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ABSTRACT The paper addresses a problem of sequential bilateral bargaining with incomplete information.
We proposed a decision model that helps agents to successfully bargain by performing indirect negotiation
and learning the opponent’s model. Methodologically the paper casts heuristically-motivated bargaining of
a self-interested independent player into a framework of Bayesian learning and Markov decision processes.
The special form of the reward implicitly motivates the players to negotiate indirectly, via closed-loop
interaction. We illustrate the approach by applying our model to the Nash demand game, which is an abstract
model of bargaining. The results indicate that the established negotiation: i) leads to coordinating players’
actions; ii) results in maximising success rate of the game and iii) brings more individual profit to the players.

INDEX TERMS Learning, Markov decision process, Nash demand game, negotiation.

I. INTRODUCTION
Politics and business are considered traditional spheres of
human negotiation. The internet and modern means of
communication have extended human negotiation to new
domains such as social networks, deliberative democracy,
e-commerce, cloud-based applications, [1], [2]. Besides,
automatic bargaining and negotiation, being inevitable in
modern cyber-physical-social systems [3], have been estab-
lished in variety of applications, like network negotiation,
energy trading [4] and traffic management [5], multi-robot
systems [6], manufacturing service allocation [7] and newly
in ransomware negotiation [8]. While solving negotiation
task, agents must take into account incomplete information
and strategically interact with other, human or artificial,
agents. Majority of the existing research however assumes
negotiation with non-human agents.

Here we consider the simplest bilateral bargaining scenario
with incomplete information often found in e-commerce [9].
A typical example is two self-interested agents (say, a buyer
and a seller) bargaining on some goods or service. As soon
as their price preferences differ, agents begin negotiations to
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achieve a mutually acceptable price. Either agent strives to
satisfy own preferences as much as possible, but also has
to take into account the opponent’s preferences. Otherwise
it is unlikely that an agreement can be reached.1 Additional
aspects of real-life bilateral bargaining to be considered are:
i) multi-attribute negotiation when agents need to agree on
goods/service characterised by several, possibly interrelated,
attributes (say price of a product and terms of its deliv-
ery); ii) limited negotiation time as no agent can deliberate
infinitely; iii) absence of moderator to coordinate the negoti-
ation, so the agents must reach agreement themselves [11].

The negotiation has been widely addressed in diverse
fields ranging from economy and sociology to computer
science. An amount of works is much too large to survey
them here. One can distinguish several main frameworks:
game theoretic approach, negotiation protocols approach,
evolutionary approach. Existing works however have differ-
ent limitations preventing them from wide use. Game theo-
retic approach [11], [12], assumes that agents are perfectly
rational and have common knowledge. Negotiation protocols
approach, [13], needs the clear rules for negotiation, [14], and
the results largely depend on the information available to the

1For details on modelling bargaining, see for instance [10].
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agents about each other. Evolutionary approach, [15], being
inspired by biological evolution, finds optimal negotiation
via trial-error and agents should have access to policy of
their opponents and their profits. Some approaches are based
on an agent-coordinator responsible for assigning goods or
services to agents. This coordinating (or planning) agent uses
a negotiation mechanism to find the best share.

We consider a finite horizon bilateral sequential bargaining
of two independent self-interested Bayesian decision making
(DM) agents facing with incomplete information. The key
aspects of the targeted solution are as follows.

• Negotiation. The purpose of negotiation is to enable
agents to coordinate their actions/decisions. Thus nego-
tiation is a means to achieve coordinated behaviour of
the agents. We consider the ability to negotiate an intrin-
sic part of an agent and treat it accordingly. The pro-
posed solution allows indirect negotiation via informa-
tion feedback and further leads to coordinated behaviour
without conventional (explicit) negotiation.

• Domain-independence. Existing solutions are either of
domain-specific, [16], or domain-independent, [17]. The
former ones may be more effective, but tailoring them to
a new domain may often be useless. The ever-growing
number of new applications make domain-tailored solu-
tions less favourable. The considered Bayesian DM
agent is inherently domain-independent.

• Modelling and learning the opponent. Incomplete
knowledge is given by uncertainty regarding the oppo-
nent’s preferences and behaviour. This uncertainty may
prevent agents from reaching mutually beneficial agree-
ment as well as own DM goals. The proposed solution
uses Bayesian approach to dynamically learn opponent’s
model based on observed actions (bids).

• Bounded rationality. Assumption on perfect rationality
used by game theoretic approach is not valid in real-
life tasks. Moreover human agents often behave seem-
ingly irrational due to cognitive or social factors [18].
Their DM is also influenced by emotional state [19]
and personal traits [20]: self-interest, altruism, ability to
cooperate. The proposed solution is general enough and
has already proven to take into account human-like fac-
tors [21]. Thus the approach can serve both an artificial
agent and a human.

