014) Accu-
rate scale estimation for robust visual tracking. In: Proceedings of
the British Machine Vision Conference, BMVA Press, https://doi.
org/10.5244/C.28.65

Hornakova, A., Henschel, R., Rosenhahn, B., Swoboda, P. (2020) Lifted
disjoint paths with application in multiple object tracking. In: The
37th International Conference on Machine Learning (ICML)

Hrabalík, A. (2017). Implementing and applying fast moving object
detection on mobile devices, master’s thesis. Faculty of Electrical
Engineering: Czech Technical University in Prague.

Kalal, Z., Mikolajczyk, K., & Matas, J. (2012). Tracking-learning-
detection. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 34(7), 1409–1422. https://doi.org/10.1109/TPAMI.
2011.239.

Kotera, J., Šroubek, F. (2018) Motion estimation and deblurring of fast
moving objects. In: 2018 25th IEEE International Conference on
Image Processing (ICIP), pp 2860–2864, https://doi.org/10.1109/
ICIP.2018.8451661

Kotera, J., Rozumnyi, D., Šroubek, F., Matas, J. (2019) Intra-frame
object tracking by deblatting. In: The IEEE International Confer-
ence on Computer Vision (ICCV) Workshops

KristanM, LeonardisA,Matas J, FelsbergM, Pflugfelder R, Čehovin L,
Vojíř T, Häger G, Lukežič A, Fernández G, et al. (2016) The visual
object tracking VOT2016 challenge results. In: Hua G, Jégou H
(eds) Computer Vision – ECCV 2016 Workshops: Amsterdam,
TheNetherlands, October 8-10 and 15-16, 2016, Proceedings, Part
II, Springer International Publishing, Cham, pp 777–823, https://
doi.org/10.1007/978-3-319-48881-3

Kristan, M., Leonardis, A., Matas, J., Felsberg, M., Pflugfelder, R.,
Zajc, L. Č, et al. (2019). The sixth visual object tracking VOT2018
challenge results. In L. Leal-Taixé & S. Roth (Eds.), ECCV 2018
Workshops (pp. 3–53). Cham: Springer International Publishing.

123

https://doi.org/10.1561/2200000016
https://doi.org/10.1561/2200000016
https://doi.org/10.5244/C.28.65
https://doi.org/10.5244/C.28.65
https://doi.org/10.1109/TPAMI.2011.239
https://doi.org/10.1109/TPAMI.2011.239
https://doi.org/10.1109/ICIP.2018.8451661
https://doi.org/10.1109/ICIP.2018.8451661
https://doi.org/10.1007/978-3-319-48881-3
https://doi.org/10.1007/978-3-319-48881-3

2604 International Journal of Computer Vision (2021) 129:2583–2604

Kroeger, T., Dragon, R., & Van Gool, L. (2014). Multi-view tracking
of multiple targets with dynamic cameras. In X. Jiang, J. Horneg-
ger, & R. Koch (Eds.), Pattern Recognition (pp. 653–665). Cham:
Springer.

Lukežič, A., Vojíř, T., Zajc, L. C., Matas, J., Kristan, M. (2017) Dis-
criminative correlation filterwith channel and spatial reliability. In:
2017 IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pp 4847–4856, https://doi.org/10.1109/CVPR.2017.
515

Lukežič, A., Zajc, L. Č., Vojíř, T., Matas, J., & Kristan, M. (2019).
FuCoLoT - a fully-correlational long-term tracker. In C. V. Jawa-
har, H. Li, G. Mori, & K. Schindler (Eds.), Computer vision -
ACCV 2018 (pp. 595–611). Cham: Springer.

Ma, B., Huang, L., Shen, J., Shao, L., Yang, M., & Porikli, F.
(2016). Visual tracking under motion blur. IEEE Transactions
on ImageProcessing,25(12), 5867–5876. https://doi.org/10.1109/
TIP.2016.2615812.

Moudgil, A., Gandhi., V. (2017) Long-term visual object tracking
benchmark. arXiv preprint arXiv:1712.01358

Mueller, M., Smith, N., & Ghanem, B. (2016). A benchmark and sim-
ulator for uav tracking. In B. Leibe, J. Matas, N. Sebe, & M.
Welling (Eds.), Computer vision - ECCV 2016 (pp. 445–461).
Cham: Springer.

Ristani, E., Tomasi., C. (2018) Features for multi-target multi-camera
tracking and re-identification. In: 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp 6036–6046, https://
doi.org/10.1109/CVPR.2018.00632

Rozumnyi, D. (2019). All-speed long-term tracker exploiting blur, mas-
ter’s thesis. Faculty of Electrical Engineering: Czech Technical
University in Prague.

