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Abstract 
Roadway infrastructure management focuses on quality of the road surfaces which 

influences the pavement longevity and riding quality. The road surface quality can be expressed 
in many ways from which the International Roughness Index has been recognized widely around 
the developed countries. This paper summarizes the derivation of International Roughness 
calculation and proposes a new numerical method for its computation. Compared to original 
Sayers’s method, it does not use iterative approximation, which makes it much faster for non-
uniformly sampled road data. This is useful, for example, for profiles generated from LIDAR point 
clouds. The method can be used for arbitrary polynomial model of segments between elevation 
samples. Except the Fortran code listed in the original paper, the code for the original algorithm 
has not been publicly available and most researchers relied on the ProVAL software with several 
limitations, including uniform sampling, the lack of automation, and little control over the 
influence of resampling methods and the initialization of the quarter-car simulation procedure. 
We provide Matlab codes for both the original method and the algorithm newly proposed in this 
paper. 
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1  Introduction 
 An important criterion used for pavement monitoring is surface smoothness. The 

smoothness is tracked by the road maintenance agency and perceived by the road users. It was 
proved in (Sayers et al., 1986b) that highway users judge the condition of a highway by the riding 
experience when they travel over the highway. The pavement surface smoothness is related to 
road users‘ riding comfort and, most importantly, to road safety (Kirbas 2018).  Is is also one of 
the determinants of road user cost, as indicated in (Sayers et al. 1986b). The choice of a proper 
pavement reconstruction design and technology has always been a task combining engineer’s 
knowledge and experience. Many aspects that embeds empirical approach in pavement design 
persist in the asphalt pavement industry till today (Monismith 2012). The engineer’s goal is to 
effectively design and construct a desired pavement layer while meeting all standardized 
requirements, design criteria and contracting agencies’ demands. However, many disorders 
during the construction work, such as flawed mix design and errors in the laydown process, result 
in an immediate decrease of the constructed layer quality. Some of these disorders are present 
right after the layer construction, and some of them take their effect when traffic loading and 
weather conditions occur during the pavement’s lifetime. Thus in terms of pavement 
reconstruction, the engineer’s challenge is even more profound when taken into account 
pavement deterioration caused by climatic conditions, traffic loading, subgrade deterioration (Rys 
and Jasukula 2018). 
 Based on data collected over ten years from more than 400 test sections, (Janoff 1996) 
suggested that the initial smoothness is related to the pavement long-term roughness and 
durability in regard of the pavement cracking and overall deterioration. These findings are today 
proved by the mechanical analysis addressing the effect of flexible pavement viscoelasticity in 
relation to dynamic loading increased with the pavement surface roughness (Chabot et al. 2010; 
Chen et al. 2011; Zak et al. 2015; Xu et al. 2014; Zak 2016). 

The asphalt layer roughness has been used in many project specifications over the US 
and European countries to set pay adjustments based on the desired threshold. Nowadays, 
even in Public-Private-Partnership schemes and advanced design-build projects, roughness is 
one of the specifically set quality criteria. Furthermore, advanced design techniques and the use 
of construction machine control systems help to achieve these contract requirements (Prikryl et 
al. 2011). 

The need to measure the pavement surface smoothness led to the development of various 
devices. Very simple and still in use are the rod and level, profilographs, where the Californian 
profilograph may be mentioned as one of the early developed devices (Scofield et al. 1992), and 
response type devices also known as Reponse Type Road Roughness Measuring systems. With 
the advances in technology, several automated devices were developed to measure the 
pavement smoothness (Choubane et al. 2002; Monismith 2012) including smartphones and other 
inexpensive sensors (Khalifeh et al. 2018; Chatterjee and Tsai 2020; Alatoom and Obaidat 2021). 
 The use of various roughness measuring devices led to the development of many 
roughness indices, such as   
 Profilograph Index (PrI),  Mean Roughness Index (MRI),  Quarter-car Index,  root-mean-
square vertical acceleration and  rod and level surface smoothness measurement (roughness), 
whose review may be found in (Mucka 2016; Boscaino and Pratico 2001; Chemistruck et al. 
2009; Sayers and Karamihas 1998; Wilde 2007; Willet et al. 2000).  