Other important aspect of the negotiation problem con-
cerns limited deliberation. Obviously, no agent can bargain
indefinitely so the DM policy that is being designed must
take that into account. It is hardly possible to set flexible
limits on the length of negotiations, but we believe that the
established internal feedback complemented by stopping rule
can adaptively influence the length of negotiations. A natural
decrease of the utility of goods/service over time can also be
counteracted by introducing a kind of forgetting [22] in the
utility function.
Main contributions. The paper contributes to research on
bilateral bargaining in distributed settings. We propose a

self-interested probabilistic DM agent maximising expected
utility, that is able to purposefully negotiate. The developed
agent is domain-independent, can serve to either human or
artificial agents and is equipped with the following abilities
(which indicate major contributions):

• Learning ability. To counteract incomplete knowledge
and adapt to possible changes of its opponent, the agent
is equipped with the learning ability. The algorithm
is based on Bayesian approach and learns opponent’s
model from bargaining history, i.e. from the bids the
opponent proposes during a negotiation. This allows to
respect the opponent’s dynamics as well as any other
related uncertainty, cf. [23].

• Indirect negotiation. A key component of the proposed
bargaining agent is a reward function that consists of two
components. The first one respects a purely economical
individual profit of the agent. The second component
expresses degree to which bargaining agents exploit the
game potential. It is important to note that the second
component i) provides the agent with information feed-
back; ii) prompts the agents for indirect negotiation, and
iii) set limits on the negotiation range. The trade-off
between the individual profitability and the game poten-
tial is expressed by an agent-specific weight, cf. [24].
Naturally the opponent equipped with learning ability
can model the weight and use this knowledge in next
rounds. The weight expresses the agent preferences and
partially reflects personal behavioural aspects of human
bargaining. The latter opens an avenue for design of
automated agents reflecting human traits, [25].

• Privacy preservation. The implicit nature of the result-
ing distributed interaction does not involve the exchange
of any private data or models between players. Therefore
the proposed approach fully preserves players’ privacy.

The proposed solution also allows to incorporate prior
knowledge of the opponent though does not require that.
The methodology [26] makes it possible to use the avail-
able external or domain-specific knowledge to enrich the
opponent’s model. The paper also compares three types
of prior knowledge reflecting typical cases and illustrate
its use.

The paper continues our previous work [27] that assumes
complete knowledge of the opponent model, which is rarely
achievable in real-world applications. Thus the present paper
focuses on learning the opponent model as well as on intrinsic
motivation to cooperate. The last contribution of the work
is that we have compared the performance of the proposed
bargaining agents to agents employing heuristic models built
on the extensive experimental meta-study [28].
Related research. The literature of negotiation constitutes
a very large collection, and space limitations prevent it from
being presented in its entirety here. Generally there are sev-
eral models focusing on the explicit negotiation based either
on game theory or negotiation theory. The proposed approach
considers independent dynamical self-interested DM agents,
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with learning ability and special reward prompting indirect
negotiation. The mentioned features are very practical and
up to now missing within the otherwise well-elaborated and
important area of the paper. Up to the authors best knowl-
edge there is no similar approach. We use probabilistic mod-
els [29] of bargaining agents that interact in a closed-loop
and admit Markov decision processes as a modelling method-
ology, cf. [30]. The area of agent negotiation and opponent
modelling has a lot of achievements, see for instance [31],
[32], [33]. The comprehensive survey can be found in [34]
and in [35]. The recent paper [36] discusses main chal-
lenges and promises in the area. Most research on negotiating
concerns static environments and focused on i) developing
utility-based negotiation strategies for rational DM agents,
see for instance [37], [38], and ii) creating agent-moderator
helping DM agent in negotiation task, [17], [39], [40]. So far
much less research describe negotiating in dynamic envi-
ronment, see [41], [42]. The recent approach [43] uses a
logistic regression for modelling the opponent, that requires
collecting significant amount of data for learning and ini-
tialisation. Paper [44] uses a similar utility based on the
bargaining principles though constructs a subgame that relies
on the perfect equilibrium. The closely related work, dealt
with opponent modelling, is probably [45]. It also employs
Bayesian learning but relies on specific structure of prefer-
ences and policy of the opponent. Though work [46] also
focuses on design of negotiation agents in dynamic and
uncertain environments, it relies on a negotiation agent and
proposes a set of heuristics to make negotiation decisions.
Our model introduces an intrinsic mechanism that moti-
vates the agent to negotiate while learning opponent’s model
via Bayesian approach. The resulting bargaining policy is
optimal with respect to the resources available and individ-
ual preferences of the agents. It can also take into account
human factors, which are important whenever human agents
are involved.

We illustrate the approach using the Nash Demand Game
(NDG) [12], a bilateral bargaining game for two players that
should decide how to split given amount of money. The play-
ers simultaneously demand a certain portion of the amount
they would like to get. The demand of one player is unknown
to another one (an opponent). If the players’ demands can
be satisfied simultaneously, both players get the respective
profit. Otherwise, they both get nothing. Despite its seeming
simplicity, the NDG is a good model of dynamical resource
allocation that achieves coordination without explicit negoti-
ation. It also serves a big challenge for understanding human
negotiation.

The remainder of the paper is organized as follows.
Section II introduces notations and a mathematical back-
ground. Section III formulates the Nash Demand Game as
MDP of a single player, introduces heuristic model of the
opponent and prior models used in learning. Section IV
describes and discuss simulated experiments. Section V and
Section VI summarise the results obtained and outlines future
research directions.

II. PRELIMINARIES
This section introduces and recalls necessary notions.

A. GENERAL CONVENTIONS
N, R set of natural numbers, set of real numbers
xt ∈ X value x from finite set X at discrete time t
p(x) probability mass function of discrete random vari-

able x
p(x|y) probability mass function of x conditioned on y
E[x|y] the expectation of x conditioned on y

Note that no notational distinction is made between a random
variable and its realisation.

