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ABSTRACT
Many binary classification problems minimize misclassification
above (or below) a threshold. We show that instances of ranking
problems, accuracy at the top, or hypothesis testing may be written
in this form.Wepropose a general framework to handle these classes
of problems and show which formulations (both known and newly
proposed) fall into this framework. We provide a theoretical analysis
of this framework and mention selected possible pitfalls the formu-
lations may encounter. We show the convergence of the stochastic
gradient descent for selected formulations even though the gra-
dient estimate is inherently biased. We suggest several numerical
improvements, including the implicit derivative and stochastic gra-
dient descent. We provide an extensive numerical study.
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1. Introduction

Many binary classification problems focus on separating the dataset by a linear hyperplane
w�x− t. A sample x is deemed to be positive or relevant (depending on the application) if
its scorew�x is above a threshold t. Multiple problem categories belong to this framework:

• Ranking problems select the most relevant samples and rank them. To each sample, a
numerical score is assigned, and the ranking is performed based on this score. Often,
only scores above a threshold are considered.

• Accuracy at the Top is similar to ranking problems.However, instead of ranking themost
relevant samples, it only maximizes the accuracy (equivalently minimizes the misclas-
sification) in these top samples. The prime examples of both categories include search
engines or problems where identified samples undergo expensive post-processing such
as human evaluation.

• Hypothesis testing states a null and an alternative hypothesis. The Neyman–Pearson
problem minimizes the Type II error (the null hypothesis is false but it fails to be
rejected) while keeping the Type I error (the null hypothesis is true but is rejected)
small. If the null hypothesis states that a sample has the positive label, then Type II error
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happens when a positive sample is below the threshold and thus minimizing the Type
II error amounts to minimizing the positives below the threshold.

Examples of this type can be found in search engines, where the user is interested only
in the first few queries. These queries need to be of high quality. Other examples include
cybersecurity [9], where a low false-negative rate is crucial as a high number of false alarms
would result in the software being uninstalled, or drug development, where potentially
useful drugs need to be preselected and manually investigated. All these three applications
may be written (possibly after a reformulation) in a similar form as a minimization of the
false negatives (misclassified positives) above a threshold. They only differ in the way they
define the threshold. Despite this striking similarity, they are usually considered separately
in the literature. The main goal of this paper is to provide a unified framework for these
three applications and perform its theoretical and numerical analysis.

The goal of the ranking problems is to rank the relevant samples higher than the non-
relevant ones. A prototypical example is the RankBoost [8] maximizing the area under the
ROC curve, the Infinite Push [2] or the p-norm push [19] which concentrate on the high-
ranked negatives and push themdown. Since all these papers include pairwise comparisons
of all samples, they can be used only for small datasets. This was alleviated in [16], where
the authors performed the limit p→∞ in p-norm push and obtained the linear complex-
ity in the number of samples. Moreover, since the l∞-norm is equal to the maximum, this
method falls into our framework with the threshold equal to the largest score computed
from negative samples.

Accuracy at the Top (τ -quantile) was formally defined in [5] andmaximizes the number
of relevant samples in the top τ -fraction of ranked samples.When the threshold equals the
top τ -quantile of all scores, this problem falls into our framework. The early approaches
aim at solving approximations, for example, [11] optimizes a convex upper bound on the
number of errors among the top samples. Due to the presence of exponentially many con-
straints, the method is computationally expensive. Boyd et al. [5] presented an SVM-like
formulation that fixes the index of the quantile and solves n problems. While this removes
the necessity to handle the (difficult) quantile constraint, the algorithm is computationally
infeasible for a large number of samples. Kar et al. [12] derived upper approximations, their
error bounds and solved these approximations. Grill and Pevný [9] proposed the projected
gradient descent method where after each gradient step, the quantile is recomputed. Eban
et al. [7] suggested new formulations for various criteria and argued that they keep desired
properties such as convexity. Tasche [22] showed that accuracy at the top is maximized
by thresholding the posterior probability of the relevant class. The closest approach to our
framework is [14,15], where the authors considered multi-class classification problems,
and their goal was to optimize the performance on the top few classes and [18], where the
authors implicitly removed some variables and derived an efficient algorithm.