 With many roughness measuring devices and indices that were difficult to correlate 
between them, the World Bank conducted the International Road Roughness Experiment (IRRE) 
in Brazil in 1982, with the aim of harmonizing the different indices (Sayers et al. 1986a). When 
analyzing the data, it was shown that nearly all the roughness measuring devices in use around 
the world produce measures on the same scale, if the scale was suitably selected, and the 
development of the International Roughness Index (IRI) was initiated. Due to its stability over 
time and transferability all over the world, IRI has become the most widely employed pavement 
index, with examples in developed countries (Zeiada et al. 2019, Pérez-Acebo et al. 2021, 
Mohammadi et al. 2019) and in developing countries (Nguyen et al. 2019; Pérez-Acebo et al. 
2019, Obungunta and Matsushima 2020). 

Light detection and ranging (LiDAR) and photogrammetry are the advanced 
geoinformation technologies that are able to capture the highway surface geolocation in large 
scale. Both LiDAR and photogrammetry are methods that generate point clouds with billions of 
points. These big data can be utilized to address the IRI, yet the data are often not sampled on 
regular grids.   

 

2  Contributions 
 In this paper, we propose a novel method to compute IRI from elevation measurements 

taken at arbitrary regular intervals and possibly also any irregular intervals. We provide 
implementation of the method in the Matlab programming language. 

Our work was motivated by the need to implement the computation of IRI as a software 
package component developed in our research institute. The software package utilizes the point 
cloud data captured by LiDAR. The code for the original algorithm in a computer language suitable 
for our purposes (Matlab or Python) was not publicly available and the only free option was 
ProVAL software (ProVAL), which has several limitations. ProVAL has only a graphical user 
interface, which means that repeated IRI computation cannot be automated. ProVAL works only 
with uniform sampling of elevation profiles. In the non-uniform case, the user must first resample 
data on a uniform grid, which inevitably influences the value of IRI subsequently computed. 
Finally, the code of the software is not available, which complicates more elaborate analysis of 
smoothness. For example, if we want to analyze the influence of the quarter car model 
initialization in the IRI computation. 

The IRI computation, as described in the World bank proposal (Sayers et al. 1986b), and 
later in (Sayers 1995), solves an inhomogeneous linear ordinary differential equation modeling 
the motion between sprung and unsprung masses of a car moving by a constant speed along a 
measured section of the road. 

In the original approach, the equation is solved by the state transition method. As an 
alternative, we propose a solution based on the method of variation of constants (Teschl 2012). 
This approach gives the same results but offers greater flexibility and speed, especially for non-
uniform sampling of input road profile. Ability to use non-uniform sampling can be useful in 
several situations. For example, elevation profile generated by intersection of a wheel path with 
edges of a triangulated point cloud has irregularly spaced samples. Another situation is a 
measurement with imprecise odometer, which systematically over or underestimates distance, 
and we want to rectify the results. 

While non-uniform sampling is in theory possible even in the original method, the iterative 



computation of the exponential of the transition matrix makes the computation impractical, 
which also explains why this option is not available in ProVAL. Similarly to the original solution, 
IRI can be computed efficiently by the proposed method both for overlapping (floating-window 
mode) and non-overlapping road sections. Finally, in contrast to the original algorithm, which 
requires linear segments between road samples, the proposed method can incorporate any 
polynomial model without increasing computational requirements. While this is partially a 
theoretical advantage, because IRI assumes piece-wise linearity by definition, this could be useful 
in the research of IRI alternatives. 

