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Abstract

The axiomatic fully probabilistic design (FDP) of decision strategies strictly extends Bayesian decision making (DM) theory. FPD also
models the closed decision loop by a joint probability density (pd) of all inspected random variables, referred as behaviour. FPD expresses
DM aims via an ideal pd of behaviours, unlike the usual DM. Its optimal strategy minimises Kullback-Leibler divergence (KLD) of
the joint, strategy-dependent, pd of behaviours to its ideal twin. A range of FPD results confirmed its theoretical and practical strength.
Curiously, no guide exists how to select a specific ideal pd for an estimator design. The paper offers it. It advocates the use of the closed-
loop state notion and generalises dynamic programming so that FPD is its special case. Primarily, it provides an explorative optimised
feedback that “naturally” diminishes exploration (gained in learning) as the learning progresses.
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1 Introduction

On the paper context and main result This brief paper fo-
cuses on a technical problem related to a prescriptive theory
of dynamic decision making (DM). The theory is dubbed
fully probabilistic design (FPD) of decision strategies 1 .
It generalises methodologies developed in connection with
(adaptive) control theory [1,4] and Markov decision pro-
cesses [32]. Since its initial publication [13], it was broadly
elaborated [17], axiomatised [14], applied [16,33] and used
for supporting decision makers [9,15,18,42].

The paper deals with the evergreen known as dual control
[7,22,28] or exploration-exploitation dichotomy [5]. It con-
cerns the balance of random explorative actions, supporting
parameter estimation, with actions moving the closed con-
trol loop to the desired state 2 . The main contribution of the
paper is an optimised feedback that “naturally” diminishes
exploration (gained in learning) as the learning progresses.

On the addressed technical problem Any estimation serves
to decision making seen as the aim-focused selection and
use of actions. The agent — the decision maker or the ac-
tion selector, referred as “it” — acts under uncertainty. The

? This paper was not presented at any IFAC meeting.
Email address: school@utia.cas.cz (Miroslav Kárný).

1 It has overlaps with KL control [6,8,12,30,39], with minimum
relative entropy principle [29,35], softmax, etc.
2 The exploration counteracts the positive probability of non-
optimality connected with certainty-equivalence-based strategies,
see e.g. [25] the example on p. 347 and Theorem 7.1

inspected agent uses FPD. FPD models the closed-loop be-
haviour by the joint probability density (pd). The behaviour
consists of all considered uncertain variables. The inspected
estimation arises when the behaviour includes a parameter
unknown to the agent. Its adopted handling as random vari-
able coincides with bayesianism [3].

The FPD-optimal strategy minimises Kullback-Leibler di-
vergence (KLD) [24] of the behaviours’ pd to its ideal, DM-
aims expressing, twin. The estimation has the parameter es-
timates as (a part of) agent’s actions. The wish to obtain good
estimates of the unknown parameter is the generic agent’s
aim. The key question is: What ideal pd expresses this wish?
A universal conversion of a usual loss into the ideal pd ex-
ists, Prop. 3. in [14]. It often violates the dictum [20]: Select
an ambitious but reachable ideal pd! Our solution meets this
dictum and leads to the mentioned main result.

Layout Sec. 2 recalls FPD, embeds it into a slightly gen-
eralised dynamic programming and advocates the use of
closed-loop states. Core Sec. 3 solves FPD with an esti-
mator. It proposes the relevant ideal pd and finds the FPD-
optimal estimator. Sec. 4 summarises properties of the pro-
posed strategy and outlines open problems.

Notation {x} marks the set of xs defined if needed. Sanserif
fonts denote mappings. The superscripts i, o refer to the ideal
pd and optimality, respectively. The symbol := defines by
assigning; ∝ is proportionality;˜marks interim objects. The
time subscript t ∈ {t} of a function ft on {x} drops if the
function argument has it, f(xt) := ft(xt). The text prefers
mnemonic identifiers.
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2 Fully Probabilistic Design

FPD deals with the closed DM loop. An agent and its en-
vironment form it. The agent’s actions at ∈ {a} 6= ∅, at
time moments tagged by t ∈ {t} := {1, . . . ,h}, h < ∞,
influence transitions of states st−1 ∈ {s} 6= ∅ to states
st ∈ {s}. The inspected transition model depends on an un-
known, time-invariant, parameter p ∈ {p}. The closed-loop
states (st)t∈{t} are gradually observed and constructed. A
fixed, known initial state s0 implicitly conditions all used
pds. The case with internal states is left aside to keep the
paper simple. The fact that st is closed-loop state also sim-
plifies the text. The state st includes the value wt of the
sufficient statistic wt and has the structure

st := (ot,wt) := (observation of the environment, (1)
value of the sufficient statistic wt), wt := w(ot, at,wt−1).