The paper is organized as follows. In Section 2, we introduce the unified framework
and then show how the three applications above fall into it. To each application, we state
several numerical formulations, some of them are known, and some are new. In Section 3,
we perform a theoretical analysis of the unified framework. First, we focus on convexity,
which ensures that no localminima are present. Second, we showwhich formulations from
the previous section are differentiable. Finally, we present a simple example that shows the
differences between these formulations and highlights the major problem that some of the
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formulations may have a global minimum at w = 0. Since the weights form the normal
of the separating hyperplane, this solution does not provide any information. We further
build on this example and analyse the case when zero weights are the global minimum.We
show that the higher the threshold, the more likely a problem is to have the global mini-
mum at zero. Based on this result, we compare the thresholds of individual formulations
and show how stable they are. Section 4 argues that the threshold t depends on the weights
w and therefore, we follow the implicit programming technique and remove the threshold
constraint. We show how to compute derivatives for the reduced problem. We propose a
more complex stochastic gradient descent method which is convergent. Section 5 presents
the numerical results.We show both a good performance of ourmethod and verify the the-
oretical results numerically. To keep the brevity of the paper, we postpone multiple results
to the Appendix. The reader is welcome to refer to our codes online.1

2. Framework for minimizingmisclassification above a threshold

Many important binary classification problems minimize the number of misclassified
samples below (or above) certain threshold. Since these problems are usually considered
separately, in this section, we provide a unified framework for their handling and present
several classification problems falling into this framework.

For samples x, we consider the linear classifier f (w) = w�x− t, where w is the normal
vector to the separating hyperplane and t is a threshold. The most well-known example
is the support vector machines, where t is an optimization variable. In many cases, the
threshold t is computed from the scores z = w�x. For example, TopPush from [16] sets
the threshold t to the largest score z− corresponding to negative samples and [9] sets it to
the quantile of all scores.

To be able to determine the misclassification above and below the threshold t, we define
the true-positive, false-negative, true-negative and false-positive counts by

tp(w, t) =
∑
x∈X+

[w�x− t ≥ 0], fn(w, t) =
∑
x∈X+

[w�x− t < 0],

tn(w, t) =
∑
x∈X−

[w�x− t < 0], fp(w, t) =
∑
x∈X−

[w�x− t ≥ 0].
(1)

Here, [·] is the 0-1 loss (Iverson bracket, characteristic function) which is equal to 1
if the argument is true and to 0 otherwise. Moreover, X /X+/X− denotes the sets of
all/positive/negative samples and by n/n+/n− their respective sizes.

Since the misclassified samples below the threshold are the false-negatives, we arrive at
the following problem:

minimize
1
n+

fn(w, t)

subject to threshold t is a function of {w�xi}ni=1.
(2)

As the 0-1 loss in (1) is discontinuous, problem (2) is difficult to handle. The usual approach
is to employ a surrogate function such as the hinge loss function defined by

lhinge(z) = max{0, 1+ z}. (3)
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In the text below, the symbol l denotes any convex non-negative non-decreasing function
with l(0) = 1. Using the surrogate function, the counts (1) may be approximated by their
surrogate counterparts

tp(w, t) =
∑
x∈X+

l(w�x− t), fn(w, t) =
∑
x∈X+

l(t − w�x),

tn(w, t) =
∑
x∈X−

l(t − w�x), fp(w, t) =
∑
x∈X−

l(w�x− t).
(4)

Since l(·) ≥ [·], the surrogate counts (4) provide upper approximations of the true counts
(1). Replacing the counts in (2) by their surrogate counterparts and adding a regularization
results in

minimize
1
n+

fn(w, t)+ λ

2
‖w‖2

subject to threshold t is a function of {w�xi}ni=1.
(5)

In the rest of this section, we list formulations that fall into the framework of (2) and (5).

2.1. Methods based on pushing positives to the top

The first category of formulations falling into our framework (2) and (5) are rankingmeth-
ods which attempt to put as many positives (relevant samples) to the top as possible.
Specifically, for each sample x, they compute the score z = w�x and then sort the vector z
into z[·] with decreasing components z[1] ≥ z[2] ≥ · · · ≥ z[n]. The number of positives on
top equals to the number of positives above the highest negative. This amounts to max-
imizing true-positives or, equivalently, minimizing false-negatives, which may be written
as

minimize
1
n+

fn (w, t)

subject to t = z−[1],

components of z− equal to z− = w�x− for x− ∈ X−.