To summarize, the proposed solution works with equal efficiency for   

    • uniform and non-uniform sampling of the road profile,  

    • overlapping and non-overlapping road sections,  

    • any polynomial model of road segments between samples.  

 We also provide the code of the proposed method in Matlab, which is suitable for 
computing IRI automatically on large set of road profiles. 

 

3  International Roughness Index 
This section contains a concise summary of the IRI definition based mainly on (Sayers et al. 
1986b; Sayers 1995). 

IRI is computed from a single longitudinal profile, represented by a sequence of elevation 
measurements. The sample interval should be no larger than 300 mm for accurate 
measurements. According to (Sayers 1995), a vertical resolution of 0.5 mm is suitable for all 
situations. The slope of the road between samples is assumed to be constant. 

The computation consists of three steps.   

    1.  the profile is smoothed by a box filter of length 250 mm  

    2.  the ride of an ideal car (Golden Car) is simulated using the quarter-car model at 
a speed of 80 km/h.  

    3.  IRI of a road section is defined as an accumulated suspension motion divided 
by the length of the section.  

 

The quarter-car model using Newton’s laws of motion is described by four first-order 
differential equations, which can be written in matrix form as 

 
𝑑𝑥

𝑑𝑡
= 𝑥′ = 𝐴𝑥(𝑡) + 𝑏ℎ(𝑡) (1) 

 

 with an initial condition 𝑥(0) = 𝑥0. Quantities 𝑥, 𝐴 and 𝑏 are defined as follows:  

 𝑥(𝑡) = [𝑧𝑠(𝑡), 𝑧𝑠′(𝑡), 𝑧𝑢(𝑡), 𝑧𝑢′(𝑡)]𝑇 , (2) 
 

 𝐴 = [

0 1 0 0
−𝑘2 −𝑐 𝑘2 𝑐
0 0 0 1
𝑘2/𝑢 𝑐/𝑢 −(𝑘1 + 𝑘2)/𝑢 −𝑐/𝑢

] , (3) 

 

 𝑏 = [0,0,0, 𝑘1/𝑢]𝑇 , (4) 
where 𝑧𝑠(𝑡), 𝑧𝑢(𝑡) and ℎ(𝑡) are height of sprung mass, height of unsprung mass and profile 
elevation, respectively. The parameters for the Golden Car model are defined as 𝑐 = 6.0 s−1, 



𝑘1 = 653 s−2, 𝑘2 = 63.3 s−2 and 𝑢 = 0.15. Time derivatives are indicated with a prime mark. 
Time is related to a longitudinal distance by the simulated speed of vehicle, as shown in Equation 
(5):  

 𝑡 = 𝑥/𝑉 , (5) 
where 𝑥 is longitudinal distance and 𝑉 is the simulated forward speed defined as 80 km/h for 
the IRI. Vector 𝑥(𝑡) contains four state variables (height and speed of sprung and unsprung 
mass) that completely describe the simulated system in time. 

The IRI of a section of length 𝐿 is defined as in Equation (6):  

 𝐼𝑅𝐼 =
1

𝐿
∫

𝐿/𝑉

0
|𝑧𝑠′(𝑡) − 𝑧𝑢′(𝑡)|𝑑𝑡 , (6) 

 

 which is as an accumulation of the absolute suspension motion (distance of sprung and unsprung 
masses) divided by 𝐿. A common approach is to divide the road profile into segments of constant 
length (common length’s are 𝐿 = 20 m or 𝐿 = 100 m) and the IRI is calculated in each segment 
separately. An alternative is computation in each profile sample by a moving window of length 
𝐿. 

IRI is linear in two senses. First, the definition in Equation (6) implies that the average IRI 
of two segments of the same length equals the IRI of the segments taken together. Second, 
multiplication of the elevation input data by a scalar constant results in the multiplication of IRI 
by the same value. This comes from the linearity of both Equations (1) and (6). 