B. MARKOV DECISION PROCESS
We model player’s decision making in the NDG via Markov
Decision Process (MDP) framework [47]. MDPs were first
introduced and developed in the operations research and
economics [48]. Since that MDP framework has been
widely used to describe and solve decision-theoretic prob-
lems. MDP allows to capture the underlying stochastics
omnipresent in application domain and also allows to
respect multiple DM criteria. Typical examples of using
MDP framework include medical applications [49], predic-
tive maintenance [50], power systems [51], more examples
see [52].

The overall scenario is as follows. An player interacts with
the environment by taking actions to achieve its2 DM goal.
The player is motivated by a reward it receives after each
action taken. A finite state and action MDP is considered.
Definition 1 (MDP): The fully observableMDP is charac-

terised by {T,S,A, p,R}, where T = {1, 2, . . . ,N },N ∈ N,
is a set of decision epochs; S is a finite set of all possible
environment states and A denotes a finite set of all actions
available to the player. Function p : S × S × A 7→ [0, 1] is
the transitionmodel p(st+1|st , at ) that moves the environment
from state st ∈ S to state st+1 ∈ S after the agent took action
at ∈ A; R : S × S × A 7→ R is a real-valued function
representing the player’s reward R(st+1, st , at ) after taking
action at ∈ A in state st ∈ S.

The transition model captures environment dynamics and
is represented by a family of probability distributions
p(st+1|st , at ), each denotes the probability that at time
t + 1 the environment will move from st to st+1 when action
at is executed. The state transitions obey Markov property:
the distribution over states at time t + 1 is independent of any
previous state st−j and action at−j, j ≤ 1 for fixed st and at .
The player’s preferences are described by a reward func-

tion, R. The aim of the player is to choose a sequence
of actions in order to maximise the total expected sum of
rewards as described in the following section.

C. OPTIMAL DECISION POLICY
The player chooses action at ∈ A based on the randomised
DM rule p(at |st ) : S 7→ A in each decision epoch t ∈ T.

2‘‘It’’ is used as the generic pronoun. A device or an algorithm can be
considered as the agent.
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A sequence of DM rules forms DM policy πt,h at time t over
decision horizon h ∈ N, sτ∈S, aτ∈A:

πt,h=

{
p(aτ |sτ )

∣∣∣sτ , aτ ,∑
aτ∈A

p(aτ |sτ )=1,∀sτ∈S
}t+h−1
τ=t

. (1)

MDPwith finite horizon h evaluates the quality of DM policy
by expected total reward defined as follows:

E
[t+h−1∑
τ=t

R(sτ+1, sτ , aτ )|st

]

=

t+h−1∑
τ=t

∑
sτ+1∈S
sτ∈S
aτ∈A

R(sτ+1, sτ , aτ )p(sτ+1, sτ , aτ |st ), (2)

where

p(sτ+1, sτ , aτ |st ) = p(sτ+1|sτ , aτ )p(aτ |sτ )p(sτ |st ).

The solution to MDP [47] is a sequence of DM rules,{
popt (aτ |sτ )

}t+h−1
τ=t

, that maximises the expected reward (2)
and forms the optimal decision policy:

π
opt
t,h = arg max

{πt,h}∈πππ
E
[ t+h−1∑

τ=t

R(sτ+1, sτ , aτ )|st

]
, (3)

where πππ is a set of possible DM policies, see (1). The
optimal policy (3) is computed by dynamic programming
algorithm [48], [53], which requires knowledge of transition
model p(sτ+1|sτ , aτ ).

D. LEARNING TRANSITION MODEL
In bilateral bargaining, the transition model is a model of
the opponent, that is, it predicts the opponent’s reaction to
the player’s action. Generally it describes the dynamics of
the opponent’s decision making. In real-life tasks, oppo-
nent model p(st+1|st , at ) is usually unknown to the player.3

It reflects the player’s knowledge about the behaviour of
the opponent. Without lost of generality the model can be
assumed time-invariant, i.e. p(st+1|st , at ) = p(st |st−1, at−1)
and can be learned from the observed data.
To simplify the presentation, let us drop out the time index

and introduce the following temporary notations: s′ = st+1,
s = st and a = at . The transition model then can be written
p(s′|s, a).4

We consider a parametrised form of the opponent’s model
with time-invariant parameter θ ∈ 2

p(s′|s, a, θ) = θs′sa, θs′sa ∈ 2, (4)

where 2 is a set of all possible θ ’s and 0 ≤ θs′sa ≤ 1,∑
s′∈S θs′sa = 1, ∀(s, a)|s ∈ S and a ∈ A.
Thus, parameter θ in (4) is an array defining transition

probabilities θs′sa that opponent’s state in the next time will

3It can be partially known or incorrectly specified.
4The new notation is valid within Section II-D only.

equal s′ whenever the previous state is s and the player takes
action a. Our aim is to learn parameter θ , (4).
Let the player have belief b(θ ) about the opponent’s

dynamics expressed via the probability density function of the
parameter θ . While interacting with the opponent, the player
updates belief about the parameter, b(θ ), to a new value, b′(θ ),
given observed transition (s′, s, a) as follows, see [54]:

b′(θ ) ∝ b(θ)p(s′|s, a, θ) = b(θ)θs′sa. (5)

Choosing belief b(θ ) in conjugate form of Dirichlet dis-
tribution implies that the posterior (5) induced by Bayes’
rule [54] is

Dir(ννν, θ) ∝
∏
s′sa

θ
νs′sa−1
s′sa . (6)

In (6) concentration parameter ννν > 0 is an array containing
occurrences νs′sa > 0 of triples (s′, s, a). Each observation
of a triplet (s′, s, a) increases the corresponding entry, νs′sa,
by one.