The data d := (dt)t∈{t} := (st, at)t∈{t} consists of states,
st ∈ {s}, and actions, at ∈ {a}, up to the horizon h. The
data, d ∈ {d}, and the unknown parameter, p ∈ {p}, form
the random behaviour b := (d, p) ∈ {b} := ({d} ,{p}).
The agent opts its actions via a randomised causal strategy 3

s ∈ {s} :=

s(b) :=
∏
t∈{t}

r(at|st−1) = s(d)

 . (2)

Pds (r(at|st−1))t∈{t} describe the decision rules of the strat-
egy s. They meet natural conditions of control (NCC) [31]

r(at|st−1) = r(at|st−1, p), (3)
at ∈ {a} , st−1 ∈ {s} , p ∈ {p} .

NCC express the adopted assumption that the parameter is
unknown to the agent. The s-dependent joint pd cs(b) =
cs(d, p) fully models random behaviours. The chain rule for
pds [31], the state notion and NCC (3) factorise this closed-
loop model of the behaviours, b ∈ {b} = {b = (d, p)},

cs(b) := cs(d|p)p(p) := (4)∏
t∈{t}

m(st|at, st−1, p)r(at|st−1)p(p) := m(d|p)s(d)p(p).

The parametric models m(d|p), p ∈ {p},

m(d|p) ∈ {m(d|p)} := (5){
m(d|p) :=

∏
t∈{t}

m(st|at, st−1, p), d = (st, at)t∈{t}

}

serve the agent to describe its environment. The factors
m(st|at, st−1, p) are pds of st ∈ {s} conditioned on at ∈
{a}. They model the state transition from st−1 ∈ {s}. They

3 A decision function [40], act [34], policy [32], etc.

do it for each p ∈ {p} and all t ∈ {t}. The strategy s influ-
ences the agent’s environment solely via the actions it gen-
erates. This explains the dropped superscript s in (4). The
strategy s has no influence on the prior pd p(p) modelling
the unknown parameter p ∈ {p}. It drops s, too.

The value of the prior pd p(p), p ∈ {p}, expresses agent’s
belief that m(d|p) is the best projection of the objective
environment description on the set of parametric models
{m(d|p), d ∈ {d}}p∈{p}, [15]. Under NCC (3), the value
of the prior pd p(p) also quantifies the belief that m(d|p)s(d)
is the best projection of the objective closed-loop model.

FPD quantifies agent’s aims and constraints by an ideal
closed-loop model ci. It is a joint pd ci(b) of ideally dis-
tributed behaviours b ∈ {b}. The agent chooses the ideal pd
ci(b). It assigns high values to preferred behaviours b, small
values to unwanted ones and zero to forbidden bs. The pd
ci(b) factorises as cs(b), b ∈ {b},

ci(b) := ci(d|p)pi(p) :=

:=
∏
t∈{t}

mi(st|at, st−1, p)ri(at|st−1, p)pi(p)

:= mi(d|p)si(d|p)p(p). (6)

The factors of the ideal parametric environment model,
mi(st|at, st−1, p), st, st−1 ∈ {s}, at ∈ {a}, t ∈ {t},
describe the desired state transitions. The ideal strategy
si(d|p) :=

∏
t∈{t} ri(at|st−1, p) consists of the preferred

decision rules. Unlike the optimised decision rules (3),
they may depend on the unknown p ∈ {p} as they model
agent’s wishes. The strategy s has no influence on the prior
pd, which is left-to-its-fate [16] by setting pi(p) := p(p).
FPD axiomatics [14] implies that the FPD-optimal strategy
so ∈ {s} minimises the KLD D(cs||ci) of cs to ci

so ∈ Arg min
s∈{s}

D(cs||ci)