Rozumnyi, D., Kotera, J, Šroubek, F., Novotný, L., Matas, J. (2017)
The world of fast moving objects. In: 2017 IEEE Conference on
ComputerVision andPatternRecognition (CVPR), pp 4838–4846,
https://doi.org/10.1109/CVPR.2017.514

Rozumnyi, D., Kotera, J., Šroubek, F., & Matas, J. (2019). Non-causal
tracking by deblatting. InG.A. Fink, S. Frintrop,&X. Jiang (Eds.),
Pattern Recognition (pp. 122–135). Cham: Springer.

Rozumnyi, D., Kotera, J., Šroubek, F., Matas, J. (2020) Sub-frame
appearance and 6d pose estimation of fast moving objects. In: The
IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR)

Runia, TFH, Gavrilyuk, K, Snoek, C. G. M., Smeulders, A. W. M.
(2020) Cloth in the wind: A case study of physical measurement
through simulation. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR)

Seibold, C., Hilsmann, A., & Eisert, P. (2017). Model-based motion
blur estimation for the improvement of motion tracking.Computer
Vision and Image Understanding, 160, 45–56. https://doi.org/10.
1016/j.cviu.2017.03.005.

Tang, M., Yu, B., Zhang, F., Wang, J. (2018) High-speed tracking with
multi-kernel correlation filters. In: 2018 IEEE/CVFConference on
Computer Vision and Pattern Recognition, pp 4874–4883, https://
doi.org/10.1109/CVPR.2018.00512

Tao, R., Gavves, E., Smeulders, A. W. (2017) Tracking for half an hour.
arXiv preprint arXiv:1711.10217

Tibshirani, R. J. (2017). Dykstra’s algorithm, ADMM, and coordinate
descent: Connections, insights, and extensions. In I. Guyon, U.
V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
& R. Garnett (Eds.), Advances in Neural Information Processing
Systems 30 (pp. 517–528). USA: Curran Associates.

Vojíř, T., Noskova, J., &Matas, J. (2013). Robust scale-adaptive mean-
shift for tracking. Berlin: Springer. https://doi.org/10.1007/978-3-
642-38886-6.

Wu, Y., Ling, H., Yu, J., Li, F., Mei, X., Cheng, E. (2011) Blurred
target tracking by blur-driven tracker. In: 2011 International Con-
ference on Computer Vision, pp 1100–1107, https://doi.org/10.
1109/ICCV.2011.6126357

Wu, Y., Lim, J., Yang, M. (2013) Online object tracking: A bench-
mark. In: 2013 IEEE Conference on Computer Vision and Pattern
Recognition, pp 2411–2418, https://doi.org/10.1109/CVPR.2013.
312

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1109/CVPR.2017.515
https://doi.org/10.1109/CVPR.2017.515
https://doi.org/10.1109/TIP.2016.2615812
https://doi.org/10.1109/TIP.2016.2615812
http://arxiv.org/abs/1712.01358
https://doi.org/10.1109/CVPR.2018.00632
https://doi.org/10.1109/CVPR.2018.00632
https://doi.org/10.1109/CVPR.2017.514
https://doi.org/10.1016/j.cviu.2017.03.005
https://doi.org/10.1016/j.cviu.2017.03.005
https://doi.org/10.1109/CVPR.2018.00512
https://doi.org/10.1109/CVPR.2018.00512
http://arxiv.org/abs/1711.10217
https://doi.org/10.1007/978-3-642-38886-6
https://doi.org/10.1007/978-3-642-38886-6
https://doi.org/10.1109/ICCV.2011.6126357
https://doi.org/10.1109/ICCV.2011.6126357
https://doi.org/10.1109/CVPR.2013.312
https://doi.org/10.1109/CVPR.2013.312

	Tracking by Deblatting
	Abstract
	1 Introduction
	2 Tracking by Deblatting
	2.1 Deblatting
	2.2 Trajectory Fitting

	3 Non-Causal Tracking by Deblatting
	3.1 Splitting into Segments
	3.2 Fitting Polynomials

	4 Choice of Parameters
	5 Experiments
	6 All-Speed Tracking
	7 Running Time
	8 Applications
	8.1 Temporal Super-Resolution
	8.2 Speed Estimation
	8.3 Shape and gravity estimation

	9 Limitations
	9.1 Stabilized Camera
	9.2 Object Appearance

	10 Conclusion
	A Deblatting
	References