Therefore, after n ∈ N observations {(s′, s, a)}n∈N, update
ν′s′sa contains the actual occurrences of (s′, s, a). Recalling
(4), the expectation of (6) can be interpreted as Bayesian
estimate of unknown parameter θ based on the observed data
(i.e. transitions occurred):

E
[
p(s′|s, a, θ)

∣∣∣∣ν′] = E
[
θs′sa|ν

′

]
=

ν′s′sa∑
s′ ν
′

s′sa
. (7)

Recursive implementation of the prior statistics update is
described in [55].

A real-life dynamic decision making requires an efficient
and feasible learning that can be performed online. Markov
models belong to the exponential family for which exact
estimation is feasible. The estimation and prediction within
this family is very simple, especially with the conjugate prior
in the form of Dirichlet distribution. The needed update of
functions (probability density functions, see (5)) is given
by the algebraic recursive update of the finite dimensional
sufficient statistics. This clarifies applicability of this learning
in combination with decision making.

III. METHODOLOGY
A. MDP FORMALISATION OF NASH DEMAND GAME
The considered repetitive scenario of the game is as follows.
Two structurally identical players A and B are bargaining
on splitting an amount of money q ∈ N. The roles of both
players are the same. In each round, two stages are present:
an action stage and a reward stage. During action stage, each
player decides how much to claim from the total available
amount. The players do not communicate and their interests
can be competitive. At reward stage, the players announce
their demanded shares, observe the demands of their oppo-
nents and reward is allocated. Note that in action stage each
player has no information about their opponent’s demand or
preferences. The game runs for a fixed and known number of
periods.
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Let q ∈ N is a total amount to split. At the beginning of
round t ∈ T, each player k ∈ {A,B} chooses action akt ∈ Ak

that is a demanded share of q in the round. The minimum
demand equals 1 and the maximum is q − 1. If the sum of
demands is less than or equal to q, both players get what they
asked for, otherwise the players get zero reward.

Player’s profit in round t ∈ T equals the amount of money
player receives5:

zAt = aAt χ (a
A
t , a

B
t ),

zBt = aBt χ (a
A
t , a

B
t ), (8)

where zAt , z
B
t ∈ Z are profits of A and B respectively. Z =

{0, 1, 2, . . . , q − 1} is a set of possible profits in one game
round, and

χ (aAt , a
B
t ) =

{
1 if aAt + a

B
t ≤ q,

0 if aAt + a
B
t > q.

(9)

The addressed distributed bargaining does not consider com-
munication between the players or any agent-moderator.
To find a fully distributed solution, the game is described
from a point of view of a stand-alone player. Let us now for-
mulate the discussed bargaining task of a stand-alone player,
say player A, as an MDP problem.
Definition 2 (Bargaining as an MDP Task): The bargain-

ing scenario is modelled by tuple {T,S,A, p,R}, see Defini-
tion 1, whereA = {1, 2, . . . , q−1} is a set of possible actions;
aAt ∈ A is action of player A, i.e. a portion of q demanded
by A at time t ∈ T; st = (aAt−1, a

B
t−1) ∈ S is a state observed

byA at time t and p(st+1|aAt−1, st ) is a transitional model that
describes the state dynamics. Initial state s1 = (aA0 , a

B
0 ) is

preset to the same demand aA0 = aB0 = a0.
Reward as motivation for negotiation. Let reward of player
A be defined as follows:

RAt = aAt (1− ω
A)χ(aAt , a

B
t )− ω

A
| q− (aAt + a

B
t ) | .

(10)

The first term in (10) is a pure economic profit of playerA, cf.
(8). The second term expresses efficiency of using the game
potential at round t , i.e. whenever aAt +a

B
t < q some amount

remains unclaimed and thus lost for the players. The same
situation happens when an agreement is not reached and the
entire amount q is lost.

Obviously reward (10) ensures that, given fixed aAt , player
Awill receive the maximum possible reward iff its opponent,
B, demands q − aAt . The proposed form of reward, (10),
‘‘connect’’ A’s action with that of B and thus encourages
player A to indirectly negotiate with B during bargaining.
The mechanism of dynamic indirect negotiation is as follows.
Each player influences the amount left while their opponent
observes this influence and changes their next demand. Let us
assume that there is a tendency for some unclaimed amount
to remain. Then, if one player has consumed a small portion
of it, the other player will observe that and then may increase

5Upper indexes indicate the player whom action or profit belongs to.

their demand in the next round. Another situation occurs
when the joint claim of the players exceeds the available
resources. Then any of the players may step back and reduce
their demand in the next round. This behaviour can again
lead to a large unclaimed amount and affects the future
demands of the players. In particular, the desire to minimise
the unclaimed amount, | q− (aAt + a