:= Arg min
s∈{s}

∫
{b}

cs(b) ln

(
cs(b)

ci(b)

)
db. (7)

Remark 1 (On Knowledge Accumulation)

X Having a parametric model m̃(ot|at, st−1, p) relating the
observations ot ∈ {o} (1) to the actions at ∈ {a}, to the
past states st−1 ∈ {s}, and to the parameters p ∈ {p},
Bayes’ rule [31] gradually updates the prior pd p(p) :=
p(p|s0) into the posterior pds p(p|st)

p(p|st) =
m̃(ot|at, st−1, p)p(p|st−1)∫

{p} m̃(ot|at, st−1, p)p(p|st−1)dp
∝ m̃(ot|at, st−1, p)p(p|st−1). (8)

This knowledge accumulation is correct under NCC (3)
that have the equivalent expression

p(p|at, st−1) = p(p|st−1) ⇔ r(at|st−1) = r(at|st−1, p)
at ∈ {a} , st−1 ∈ {s} , p ∈ {p} . (9)
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X Bayes’ rule (8) updates the valuewt of the sufficient statis-
tic wt that is a part of the state (1). Thus, the parametric
observation model m̃t and Bayes’ rule describe the para-
metric model mt (5).

The full tth step of the knowledge collection starts with
(p(p|st−1), st−1), uses the action at ∼ r(at|st−1) and
the observation ot made on agent’s environment in Bayes’
rule (8) giving the statistic value wt = w(ot, at, st−1).
This completes the state st = (ot,wt), see (1).

X The use of the closed-loop state:
? opens a way to a better estimation as the options like

forgetting [23] or a trust weight in Bayes’ rule [21] just
extend the actions;

? unifies inference with tasks influencing the environment;
? allows to model human in DM cycle [38] and to respect

agent’s attitudes and emotions [11];
? gives a specific view on (ir)rationality of DM [19];
? fits conceptually to dual control [7] and to exploration-

exploitation dichotomy [5,37].

3 FPD with Estimator

Part 3.1 constructs the FPD-optimal strategy. It relies on a
slight extension of stochastic dynamic programming [4] that
minimises 4 the strategy-dependent expectation Es[Ls] of the
s-dependent additive loss Ls(b), {b}. The optimal strategy
so minimises the expectation of the loss

Ls(b) :=
∑
t∈{t}

lrt(st−1), lrt : {s}→ (−∞,∞)

so ∈ Argmin
{s}

Es[Ls] := Argmin
{s}

∫
{b}

Ls(b)cs(b)db. (10)

The dependence of the loss Ls on s makes the optimised
functional (10) non-linear in the strategy s ∈ {s}. This
leads to the non-standard optimisation giving the optimal
randomised strategy. FPD is a special case of (10). It has an
explicit form of the FPD-optimal strategy so.

Part 3.2 finds the FPD-optimal strategy so with the optimal
estimator by using the results of Part 3.1.

3.1 Dynamic Programming on Strategy-Dependent Loss

The next proposition prepares the solution of (10).

Proposition 1 (Static Design) Let us search for the optimal
strategy so consisting of single decision rule ro

so := (ro(a|s))a∈{a},s∈{s}

∈ Argmin
{s}

Es[Ls] := Argmin
{r}

∫
{s}

lr(s)µ(s)ds,

4 The assumed generic existence of minima keeps the text simple.

where the marginal pd µ on {s} does not depend on r. Let
lr(s) : {r} := {pds r(a|s) on {a}} → (−∞,∞) have a
minimiser r? for µ-almost all s ∈ {s}.

Then, so = ro = r?. Symbolically,

(ro(a|s))a∈{a},s∈{s} ∈ Arg min
{r(a|s)}

∫
{s}

lr(s)µ(s)ds

=Arg min
{r(a|s)}

lr(s).

The minimum is
∫
{s} lr

o

(s)µ(s)ds.

Proof By definition, lr
?