(6)

As t is a function of the scores z = w�x, problem (6) is a special case of (2).
TopPush from [16] replaces the false-negatives in (6) by their surrogate and adds a

regularization term to arrive at

minimize
1
n+

fn(w, t)+ λ

2
‖w‖2

subject to t = z−[1],

components of z− equal to z− = w�x− for x− ∈ X−.

(7)

Note that this falls into the framework of (5).
As we will show in Section 3.4, TopPush is sensitive to outliers and mislabelled data. To

robustify it, we follow the idea from [14] and propose to replace the largest negative score
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by the mean of k largest negative scores. This results in

minimize
1
n+

fn(w, t)+ λ

2
‖w‖2

subject to t = 1
k
(z−[1] + · · · + z−[k]),

components of z− equal to z− = w�x− for x− ∈ X−.

(8)

We used the mean of highest k negative scores instead of the value of the kth negative
score to preserve convexity as shown in Section 3.2.

2.2. Accuracy at the top

The previous category considers formulations which minimize the false-negatives below
the highest-ranked negative. Accuracy at the Top [5] takes a different approach and
minimizes false positives above the top τ -quantile defined by

t1(w) = max{t | tp(w, t)+ fp(w, t) ≥ nτ }. (9)

Then the Accuracy at the Top problem is defined by

minimize
1
n−

fp(w, t)

subject to t is the top τ -quantile: it solves (9).
(10)

Due to Lemma A.1 in the Appendix, the previous problem (10) is equivalent (up to a small
theoretical issue) to

minimize μ fn(w, t)+ (1− μ)fp(w, t)+ λ

2
‖w‖2

subject to t is the top τ -quantile: it solves (9)
(11)

for any μ ∈ [0, 1]. This problem with μ = 0 equals to (10), with μ = 1 it falls into our
framework (2), while with μ = n−

n it corresponds to the original definition from [5].
Apart from the quantile (9), there are two other possible choices of the threshold

t2(w) = 1
nτ

nτ∑
i=1

z[i], (12)

t3(w) solves
1
n

n∑
i=1

l(β(zi − t)) = τ . (13)

We again use the vector of scores zwith components zi = w�xi and for the rest of the paper,
we assume, for simplicity, that nτ is an integer. The quantile (9) is sometimes denoted as
VaR (value at risk) and (12) as CVaR (conditional value of risk). It is known is that the
latter is the tightest convex approximation of the former. We will sometimes denote (13)
as surrogate top τ -quantile. We will investigate the relations between these three objects as
well as their properties such as convexity, differentiability or stability in Section 3.
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Paper [9] builds on the Accuracy at the Top problem (11), where it replaces fn(w, t) and
fp(w, t) in the objective by their surrogate counterparts fn(w, t) and fp(w, t). This leads to

minimize
1
n+

fn(w, t)+ 1
n−

fp(w, t)+ λ

2
‖w‖2

subject to t is the top τ -quantile: it solves (9).
(14)

Based on the first author, we name this formulation Grill. The main purpose of (12) is
to provide a convex approximation of the nonconvex quantile (9). Putting it into the
constraint results in a convex approximation problem, which we call TopMean

minimize
1
n+

fn(w, t)+ λ

2
‖w‖2

subject to t = 1
nτ

(z[1] + · · · + z[nτ ]),

components of z equal to z = w�x for x ∈ X .

(15)

Similarly, we can use the surrogate top quantile in the constraint to arrive at

minimize
1
n+

fn(w, t)+ λ

2
‖w‖2

subject to t is the surrogate top τ -quantile: it solves (13).
(16)

Note that Grill minimizes the convex combination of false positives and false-negatives
while (15) and (16) minimize only the false negatives. The reason for this will be evident
in Section 3.2 and amounts to preservation of convexity. Moreover, as will see later, prob-
lem (16) provides a good approximation to the Accuracy at the Top problem, it is easily
solvable due to convexity and requires almost no tuning, we named it Pat&Mat (Precision
At the Top & Mostly Automated Tuning).

2.3. Methods optimizing the Neyman–Pearson criterion

Another category falling into the framework of (2) and (5) is theNeyman–Pearson problem
which is closely related to hypothesis testing, where nullH0 and alternativeH1 hypotheses
are given. Type I error occurs when H0 is true but is rejected, and type II error happens
when H0 is false, but it fails to be rejected. The standard technique is to minimize Type II
error while a bound for Type I error is given.