B
t ) |, (10), forces player

A to modify the current demand while taking into account the
history of the opponent’s claims. By doing so, in each round,
each player dynamically adapts their demand to the foreseen
demands of their opponent, that is indirectly negotiates with
the opponent.
Weight ωA ∈ [0, 1] in (10) reflects A′s preferences between
pure economic gain and exploiting the game’s potential. The
value ωA = 0 implies player A considers pure economic
profit only, while in case of ωA = 1 player A cares about
efficient use of the game potential. The A′s reward (10) thus
equals

RAt =

{
aAt − ω

A (q− aBt ) if aAt + a
B
t ≤ q,

−ωA
(
q− aBt

)
otherwise.

(11)

Definition 2 and considerations above describe DM of player
A. Easy to see that the same considerations can be applied to
formalise decision making of player B.

The conditional independence of the players’ actions given
by the game rules and the definition of the state, see Defini-
tion 2, imply

p(st+1|st , aAt ) = p(aAt |a
A
t−1, a

B
t−1)p(a

B
t |a

A
t−1, a

B
t−1). (12)

From player A point of view, the first factor in (12) is a part
of A’s optimal policy while the second factor models DM
of player B and can be recursively estimated using Bayesian
paradigm [54] as described in Section II-D.

B. HEURISTIC MODEL OF OPPONENT
The proposed approach formalised and solved bilat-
eral dynamic bargaining of learning self-interested player
within MDP framework (Section II-C). To verify the
approach we propose a probabilistic bargaining model for
non-learning and non-optimising opponent. The model is
based on the reported experimental evidence obtained with
human-players, see [28], [56]. For simplicity
here we consider player B is serving as an opponent
to A.

Heuristic behaviour of B reflects the dependence of its
future demand on the results of the previous round. Once
the previous round demands are incompatible, that is aAt−1 +
aBt−1 > q, player B tends to decrease next demand. If there
are unclaimed money left in the previous round, B, on the
contrary, increases the next demand. The proportion (speed)
of demands’ increase/decrease may depend on personal traits
(i.e. reflect the personality of B).

The remainder of this section introducesmodel that reflects
the behaviour of an opposing player, B.
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1) B HAD LOW DEMAND IN THE PREVIOUS ROUND
Consider the previous demand of playerB is low, i.e. less than
the fair split would have been, aBt−1 ≤

q
2 . The next demand (in

sense of its mean value) then depends on the success of the
previous round, i.e. whether demands in the previous round
were compatible or not. Belowwe distinguish these two cases
and provide the respective probabilistic description of B’s
actions.

i) Incompatible Demands (aAt−1 + aBt−1 > q): B tends
to keep its next demand close to the previous one,
aBt , as the previous demand of A was certainly much
higher than aBt−1. Thus any further increase could cause
players’ demands to become incompatible again and
implies zero profit. Therefore the new demand of player
B can be modelled as follows:

p(aBt |a
A
t−1, a

B
t−1) ∝ exp

−(aBt − aBt−1)2
2σ 2

 (13)

while aBt−1 ≤
q
2 .

ii) Compatible Demands (aAt−1+ a
B
t−1 ≤ q): opponent B

will proportionally increase the next demand, expect-
ing A to do the same in order to fully distribute the
entire available amount, q. In other words player who
received less in the previous round would also ask for
proportionally less unclaimed money and vice versa.
A model of B describing the new demand is then

p(aBt |a
A
t−1, a

B
t−1) ∝ exp

(
−

K
2σ 2

)
, (14)

with K =
(
aBt − a

B
t−1 −

aBt−1
aAt−1+a

B
t−1

(q− aAt−1 − a
B
t−1)
)2

while aAt−1 + a
B
t−1 ≤ q and a

B
t−1 ≤

q
2 .

2) B HAD HIGH DEMAND IN THE PREVIOUS ROUND
Now let us consider a situation when the previous demand
of B was high, i.e. its value was greater than the fair split
would have been, aBt−1 >

q
2 . Then B decreases/increases

demand while keeping own share proportional to the previous
round in order to fully distribute the entire amount. A player
who received less in the last round would ask for less of
proportionally less unclaimed money and vice versa. Then a
model of B′s new demand has the same form as (14).

C. PRIOR MODELS USED IN LEARNING
Our approach considers decision making of the player in
question, A, who models behaviour of the opponent, B, and
optimises own demand in order to maximise the accumu-
lated profit. The ability to accurately predict the opponent’s
behaviour significantly affects the success of A′s decision
making, (12). To learn a model of the opponent, A follows
the approach described in Section II-D. It exploits knowledge
available in the form of a parameter prior that quantifies
A′s belief about dynamics of the opponent, B. Following

Bayesian paradigm this prior will be gradually updated with
new data accumulated, see Section II-D and [55]. The choice
of prior model is important, especially when a number of
game rounds is limited. In implementation we use three prior
models reflecting different knowledge A about B:
• a uniform prior distribution. This model is used whenA
has little or no knowledge about the dynamics of B

• prior model describing ‘‘rational’’ heuristic, see
Section III-B. It is used when non-optimising B follows
some heuristic and does not optimise. In that case prior
model has the same structure as (13) or (14), but with
different (larger) standard deviation σ .