(s) ≤ lr(s) for any r ∈ {r} and for
µ-almost all s ∈ {s}. Multiplication of this inequality by
the positive values of µ(s) and integration over {s} preserve
it. This proofs the claim. 2

The solution of (10) uses the optimal value functions, [4],
vt−1 : {s}→ (−∞,∞), t ∈ {t},

v(st−1) := min
{(rτ )τ≥t}

Es
[ h∑
τ=t

lrτ (sτ−1)
∣∣∣st−1]. (11)

Proposition 2 (Dynamic Programming) The backward,
t = h, . . . , 1, functional recursion, initiated by v(sh) = 0,
evolves the optimal value functions (vt)t∈{t}, st−1 ∈ {s},

v(st−1) = min
{rt}

{
lrt(st−1) + Es[v(st)|st−1]

}
. (12)

The minimising arguments (rot)t∈{t} in (12) form the optimal
strategy so (10). The minimum of (10) is v(s0).

Proof It exploits the “backward” induction. For t = h and
v(sh) = 0, ∀sh ∈ {s}, (12) holds. In a generic step,

v(st−1)

(11)︷︸︸︷
= min

{(rτ )τ≥t}
Es
[ h∑
τ=t

lrτ (sτ−1)
∣∣∣st−1] = min

{rt}

{

min
{(rτ )τ≥t+1}

{
lrt(st−1) + Es

[
Es
[ h∑
τ=t+1

lrτ (sτ−1)
∣∣∣st]∣∣∣st−1]}}

(11),Prop. 1︷︸︸︷
= min

{rt}

{
lrt(st−1) + Es[v(st)|st−1]

}
.

The way to the final formula exploits: a) lrt(st−1) be-
haves as a constant with respect to conditional ex-
pectation Es[•|st−1]; b) the chain rule for expectation
Es[•|♦] = Es

[
Es[•|?,♦]|♦

]
, valid for arbitrary •, ?,♦; c)

equality Es[•|st, st−1] = Es[•|st] holds as st is the state; d)
both lrt and cs(st|st−1) (used in the outer expectation) are
independent of the rules rτ , τ > t. The final claim of the
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proposition follows from the identity min{s} Es[Ls] = v(s0)
for the given s0, cf. (11), (12). 2

The next proposition provides the FPD-optimal strategy so.

Proposition 3 (FPD with an Unknown Parameter) The
backward, t = h,h − 1, . . . , 1, functional recursion for
n(st−1) ∈ [0, 1], d(at, st−1) ≥ 0, st−1 ∈ {s}, at ∈ {a},

d(at, st−1) :=

∫
{p}

p(p|st−1)
∫
{s}

m(st|at, st−1, p) (13)

× ln
( m(st|at, st−1, p)

mi(st|at, st−1, p)ri(at|st−1, p)n(st)

)
dstdp

n(st−1) :=

∫
{a}

exp[−d(at, st−1)]dat, n(sh) := 1,

gives the minimum of (7) v(s0) := − ln(n(s0)) = D(cso||ci).
The rules rot of the strategy (7) in (2) are

ro(at|st−1) =
exp[−d(at, st−1)]

n(st−1)
∝ exp[−d(at, st−1)].

Proof The definition of KLD D(cs||ci) (7), the factorised
forms of the involved pds (4), (6) and NCC (9) imply that
KLD is of the additive form (10) D(cs||ci) =

Es[Ls] = Es

[ ∑
t∈{t}

∫
({s},{a},{p})

mt(s̃|a, s, p)rt(a|s)pt−1(p|s)

× ln

(
mt(s̃|a, s, p)rt(a|s)

mi
t(s̃|a, s, p)rit(a|s,p)

)
d(s̃, a, p)

]
.

The summands, denoted lrt(s), are obviously DM-rule de-
pendent. The related value function v(st−1) is non-negative
as it is the sum of conditional KLD’s. Thus, the transfor-
mation v(st−1) := − ln(n(st−1)) implies that the function
n(st−1) ∈ [0, 1], n(sh) = 1 ⇔ v(sh) = 0. The minimised
right-hand side of (12) reads

lrt(s) + Es[vt(s̃)|s] =
∫
{a}

rt(a|s)

[
ln(rt(a|s))

+

∫
{p}

pt−1(p|s)
∫
{s}

mt(s̃|a, s, p)

× ln

(
mt(s̃|a, s, p)

mi
t(s̃|a, s, p)rit(a|s, p)nt(s̃)

)
ds̃dp

]
da

=

∫
{a}

rt(a|s) ln

(
rt(a|s)

exp[−dt(a, s)]∫
{a} exp[−dt(ã, s)]dã︸ ︷︷ ︸

:= r?t (a|s)

)
da

− ln
(∫

{a}
exp[−dt(ã, s)]dã

)
.