 

4  Proposed solution 
 The proposed solution is based on the method of variation of constants; see (Teschl 

2012) Chapter 3.4. Using this method, the IRI problem presented in Equation (1) has an analytical 
solution 𝑥(𝑡), which is the sum of a general solution 𝑥ℎ(𝑡) of the associated homogeneous 
system 𝑥′(𝑡) = 𝐴𝑥(𝑡)  and a particular solution 𝑥𝑝(𝑡)  of the nonhomogeneous system: 

𝑥(𝑡) = 𝑥ℎ(𝑡) + 𝑥𝑝(𝑡). Let 𝑀(𝑡) be a fundamental (also called principal) matrix with columns 

that correspond to the solution of the homogeneous system, i.e. 𝑀′(𝑡) = 𝐴𝑀(𝑡) . The 
fundamental matrix is constructed from eigenvalues and eigenvectors of 𝐴; see e.g. (Lay et al. 
2016) Chapter 5.7. The constant form of 𝐴 guarantees that 𝑀(𝑡) is invertible for every 𝑡. The 
solution of the associated homogeneous system that satisfies the initial condition is 𝑥ℎ(𝑡) =
𝑀(𝑡)𝑀(0)−1𝑥0. The general solution of Equation (1) is then given by Equation (7): 

 𝑥(𝑡) = 𝑀(𝑡)𝑀(0)−1𝑥0 + 𝑀(𝑡) ∫
𝑡

0
𝑀(𝑠)−1𝑏ℎ(𝑠)𝑑𝑠 . (7) 

 

 The integral in the second term can be calculated analytically for certain forms of ℎ(𝑡) and this 
allows us to express the general solution explicitly. An example of the form that allows explicit 
solution are piece-wise polynomials. In practice, the road profile is sampled and ℎ is a discrete 

variable represented as a sequence {ℎ𝑖}𝑖=0
𝑁 , where ℎ𝑖  is the profile elevation at distance 𝑥𝑖  

and time 𝑡𝑖 = 𝑥𝑖/𝑉. We assume that {𝑥𝑖} is an increasing sequence with 𝑥0 = 0 and 𝑥𝑁 = 𝐿. 
Note that the sampling need not be uniform. Let 𝑝(𝑡|𝑐𝑖) denote a polynomial function defined 
by a set of coefficients 𝑐𝑖. The function is set to zero everywhere except on the interval 〈𝑡𝑖−1, 𝑡𝑖). 
The number of coefficients in 𝑐𝑖 depends on the polynomial degree and the coefficient values 
are calculate from {ℎ𝑖} and {𝑡𝑖} according to the used interpolation method. The polynomial 
interpolation of {ℎ𝑖} is expressed as ℎ(𝑡) = ∑𝑖 𝑝(𝑡|𝑐𝑖) and then the integral can be calculated 



analytically on every interval 〈𝑡𝑖−1, 𝑡𝑖) by Equation (8):  

 𝐹(𝑡𝑖−1, 𝑡𝑖, 𝑐𝑖) ≡ ∫
𝑡𝑖

𝑡𝑖−1
𝑀(𝑠)−1𝑏𝑝(𝑠|𝑐𝑖)𝑑𝑠 . (8) 

We used Matlab Symbolic Math Toolbox to find the analytical expression for 𝐹. 
The general solution of Equation (1) at time 𝑡 for a polynomial interpolation of the profile 

sequence {ℎ𝑖} and the corresponding time samples {𝑡𝑖} is given by Equation (9):  

 𝑥(𝑡) = 𝑀(𝑡)(𝑀(0)−1𝑥0 + ∑𝐾
𝑘=1 𝐹(𝑡𝑘−1, 𝑡𝑘, 𝑐𝑘) + 𝐹(𝑡𝐾, 𝑡, 𝑐𝐾+1)) , (9) 

 

 where the index 𝐾 is such that 𝑡𝐾 < 𝑡 ≤ 𝑡𝐾+1. 