• pre-trained prior model. The third way of building an
a priori model mimics the natural learning process of
human players, where the player first gathers some
knowledge about the opponent’s playing style and then
updates this knowledge during the game. Practically it
meanswe run game for 30 preliminary rounds and player
A built prior model of B based on the data obtained
during these rounds. This way of building prior is used
whenever the both players optimise and learn.

IV. SIMULATED EXPERIMENTS
The proposed approach is illustrated with the Nash demand
game, described in Section III-A, using simulated examples.6

We selected the most representative experiments from a
much wider set of the experiments differing in the number
of rounds and horizons. The selected experiments are long
enough to perform learning (because very short runs will not
be sufficient to learn the models used), while longer runs will
add no significant information about the results.

A. GOAL OF THE EXPERIMENTS
The goal was to analyse the impact of the proposed distributed
solution and indirect negotiation and to verify that player
employing the proposed DM policy is capable of achieving
better results than heuristic player playing the same role. The
main objectives of the performed experiments are:
• illustrate the distributed DM approach in repetitive bar-
gaining;

• show that the proposed form of the reward function leads
to an indirect negotiation and to a coordinated course
of actions of both players, that is, to a more efficient
allocation of the available limited resources;

• demonstrate influence of weight ω in (10)
• show that DM policy with indirect negotiation brings
higher profit to every player compare to the heuristic
model.

B. COMMON SETTINGS OF THE EXPERIMENTS
Each game has 60 rounds and optimisation horizon h ∈ N
equals 10 game rounds. The amount of money that players
can split (if they reach an agreement) is q = 10 CZK per
round. The reward (10) is evaluated for the optimal policy (3)

6The examples were implemented in MATLAB, The MathWorks, Inc.
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resulted from the dynamic programming [48]. The initial state
of each player s1 = (aA0 , a

B
0 ) is preset to a

A
0 = aB0 = 3.

The simulation is performed for 11 different values of
weight ω, (10). Weight (0 ≤ ω ≤ 1) expresses a trade-off
between the individual profitability and efficiency of using
the game resources. It thus reflects the extent to which the
player is negotiating. Zero value of ω in (10) models the sit-
uation when the player is interested only in economic profit.
Other values of ω (0 < ω ≤ 1) correspond to cases when the
player maximises the personal profit while minimising the
unclaimed amount of money.

C. EXPERIMENTS PERFORMED
The players used in the simulation are artificial agents with
either heuristic DM model (see Section III-B) or proposed
DM policy that optimises reward (10), see Section II-C.
In each game at least one of the players uses the observed
behaviour to update the opponent’s model, see Section II-D.
In order to display behaviour of our bargaining model, five
typical cases were considered:

Test 1 : Both players are non-learning. The player in ques-
tion, A, is of the MDP type and uses the pro-
posed DM policy optimising (10). Its opponent, B,
behaves heuristically, see Section III-B.

Test 2 : This case is similar to Test 1 but player A dynami-
cally learns the opponent’s model.

Test 3 : Both players are of the MDP type and non-learning.
They have no knowledge of their opponent and do
not model it either (i.e. they use uniform model).

Test 4 : Both players are of the MDP type, and use having
non-informative prior for learning, see Section II-D.

Test 5 : This case is similar to Test 4, but the players use
informative priors (i.e. opponent model trained dur-
ing the preliminary phase).

D. APPROACH VERIFICATION
The players have played the game repeatedly with differ-
ent settings. The results are summarised in graphs depicting
individual cumulative profits of the players, total profit of
the game, and success rates of game depending on the value
of parameter ω. The success rate is defined as a number of
game rounds in which the players’ demands were compatible
and thus satisfied. In other words, the value of the success
rate shows how successfully the players collaborated, i.e.
respected the opponent’s actions. High values indicate high
collaboration. The results show minimum, mean and maxi-
mum values of the individual cumulative profits and the game
success rate. Note that

• The maximum success rate does not necessarily imply
the maximum total profit of the game.

• Compatibility of the players’ claims does not guarantee
zero unclaimed amount in the game.

• It is not guaranteed either that the maximum profit will
be obtained for the same value of the weight ω. Thus
the total maximum (minimum) profit of the game is not

TABLE 1. Test 1: Player A optimises but not learn. Player B follows the
heuristic model (13), (14).

equal to the sum of the individual maximum (minimum)
profit of the players.

1) TEST 1: A IS A NON-LEARNING MDP PLAYER, B
BEHAVES HEURISTICALLY
Player B, behaves according to the heuristic model (13), (14)
with σ 2

= 1.
Player A is of MDP type and uses DM policy (3)

that optimises reward (10). In optimisation A uses model
p(st+1|st , at ) having structure of the heuristic model, see
Section III-B, but with different parameter σ = 3. This
imitates a situation when A has partial or vague knowledge
of the opponent.

Cumulative profits of the players A and B are shown in
Figure 1 and Figure 2. Total cumulative profit and success
rate of the game as a function of parameter ωA are shown in
Figure 3 and Figure 4.

The players are successful in more than 51% of the rounds
on average. The results show influence of parameter ωA on
profit: the higher the parameter, the higher the profits of
individual players and the higher the total profit of the game.
This indicates a positive effect of the second term (10), which
prompts A to indirectly negotiate with B by minimising the
unclaimed amount in each round. As a result the players start
to implicitly cooperate.