The 1st summand after the last equality is the KLD (condi-
tioned on s) of the decision rules’ pair. It reaches its small-

est zero value for rt = r?t

Prop.2︷︸︸︷
= rot. The 2nd summand,

− ln(normaliser) is the reached minimum. 2

Remark 2 (On Generality and Constraints)

X The paper [17] deals with the general case containing
internal states (time-varying unknown “parameters”) but
unlike Prop. 3 does not consider the admissible depen-
dence of ri (6) on them.

X The support of mi
tr

i
t includes the support of mtr

o
t as,

otherwise infinite, d(at, st−1) (13) guarantees this. This
shows that the ideal pd provides also hard constraints on
the optimal closed-loop model cso.

3.2 FPD with Estimation

DM with estimation deals with an action at that has a pa-
rameter estimate p̂t ∈ {p} as its part. It means

at := (αt, p̂t) ∈ {a} := ({α} ,{p}). (14)

The possibly empty part αt ∈ {α} serves to other DM
aim than the estimation. This structures the used pds (the
explanations of the choices follow their presentation in (15))

(a): m(st|at, st−1, p)
(14)︷︸︸︷
= m(st|αt, p̂t, st−1, p)
:= m(st|αt, st−1, p) (15)

(b): mi(st|at, st−1, p)
(14)︷︸︸︷
= mi(st|αt, p̂t, st−1, p)
:= mi(st|αt, st−1, p̂t)

mi(st|αt, st−1, p̂t) := m(st|αt, st−1, p̂t) ifαt is free

(c): r(at|st−1)
(14)︷︸︸︷
= r(αt|p̂t, st−1)r(p̂t|st−1)

ri(at|st−1, p)
(14)︷︸︸︷
= ri(αt|p̂t, st−1, p) ri(p̂t|st−1, p)
:= ri(αt|st−1, p̂t)× p(p̂t|st−1).

The initial equalities follow from (14). The last equalities in
(15) quantify conditions and aims of DM with estimation.
They respectively express:

(a): independence of the state of the parameter estimate: the
environment does not care about agent’s estimate and it
also does not influence the sufficient statistic;
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(b): the wish to choose p̂t that ideally replaces the unknown p
in mi(st|αt, st−1, p) expressing the α-driving aim; mi :=
m when αt is not optimised (left-to-its-fate [16]);

(c): the estimate p̂t ideally replaces the unknown p ∈ {p}
also in rit and in p(p|st−1) collecting the knowledge on p.

Proposition 4 (FPD with Estimator) The FPD-optimal
strategy with an estimator, given by options (14), (15), results
from the backward, t = h, . . . , 1, recursion for n(st−1) ∈
[0, 1] and ∆(αt, p̂t, st−1) ≥ 0, st−1 ∈ {s}, αt ∈ {α},
p̂t ∈ {p}, t ∈ {t}, with n(sh) := 1,

∆(αt, p̂t, st−1) :=

∫
{p}

p(p|st−1) (16)

×
∫
{s}

m(st|αt, st−1, p) ln
[ m(st|αt, st−1, p)

mi(st|αt, st−1, p̂t)n(st)

]
dstdp

n(st−1) :=

∫
({p},{α})

ri(αt|st−1, p̂t)p(p̂t|st−1)

× exp[−∆(αt, p̂t, st−1)]d(p̂t,αt).

It gives the minimum v(s0) := − ln(n(s0)) = D(cro||ci).
The rules rot of the optimal strategy are

ro(αt, p̂t|st−1) ∝ (17)
ri(αt|st−1, p̂t)p(p̂t|st−1) exp[−∆(αt, p̂t, st−1)].