In the Neyman–Pearson problem, the null hypothesis H0 states that a sample x has the
negative label. Then Type I error corresponds to false positives while Type II error to false-
negatives. If the bound on Type I error equals τ , we may write this as

tNP1 (w) = max{t | fp(w, t) ≥ n−τ }. (17)

Then, we may write the Neyman–Pearson problem as

minimize
1
n+

fn(w, t)

subject to t is Type I error at level τ : it solves (17).
(18)

Since (18) differs from (11) only by counting only the false positives in (17) instead of
counting all positives in (9), we can derive its approximations in exactly the same way as in
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Section 2.2.We therefore provide only their brief description and start with approximations
of (17)

tNP2 (w) = 1
n−τ

n−τ∑
i=1

z−[i], (19)

tNP3 (w) solves
1
n

n−∑
i=1

l(β(z−i − t)) = τ . (20)

Replacing the true counts by their surrogates results in the Neyman–Pearson variant
Grill-NP

minimize
1
n+

fn(w, t)+ 1
n−

fp(w, t)+ λ

2
‖w‖2

subject to t is the Neyman–Pearson threshold: it solves (17).
(21)

Similarly, the Neyman–Pearson alternative to TopMean reads

minimize
1
n+

fn(w, t)+ λ

2
‖w‖2

subject to t = 1
n−τ

(z−[1] + · · · + z−[n−τ ]),

components of z− equal to z− = w�x− for x− ∈ X .

(22)

This problem already appeared in [23] under the name τ -FPL. Finally, Pat&Mat-NP reads

minimize
1
n+

fn(w, t)+ λ

2
‖w‖2

subject to t is the surrogate Neyman–Pearson threshold: it solves (20).
(23)

We may see (22) from two different viewpoints. First, τ -FPL provide convex approxima-
tions ofGrill-NP. Second, τ -FPL has the same form asTopPushK. The only difference is that
for τ -FPLwe have k = n−τ while for TopPushK, the value of k is small. Thus, even though
we started from two different problems, we arrived at two approximations that differ only
in the value of one parameter. This shows a close relation of the ranking problem and the
Neyman–Pearson problem and the need for a unified theory to handle these problems.

3. Theoretical analysis of the framework

In this section, we provide a theoretical analysis of the unified framework from Section 2.
We consider the problem formulations purely and not individual algorithms which specify
how to solve these formulations. We focus mainly on the following desirable properties:

• Convexity implies a guaranteed convergence for many optimization algorithms or their
better convergence rates [4].

• Differentiability increases the speed of convergence.
• Stability is a general term, by which we mean that the global minimum is not at w = 0.

This actually happens for many formulations from Section 2 and results in the situation
where the separating hyperplane is degenerate and does not actually exist.
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For a nicer flow of text, we show the results only for formulations from Section 2.2. The
results for methods from Section 2.3 are identical. For the same reason, we postpone the
proofs to Appendix 1.

3.1. Threshold value comparison

We start with the following proposition, which compares the threshold approximation
quality.

Proposition 3.1 ([23]): We always have

t1(w) ≤ t2(w) ≤ t3(w).

Whenever the objective contains only false negatives, a lower threshold tmeans a lower
objective function. Therefore, a lower threshold is preferred.

3.2. Convexity

Convexity is one of the most important properties in numerical optimization. It ensures
that the optimization problem has neither stationary points nor local minima. All points
of interest are global minima.Moreover, it allows for a faster convergence rates.We present
the following two results.

Proposition 3.2: Thresholds t2 and t3 are convex functions of the weights w. The threshold
function t1 is nonconvex.

Theorem 3.3: If the threshold t is a convex function of the weights w, then function f (w) =
fn(w, t(w)) is convex.

While the proof of Theorem 3.3 is simple, it points to the necessity of considering only
false negatives in the objective of the problems in Section 2. In such a case, TopPush, Top-
PushK, TopMean, τ -FPL, Pat&Mat and Pat&Mat-NP are convex problems. At the same
time, Grill and Grill-NP are not convex problems.

3.3. Differentiability

Similarly to convexity, differentiability allows for faster convergence rate and in some
algorithms, better termination criteria. The next theorem shows which formulations are
differentiable.

Theorem 3.4: If the surrogate function l is differentiable, then threshold t3 is a differentiable
function of the weights w and its derivative equals to

∇t3(w) =
∑

x∈X l′(β(w�x− t3(w)))x∑
x∈X l′(β(w�x− t3(w)))

.