The results show the saddle value of parameter ωA =
0.5 that provides the minimum values of A’s profit and suc-
cess rate of the game. The maximum is reached for ωA = 1.
Obviously, optimising player A earned slightly less on aver-
age than non-optimising player B. It could be because player
B used fixed decisionmaking rules andA had to adapt to that.

2) TEST 2: A OPTIMISES AND LEARNS, B BEHAVES
HEURISTICALLY
This experiment is similar to Test 1, see Section IV-D1,
i.e. player B behaves accordingly to the heuristic model,
Section III-B, and player A uses optimal DM policy min-
imising the proposed reward, (10). Unlike Test 1, playerA is
learning.A considers a uniform prior as B’s transition model
and dynamically updates it via data gathered, see Section III-
C.

Cumulative profit and success rate obtained in Test 2 are
shown in Figures 5-8 and Table 2. Obviously the learning has
a positive impact on the game results. On average, the players
are successful in more then 66% of all rounds - the average
success rate is about 15% higher than in Test 1, as is the
cumulative profit. The minimum values for individual profits
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FIGURE 1. Test 1 - A’s cumulative profit on weight ωA.

FIGURE 2. Test 1 - B’s cumulative profit on weight ωA.

TABLE 2. Test 2: Player A optimises and learns, player B follows the
heuristic model (13), (14).

and overall success rate are significantly higher cf. Table 1.
On the other hand, their maximum values have noticeably
decreased. The players have similar individual profits and
their values weakly depend on parameter ωA.

3) TEST 3: BOTH PLAYERS OPTIMISE BUT NONE LEARNS
This experiment considers both players are of MDP type and
select DM policy maximising reward (10). However neither
of the players is learning. They use a fixed uniform model

FIGURE 3. Test 1 - Total Profit of Players.

FIGURE 4. Test 1 - success rate of the games.

(see Section III-C) that models the situation when there is no
information about the opponent.

Cumulative profits and success rate of the game vs.
parameters ωA and ωB are shown in Figures 9-12 and
Table 3.

The results illustrate positive impact of i) optimal bargain-
ing compare to heuristic behaviour, cf. results of Test 1 and
Test 2 and ii) proposed reward (10) that prompts on indirect
negotiation. Even with non-informative prior knowledge, the
players get higher profit. If the players’ weights are ωA ≥
0.5 and ωB ≥ 0.5 the success rate is 100% and overall game
profit gained is close to the maximum possible (600 CZK),
see Table 3. By other words: when the players care about the
optimal allocation of the resources (by assigning highweights
to the second term in reward (10)), the bargaining is more
profitable. On average, the players are successful inmore than
76% of all rounds.
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FIGURE 5. Test 2 - A’s cumulative profit on weight ωA.

TABLE 3. Test 3: Both players optimise but none learns.

FIGURE 6. Test 2 - B’s cumulative profit on weight ωA.

4) TEST 4: PLAYERS OPTIMISE AND LEARN WITH UNIFORM
PRIOR
This experiment is similar to Test 3, i.e. both players are
of MDP type and maximise reward (10). Unlike Test 3,
the ability to learn the opponent’s model has been added
to the players. The agents dynamically enhance their non-
informative (uniform) priors based on the data observed dur-
ing the game. Thus each player i) learns their opponent; ii)
searches for optimal demand; iii) indirectly negotiates via
minimising unshared resources.

TABLE 4. Test 4: Both players optimise and learn with uniform prior.

FIGURE 7. Test 2 - Overall profit of the players.

FIGURE 8. Test 2 - Success rate of the games.

Cumulative profits and success rate of the game
in dependence on parameters ωA and ωB are shown
in Figures 13-16 and Table 5.

The results show significant improvement due to the learn-
ing. Theminimumvalues of the individual profits and the suc-
cess rate decreased but their maximum values increased on
average, see Table 4. The significant improvement occurred
when ωA ≤ 0.5 and ωB ≤ 0.5, see Figures 13-15. Compare
to Test 3, learning ability brought higher individual profits as
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TABLE 5. Test 5: Both players have informative prior, learn and optimise.

FIGURE 9. Test 3 - A’s cumulative profit in dependence on weights ωA

and ωB .

well as higher success rates achieved for relatively low values
of ω. Thus learning helps even when the player’s willingness
to negotiate (expressed by ω) is low.

5) TEST 5: INFORMATIVE PRIOR INFORMATION
This experiment is a modification of Test 4 with each of the
players having meaningful prior knowledge of the opponent.
First, to get informative prior, the players played 30 training
rounds during which they gained prior models of their oppo-
nents. Then, Test 3 has been performed with the resulting
prior instead of uniform distribution.

Cumulative profits and success rate of the game in depen-
dence on parameters ωA and ωB are shown in Figures 17-20
and Table 5.

The results show further improvement, see Table 5, cf.
Tests 3-4. The minimum values of profits and success rate
do not change but the maximum and mean values noticeably
increased, cf. Test 4 (Section IV-D4). The players achieve
much higher individual profits for low values of weights ω
because they coordinated their demands to make them almost
always compatible (see Figure 20).