Proof It uses Prop. 3 specialised by (14), (15). The exponent

d(at, st−1)

(14)︷︸︸︷
= d(αt, p̂t, st−1) in (13) under (15) gets the

form, with n(sh) = 1 and ∆(αt, p̂t, st−1) defined in (16),

d(αt, p̂t, st−1) :=

∫
{p}

p(p|st−1)
∫
{s}

m(st|αt, st−1, p)×

ln
( m(st|αt, st−1, p)

mi(st|αt, st−1, p̂t)ri(αt|st−1, p̂t)p(p̂t|st−1)n(st)

)
dstdp

= − ln

(
ri(αt|st−1, p̂t)p(p̂t|st−1)×

exp

[
−
∫
{p} p(p|st−1)

∫
{s} m(st|αt, st−1, p)

× ln
(

m(st|αt,st−1,p)
mi(st|αt,st−1,p̂t)n(st)

)
dstdp︸ ︷︷ ︸

:=−∆(αt,p̂t,st−1)

])

n(st−1) :=

∫
({α},{p})

ri(αt|st−1, p̂t)p(p̂t|st−1)

× exp[−∆(αt, p̂t, st−1)]d(αt, p̂t)

ro(αt, p̂t|st−1) = ro(αt|st−1, p̂t)ro(p̂t|st−1)
∝ ri(αt|st−1, p̂t)p(p̂t|st−1) exp[−∆(αt, p̂t, st−1)]. 2

Remark 3 (Complexity and Propositions 3 & 4)

X The dynamic programming generally needs approxima-
tions [36]. This fact is behind need for model-based pre-
dictive control [26]. The proposed strategy has a poten-
tial to enhance such approximate strategies as it supports
exploration (dual control [7]) in a novel powerful way.

X Propositions 3 and 4 deal with an unknown parameter
but only Prop. 4 formulates its estimation as a part of
the DM aim. It allows to solve sole estimation task. Pri-
marily, it makes the optimal strategy more amenable to
approximation as seen from the discussion in Sec. 4.

X The posterior pd p(p̂t|st−1) influences complexity of any
strategy with estimation. This implies a wide use of mod-
els from the exponential family (EF) [2] for which the
functional Bayes’ rule reduces to algebraic operations.

X Linear Gaussian autoregressive-regressive model is a
prominent member of EF. Its estimation reduces to re-
cursive least squares [31]. Markov decision process
[32] with discrete-valued states and actions is the other
EF member with the estimation that simply counts the
number of observed configurations (st, at, st−1). Many
extensions rely on these EF members. Their mixtures [16]
are typical and serve as universal approximators [27].

4 On the Proposed Strategy

The novel FPD-optimal strategy with estimator:

X respects both the knowledge collected in the posterior pd
pt−1 (8) and influence of the parameter estimate p̂ on α-
driven DM via the function ∆t(α, p̂, s) (16), which is the
expected (weighted) divergence of the environment model
mt(s̃|α, s, p) to its ideal twin mi

t(s̃|α, s, p̂);
X correlates, due to the previous property, usual actions αt

with estimates p̂t more deeply 5 than the common “cer-
tainty equivalence” that uses an estimate p̂t based only on
the past knowledge accumulated in the posterior pd pt−1
and unrelated with the DM dynamics;

X shows that the estimation is dynamic DM task influenced
by the value function even when the “ordinary” action αt
is un-optimised.

Moreover, Prop. 4 opens ways to:
X the combination of the classical estimation with sequential

stopping [41] with a dynamic DM;
X the radically novel approach to feasible exploration: non-

explorative, certainty-equivalent, αt-driven DM will be
stimulated by random sampling of the parameter estimate
p̂t from the optimal rule (17): it is influenced by the pos-
terior pd p(p̂t|st−1) (8), which “naturally” shrinks.

The presented result reflects a part of an open-ended re-
search, which surely requires to deal with:

X the analysis, almost surely simulation-based, of the pro-
posed strategy and its model-based predictive variants;

X the opened research ways outlined above;
X specific cases and important real-life problems;
X the potential indicated in connection with the use of

closed-loop states;
X the general FPD with unobserved states in the ideal pd.

5 The paper [10], indicates, within a quite different set up, how
useful such a dependence can be.
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The foreseeable positive consequences make this research
worthwhile. You are invited to join it.
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[18] M. Kárný and T.V. Guy. On support of imperfect Bayesian
participants. In T.V. Guy and et al, editors, Decision
Making with Imperfect Decision Makers, volume 28, pages 29–56.
Springer Int. Syst. Ref. Lib., 2012.
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