The threshold functions t1 and t2 are non-differentiable.
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This theorem shows that the objective functions of Pat&Mat and Pat&Mat-NP are dif-
ferentiable. This allows us to prove the convergence of the stochastic gradient descent for
these two formulations in Section 4.

3.4. Stability

We first provide a simple example and show that many formulations from the previ-
ous section are degenerate for it. Then we analyse general conditions under which this
degenerate behaviour happens.

3.4.1. Example of a degenerate behaviour
We consider n negative samples uniformly distributed in [−1, 0]× [−1, 1], n positive
samples uniformly distributed in [0, 1]× [−1, 1] and one negative sample at (2, 0), see
Figure 1(left). We consider the hinge loss and no regularization. If n is large, the point at
(2, 0) is an outlier and the dataset is separable and the separating hyperplane has the normal
vector w = (1, 0).

Table 1 shows the threshold t and the objective value f for two points w1 = (0, 0) and
w2 = (1, 0). These two points are both important: w1 does not generate any separating
hyperplane, while w2 generates the optimal separating hyperplane. We show the precise
computation in Appendix 2. Since the dataset is perfectly separable by w2, we expect that
w2 provides a lower objective than w1. By shading the better objective in Table 1 by grey,
we see that this did not happen for TopPush and TopMean.

It can be shown thatw1 = (0, 0) is even the global minimum for TopPush and TopMean.
This raises the question of whether some tricks, such as early stopping or excluding a small
ball around zero, cannot overcome this difficulty. The answer is negative as shown in Figure
1(right). Here, we runTopPush from several starting points, and it always converges to zero
from one of the three possible directions; all of them far from the normal vector to the
separating hyperplane.

Figure 1. Left: distribution of positive (empty circle) and negative samples (full circles) for the example
from Section 3.4.1. Right: contour plot for TopPush and its convergence to the zero vector from 12 initial
points.
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Table 1. Comparison of formulations on the very simple problem from Section 3.4.1.

w1 = (0, 0) w2 = (1, 0)

Name Label t f t f

TopPush (7) 0 1 2 2.5

TopPushK (8) 0 1
2

k
0.5+ 2

k
Grill (14) 0 2 1− 2τ 1.5+ 2τ(1− τ)

TopMean (15) 0 1 1− τ 1.5− τ

Pat&Mat (16)
1

β
(1− τ) 1+ 1

β
(1− τ)

1

β
(1− τ) 0.5+ 1

β
(1− τ)

Notes: Two formulations have the global minimum (denoted by grey colour) at w1 = (0, 0) which does not generate any
separating hyperplane. The optimal separating hyperplane is generated by w2 = (1, 0).

3.4.2. Stability and global minimumat zero
The convexity derived in the previous section guarantees that there are no local minima.
However, as we showed in the example above, the global minimummay be at w = 0. This
is highly undesirable sincew is the normal vector to the separating hyperplane and the zero
vector provides no information. In this section, we analyse when this situation happens.
The first result states that if the threshold t(w) is above a certain value, then zero has a
better objective that w. If this happens for all w, then zero is the global minimum.

Theorem 3.5: Consider any of these formulations: TopPush, TopPushK, TopMean or τ -
FPL. Fix any w and denote the corresponding threshold t(w). If we have

t(w) ≥ 1
n+

∑
x+∈X+

w�x+,

then f (0) ≤ f (w). Specifically, denote the scores z+ = w�x+ for x+ ∈ X+ and z− = w�x−
for x− ∈ X− and the ordered variants with decreasing components of z− by z−[·]. Then

z−[1] ≥
1
n+

n+∑
i=1

z+i =⇒ f (0) ≤ f (w) for TopPush,

1
k

k∑
i=1

z−[i] ≥
1
n+

n+∑
i=1

z+i =⇒ f (0) ≤ f (w) for TopPushK,

1
n−τ

n−τ∑
i=1

z−[i] ≥
1
n+

n+∑
i=1

z+i =⇒ f (0) ≤ f (w) for τ−FPL.

(24)

We can use this result immediately to deduce that some formulations have the global
minimum atw = 0. More specifically, TopPush fails if there are outliers, and TopMean fails
whenever there are many positive samples.

Corollary 3.6: Consider the TopPush formulation. If the positive samples lie in the convex
hull of negative samples, then w = 0 is the global minimum.