We are often interested only in the discrete solution 𝑥𝑖 ≡ 𝑥(𝑡𝑖) at time samples {𝑡𝑖}𝑖=1
𝑁 , 

which is the special case of Equation (9),  

 𝑥𝑖 = 𝑀(𝑡𝑖)(𝑀(0)−1𝑥0 + ∑𝑖
𝑘=1 𝐹(𝑡𝑘−1, 𝑡𝑘, 𝑐𝑘)) . (10) 

 

 

The IRI is then approximated by a discrete form of Equation (6), i.e.  

 𝐼𝑅𝐼 ≈
1

𝐿
∑𝑁

𝑖=1 |𝑥𝑖(2) − 𝑥𝑖(4)|(𝑡𝑖 − 𝑡𝑖−1) , (11) 

 

 where 𝑥𝑖(2) and 𝑥𝑖(4) are the second, 𝑧𝑠′, and the forth, 𝑧𝑢′, element of the vector 𝑥(𝑡𝑖), 
respectively. 

Since IRI (Sayers 1995), is a sum of contributions from individual time intervals, the dense 
computation by the moving window can be computed very efficiently – IRI in the next road section 
is nothing else than just the IRI value from the previous section plus the contribution of the new 
time interval 𝑡𝑁+1 − 𝑡𝑁, minus the contribution of the interval 𝑡2 − 𝑡1. 

The final aspect of the IRI definition we should mention is the initialization of the 
simulation. In (Sayers 1995), the initial state of simulation is recommended to be set using the 
average slope over the first 𝐿0 = 11 m. In our case, this corresponds to the time 𝑇0 = 𝐿0/𝑉 to 
travel the distance 𝐿0, which implies  

 𝑥0 = [ℎ(0), (ℎ(𝑇0) − ℎ(0))/𝑇0, ℎ(0), (ℎ(𝑇0) − ℎ(0))/𝑇0]. (12) 
 

Nevertheless, at 80 km/h even the best initialization influences simulation for about 20 m, which 
means that ideally the simulation should be started at least 20 m before the start of the 
measurement. In addition, even if IRI is computed on non-overlapping profile segments, the 
simulation should be run for entire profile without re-initialization for each segment. This is a 
natural behavior of a real vehicle going without any interruptions. 

 

5  Experiments 
To check correctness of the proposed algorithm, we implemented also the original 

Sayers’s methods and verified that both give exactly (to the machine precision) the same results. 
Next, we compared the IRI values computed by the proposed algorithm and ProVAL application 
on a number of elevation profiles. As an example, we show this comparison for a profile of a 
damaged road acquired by a mobile LIDAR system. 

In Figures 1 and 2, we compare IRI in sections of 100 m and 20 m, respectively. We can 
see that the values provided by ProVAL are close to those from our algorithm (0.4 % and 1.5 % 
relative error). Similarly, in Figure 3, we show the same comparison for segments of length 1 m. 



Since IRI is in this case averaged on much smaller segments, their values tend to differ more than 
for longer IRI segments. Interestingly, ProVAL seems to systematically “undershoot” peak values 
of IRI. The next experiment demonstrates the ability of the proposed algorithm to work with 
arbitrary sampling including irregularly sampled data. We show that resampling necessary in the 
standard method (Sayers 1995) smooths the elevation profile and consequently lowers the value 
of IRI. For this purpose, we randomly generated 200 continuous elevation profiles with 𝐼𝑅𝐼 =
1 according to the Gaussian one-parametric model with fixed waviness 𝑤 = 2 as described in 
the ISO standard 8608 (ISO8608 1995; Bogsjö et al. 2012). These profiles have the same power 
spectrum but each profile and each frequency has different random phase. An example of such 
profile is shown in Figure 4. To completely eliminate the influence of the initialization, we 
constructed the profiles to be periodic with period 100 m and measured IRI on the last 100 m. 
 