V. DISCUSSION
Section IV describes simulation results obtained on the NDG.
It can be seen that our DM model can help the players to
effectively bargain and counteract the incomplete knowledge.
The main advantages of the proposed DM model are as
follows:

FIGURE 10. Test 3 -B’s cumulative profit in dependence on weights ωA

and ωB .

FIGURE 11. Test 3 - Overall profit of the players.

FIGURE 12. Test 3 - Success rate of the games.

• The proposed reward function respects individual eco-
nomic profit of the bargaining agent and the unclaimed
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FIGURE 13. Test 4 - A’s cumulative profit in dependence on weights ωA

and ωB .

FIGURE 14. Test 4 - B’s cumulative profit in dependence on weights ωA

and ωB .

amount of money from the previous round. As the
opponent’s past actions enter the reward (10), the opti-
mal policy of the agent implicitly respects them. And
vice versa: the optimal policy of the opponent respects
agent’s actions. Hence both players are forced to implic-
itly cooperate.

• The weight ω in (10) expresses trade-off between the
individual profitability and efficiency of using game
potential. At the same time it also reflects agent’s
preferences and partially style of playing (personal
traits). High values of the weight in the player’s reward
(10) indicate a high interest of the agent in efficient
use of game resources, i.e. in minimising the remain-
ing unclaimed amount. In each round thus the reward
encourages the agent to dynamically ‘‘adapt’’ its cur-
rent demand to the predicted demand of the opponent.
In the next round, the resulting profit7 together with the

7which reflects the effect of the previous round and thus provides a
feedback to the agent.

FIGURE 15. Test 4 - Overall profit of the players.

FIGURE 16. Test 4 - Success rate of the games.

updated opponent’s model, is used in (2), (3) to select a
new demand. This is the essence of the proposed indirect
dynamic negotiation.

• Compared to the heuristic bargaining model,
Section III-B, our optimal DM policy increased the
mean value of the player’s individual profit bymore than
50% (in the case of an uninformative prior) and by about
65% (informative prior).

• Learning significantly improves the bargaining results.
However optimising but not learning agent can have
worse individual results compare with the heuristic
opponent. The reason is that the optimising agent implic-
itly cooperates with the opponent during bargaining but
does not use the correct opponent model for this.8 On
contrary, the opponent does not cooperate and it uses
a fixed heuristic model. As a result, the agent’s effort
brings more profit to the opponent than to itself.

8And therefore cannot predict the opponent.
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FIGURE 17. Test 5 - A’s cumulative profit in dependence on weights ωA

and ωB .

FIGURE 18. Test 5 - B’s cumulative profit in dependence on weights ωA

and ωB .

FIGURE 19. Test 5 - Overall profit of the players.

• The best bargaining results were achieved if both play-
ers are learning and employ the proposed bargaining

FIGURE 20. Test 5 - Success rate of the games.

policy. Informative prior used in learning can signifi-
cantly improve the agent’s profit.

The proposed solution can be further extended i) to cover
multi-issue bargaining; ii) to respect human non-rationality
given by social and cognitive aspects; iii) to respect emotional
state of the agent that has been proved to significantly influ-
ence DM [57].

VI. CONCLUDING REMARKS
The paper addresses a problem of sequential bilateral bargain-
ing with incomplete information. We proposed DM model
that helps agents to successfully bargain by performing indi-
rect negotiation and learning the opponent’s model. Method-
ologically the paper casts heuristically-motivated bargaining
of a self-interested independent agent into a framework of
Bayesian learning and Markov decision processes. The proof
of the main results is based on the standard methodology.
However, the problem formulation and the gained solution
are novel and practically important. The special form of the
reward implicitlymotivates the players to negotiate indirectly,
via closed-loop interaction. At the same time the proposed
method is privacy-preserving, since it does not require the
exchange of data or models between the bargaining agents.
We illustrate the approach by applying our model to the Nash
demand game, which is an abstract model of bargaining.
The paper provides our original formulation and solution of
the practically important DM scenario. It presents the initial
study that confirms that our formulation is meaningful and
gives the promising results. The results indicate that the intro-
duced DMmodel: i) leads to coordinating the players’ actions
and to their indirect negotiation; ii) results in maximising
success rate of the game and iii) brings more individual profit
to the players compare to the heuristic model.

The proposed bargaining policy minimises losses caused
by: (i) insufficient use of the resources; (ii) demands that
exceed the total resources available; and (iii) incomplete
knowledge.
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The results obtained indicate possibility to create a realistic
and applicable methodology of cooperation and negotiation
in flatly organised networks of interacting agents without
a fixed structure, cf. [58]. We believe that our approach is
suitable for non-cooperative, multi-agent networks, since we
provide an easy way to implicit cooperation. The solution
does not rely on a central authority and the proposed DM
model outperforms a heuristic model whenever both agents
are rational, learning and follow the optimal strategy.

In future work we would like:

• to cover the multi-issue bargaining;
• to extend the approach to a multi-agent settings;
• to implement the approach for other bargaining rules
than Nash demand game.

Further foreseen challenge is learning weights of individual
players based on their bargaining history. The weights indi-
rectly reflect agent’s model of bargaining and preferences.
Moreover the weights may depend on the agent’s personal-
ity [59], which allows taking into account the influence of
personality traits on decision making.
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