1646 L. ADAM ET AL.

Corollary 3.7: Consider the TopMean formulation. If n+ ≥ nτ , then w = 0 is the global
minimum.

The proof of Theorem 3.5 employs the fact that all formulations in the theorem state-
ment have only false negatives in the objective. If w0 = 0, then w�0 x = 0 for all samples x,
the threshold equals to t = 0 and the objective equals to one. If the threshold is large forw,
many positives are below the threshold, and the false negatives have the average surrogate
value larger than one. In such a case, w0 = 0 becomes the global minimum. There are two
fixes to this situation:

• Include false positives to the objective. This approach is taken byGrill andGrill-NP and
necessarily results in the loss of convexity.

• Move the threshold away from zero even when all scores w�x are zero. This approach
is taken by our formulations Pat&Mat and Pat&Mat-NP and keeps convexity.

The next theorem shows the advantage of the second approach.

Theorem 3.8: Consider the Pat&Mat or Pat&Mat-NP formulation with the hinge surrogate
and no regularization. Assume that for some w, we have

1
n+

∑
x+∈X+

w�x+ >
1
n−

∑
x−∈X−

w�x−. (25)

Then there is a scaling parameter β0 from (13) such that f (w) < f (0) for all β ∈ (0,β0).

These theorem shed some light on the behaviour of the formulations. Theorem3.5 states
that the stability of τ -FPL requires

1
n−τ

n−τ∑
i=1

z−[i] <
1
n+

n+∑
i=1

z+i , (26)

while Theorem 3.8 states that the stability of Pat&Mat-NP is ensured by

1
n−

n−∑
i=1

z−[i] <
1
n+

n+∑
i=1

z+i . (27)

The right-hand sides of (26) and (27) are the same, while the left-hand side of (27) is always
smaller than the left-hand side of (26). This implies that if τ -FPL is stable, then Pat&Mat-
NP is stable as well.

At the same time, there may be a huge difference in the stability of both formulations.
Since the scores of positive samples should be above the scores of negative samples, the
scores z may be interpreted as performance. Then formula (26) states that if the mean
performance of a small number of the best negative samples is larger than the average per-
formance of all positive samples, then τ -FPL fails. On the other hand, formula (27) states
that if the average performance of all positive samples is better than the average perfor-
mance of all negative samples, then Pat&Mat-NP is stable. The former may well happen as
accuracy at the top is interested in a good performance of only a small number of positive
samples.
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3.5. Method comparison

We provide a summary of the obtained results in Table 2. There we give basic characteriza-
tions of the formulations such as their definition label, their source, the hyperparameters,
whether the formulation is differentiable and convex, and whether it has stability problems
with w = 0 being the global minimum.

A similar comparison is performed in Figure 2. Methods in green and grey are convex,
while formulations in white are non-convex. Based on Theorem 3.5, four formulations
in grey are vulnerable to have the global minimum at w = 0. This theorem states that
the higher the threshold, the more vulnerable the formulation is. The full arrows depict
this dependence. If it points from one formulation to another, the latter one has a smaller
threshold and thus is less vulnerable to this undesired global minima. The dotted arrows
indicate that this usually holds but not always, the precise formulation is provided in
Appendix A.5. This complies with Corollaries 3.6 and 3.7 which state that TopPush and
TopMean are most vulnerable. At the same time, it says that τ -FPL is the best one from the
grey-coloured formulations. Finally, even though Pat&Mat-NP has a worse approximation
of the true threshold than τ -FPL due to Theorem 3.5, it is more stable due to the discussion
after Theorem 3.8.

Table 2. Summary of the formulations from Section 2.

Name Source Definition Hyperpars Convex Differentiable Stable

TopPush [16] (7) λ � ✗ ✗
TopPushK ours (8) λ, k � ✗ ✗
Grill [9] (14) λ ✗ ✗ �
Pat&Mat ours (16) β , λ � � �
TopMean — (15) λ � ✗ ✗
Grill-NP — (21) λ ✗ ✗ �
Pat&Mat-NP ours (23) β , λ � � �
τ -FPL [23] (22) λ � ✗ ✗

Notes: The table shows their definition label, the source or the source they are based on, the hyperparameters, whether the
formulation is differentiable, convex and stable (in the sense of having problems withw = 0).