 
Figure 1: Comparison of IRI values computed by ProVAL and the proposed algorithm for non-

overlapping segments of length 100 m. Elevation data were sampled with 0.25 m interval from a 
triangulation of a LIDAR point cloud. Elevation data were sampled every 0.25 m. 

 
 

 
   

Figure 2: Comparison of IRI values computed by ProVAL and the proposed algorithm for non-
overlapping segments of length 20 m.  

    
 



 

 
    

Figure 3: Comparison of IRI values computed by ProVAL and the proposed algorithm for non-
overlapping segments of length 1 m. Both graphs show the same data on different scales. 

    

  

 
Figure 4: An artificial road with IRI = 1. This is an example of one road generated in the 

experiment demonstrating the influence of resampling. These roads are intentionally made 
periodic to completely eliminate the influence of initialization. 

 

 

Let us assume that we need to compute IRI on a 100 m interval with a sampling step 
0.25 m but the samples are mistakenly taken shifted by 0.125 m, i.e. half of the sampling 
interval. Assume that this shift is known. Whereas the standard method (Sayers 1995) first 
requires resampling to correct positions, the proposed method computes IRI directly for arbitrary 
coordinates. Results are shown in Table 1, where they are compared with the IRI of the 
continuous profile. The table summarizes the mean value of IRI, the root means square error of 
IRI estimation and the maximum error over the set of 200 profiles. Table 2 shows the results of 
an analogous experiment but for a larger sampling step of 0.5 m. Note that in these experiments 
the numbers for the correct sampling and the proposed method are mostly same to three decimal 
places but may differ in the fourth decimal place not shown in the tables.  

   



 

Method   mean IRI   RMSE   Max. error 

Continuous 
profile  

 1   0   0  

Correct 
sampling  

 0.994   0.006   0.008  

Resampling   0.986   0.014   0.019  

Proposed 
direct method  

 0.994   0.006   0.009  

Table 1: Resampling errors for sampling step 0.25 m. 
 

     

Method   mean IRI   RMSE   Max. error 

Continuous 
profile  

 1   0   0  

Correct 
sampling  

 0.980   0.020   0.029  

Resampling   0.956   0.045   0.061  

Proposed 
direct method  

 0.980   0.020   0.029  

Table 2: Resampling errors for sampling step 0.5 m. 
   

We see that resampling causes lower IRI by smoothing the elevation profile. Even for step 
0.25 m, i.e. less than the recommended 0.3 m (Sayers 1995), the error can achieve almost 2 % 
of the IRI value with the average error about 1.4 %. For a slightly longer step of 0.5 m, the 
maximum error rises to 6 % and the average error to 4.5 %. A rule of thumb in these experiments 
is that resampling approximately doubles the error caused by discrete sampling of the profile. For 
more dense sampling, the error becomes negligible, yet it should be taken into account for 
sampling steps around the recommended value of 0.3 m. 

The code of the proposed method is provided in Matlab at GitHub, Python 
implementation is planned in near future (https://github.com/michalsorel/iri). We verified that 
for segments of length 20 m and 100 m, the code gives results very close to those computed by 
ProVAL and can be used as its alternative for all practical purposes. 

 

 

6  Conclusion 
 The asphalt layer roughness is being used in many projects specifications over the US and 

European countries to asses quality of pavements. The newly proposed computation method 
allows superior utilization of three-dimensional (3D) big data such as light detection and ranging 
(LiDAR) point clouds to compute IRI. 

Moreover LiDAR technologies allow the data aquisition and by utilization of proposed 
method IRI computation even in urban areas where the conventional measurement techniques 
can not be utilized. 



The proposed method works with arbitrary even non-uniform sampling of elevation 
profiles, which avoids resampling that otherwise causes underestimation of the IRI value. For non-
uniform sampling of road profile, the method is significantly more efficient than the original 
method (Sayers and Karamihas 1998). 
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