Figure 2. Summary of the formulations from Section 2. Methods in green and grey are convex, while
formulations in white are non-convex. Methods in grey are vulnerable to have the global minimum at
w = 0. Full (dotted) arrow pointing from one formulation to another show that the latter formulation
has always (usually) smaller threshold (Colour online).
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4. Convergence of stochastic gradient descent

The previous section analysed the formulations from Section 2 but did not consider any
optimization algorithms. In this section, we show a basic version of the stochastic gradi-
ent descent and then show its convergent version. Since due to considering the threshold,
gradient computed on a minibatch is a biased estimate of the true gradient, we need to use
variance reduction techniques, and the proof is rather complex.

4.1. Stochastic gradient descent: basic

Many optimization algorithms for solving the formulations from Section 2 use primal-dual
or purely dual formulations. [7] introduced dual variables and used alternating optimiza-
tion to the resulting min-max problem. Li et al. [16] and Zhang et al. [23] dualized the
problem and solved it with the steepest gradient ascent. Mácha et al. [17] followed the
same path but added kernels to handle non-linearity. We follow the ideas of [18] and [1]
and solve the problems directly in their primal formulations. Therefore, even though we
use the same formulation for TopPush as [16] or for τ -FPL as [23], our solution process is
different. However, due to convexity, both algorithms should converge to the same point.

The decision variables in (5) are the normal vector of the separating hyperplane w and
the threshold t. To apply an efficient optimization method, we need to compute gradients.
The simplest idea [9] is to compute the gradient only with respect tow and then recompute
t. A more sophisticated way is based on the chain rule. For each w, the threshold t can be
computed uniquely. We stress this dependence by writing t(w) instead of t. By doing so,
we effectively remove the threshold t from the decision variables and w remains the only
decision variable. Note that the convexity is preserved. Thenwe can compute the derivative
via the chain rule

f (w) = 1
n+

∑
x∈X+

l(t(w)− w�x)+ λ

2
‖w‖2,

∇f (w) = 1
n+

∑
x∈X+

l′(t(w)− w�x)(∇t(w)− x)+ λw.
(28)

The only remaining part is the computation of ∇t(w). It is simple for ∇t1(w) and ∇t2(w)

and Theorem 3.4 shows the computation for ∇t3(w). Appendix 3 provides an efficient
computation method for t3(w).

Having derivative (28), deriving the stochastic gradient is simple. It partitions the dataset
into minibatches and provides an update of the weights w based only on a minibatch,
namely by replacing themean over the whole dataset in (28) by amean over theminibatch.

4.2. Stochastic gradient descent: convergent for Pat&Mat and Pat&Mat-NP

For the convergence proof, we need differentiability which is due to Theorem 3.4 possessed
only by Pat&Mat and Pat&Mat-NP. Therefore, we consider only these two formulations
and, for simplicity, show it only for Pat&Mat. We apply a variance reduction technique
based on delayed values similar to SAG [20].
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At iteration k we have the decision variable wk and the active minibatch Ik. First, we
update the score vector zk only on the active minibatch by setting

zki =
{
x�i wk for all i ∈ Ik,
zk−1i for all i /∈ Ik.

(29)

We keep scores from previous minibatches intact. We use Appendix 3 to compute the
surrogate quantile tk as the unique solution of

∑
i∈X

l(β(zki − tk)) = nτ . (30)

This is an approximation of the surrogate quantile t(wk) from (13). The only difference
from the true value t(wk) is that we use delayed scores. Thenwe introduce artificial variable

ak =
∑
i∈Ik

l′(β(zki − tk))xi. (31)

Finally, we approximate the derivative ∇f (wk) from (28) by

g(wk) = 1
nk+

∑
i∈Ik+

l′(tk − zki )(∇tk − xi), (32)

where ∇tk is an approximation of ∇t(wk) from Theorem 3.4 defined by

∇tk = ak + ak−1 + · · · + ak−s+1∑
i∈X l′(β(zki − tk))

. (33)

A perhaps more straightforward possibility would be to consider only ak in the numerator
of (33). However, choice (33) enables us to prove the convergence and it adds stability to
the algorithm for small minibatches.

The whole procedure does not perform any vector operations outside of the current
minibatch Ik. We summarize it in Algorithm 4.1. Note that a proper initialization for the
first s iterations is needed. We finish the theoretical part by the convergence proof.

Theorem 4.1: Consider the Pat&Mat or Pat&Mat-NP formulation, stepsizes αk = α0

k+1
and piecewise disjoint minibatches I1, . . . , Is which cycle periodically Ik+s = Ik. If l is the
smoothened (Huberized) hinge function, thenAlgorithm 4.1 converges to the globalminimum
of (16).

5. Numerical experiments

In this section, we present numerical results.
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Algorithm 4.1 Stochastic gradient descent for maximizing accuracy at the top
Input: Dataset X, Minibatches I1, . . . , Is, Stepsize αk

1: Initialize weights w0

2: for k = 0, 1, . . . do
3: Select a minibatch Ik
4: Compute zki for all i ∈ Ik according to (29)
5: Compute tk according to (30)
6: Compute ak according to (31)
7: Compute ∇tk according to (33)
8: Compute g(wk) according to (32)
9: Set wk+1← wk − αkg(wk)

10: end for

5.1. Implementational details and hyperparameter choice

We recall that all methods fall into the framework of either (2) or (5). Since the threshold
t depends on the weights w, we can consider the decision variable to be only w. Then
to apply a method, we implemented the following iterative procedure. At iteration j, we
have the weightswj to which we compute the threshold tj = t(wj). Then according to (28),
we compute the gradient of the objective and apply the ADAM descent scheme [13]. All
methodswere run for 10000 iterations using the stochastic gradient descent. Theminibatch
size was 512 except for the Ionosphere and Spambase datasets where the full gradient was
used. All methods used the hinge surrogate (3). The initial point is generated randomly.

We run the methods for the following hyperparameters:

β ∈ {0.0001, 0.001, 0.01, 0.1, 1, 10},
λ ∈ {0, 0.00001, 0.0001, 0.001, 0.01, 0.1},
k ∈ {1, 3, 5, 10, 15, 20}.

(34)

For TopPushK, Pat&Mat and Pat&Mat-NP we fixed λ = 0.001 to have six hyperparame-
ters for all methods. For all datasets, we choose the hyperparameter which minimized the
criterion on the validation set. The results are computed on the testing set which was not
used during training the methods.

TopPush and τ -FPL were originally implemented in the dual. However, to allow for the
same framework and the stochastic gradient descent, we implemented it in the primal.
These two approaches are equivalent.

5.2. Dataset description and performance criteria

For the numerical results, we considered ten datasets summarized in Table 3. They can
be downloaded from the UCI repository. Ionosphere [21] and Spambase are small, Hep-
mass [3] contains a large number of samples while Gisette [10] contains a large number
of features. We also considered six visual recognition datasets: MNIST, FashionMNIST,
CIFAR10, CIFAR20, CIFAR100 and SVHN2. MNIST and FashionMNIST are greyscale
datasets of digits and fashion items, respectively. CIFAR100 is a dataset of coloured images
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Table 3. Structure of the used datasets.

Training Validation Testing

m n
n+

n
n

n+

n
n

n+

n

Ionosphere 34 175 36.0% 88 36.4% 88 35.2%
Spambase 57 2300 39.4% 1150 39.4% 1151 39.4%
Gisette 5000 1000 50.0% 1500 50.0% 500 50.0%
Hepmass 28 5,250,000 50.0% 1,750,000 50.0% 3,500,000 50.0%
MNIST 28× 28× 1 44,999 11.2% 15,001 11.2% 10,000 11.4%
FashionMNIST 28× 28× 1 45,000 10.0% 15,000 10.0% 10,000 10.0%
CIFAR10 32× 32× 3 37,500 10.0% 12,500 10.0% 10,000 10.0%
CIFAR20 32× 32× 3 37,500 5.0% 12,500 5.0% 10,000 5.0%
CIFAR100 32× 32× 3 37,500 1.0% 12,500 1.0% 10,000 1.0%
SVHN2 32× 32× 3 54,944 18.9% 18,313 18.9% 26,032 19.6%

Notes: The training, validationand testing sets show thenumberof featuresm, samplesn and the fractionof positive samples
n+
n .

of items grouped into 100 classes. CIFAR10 and CIFAR20 merge these classes into 10
and 20 superclasses, respectively. SVHN2 contains coloured images of house numbers. As
Table 3 shows, these datasets are imbalanced.

Each of the visual recognition datasets was converted into ten binary datasets by con-
sidering one of the classes {0, . . . , 9} as the positive class and the rest as the negative class.
The experiments were repeated ten times for each dataset fromdifferent seeds, which influ-
enced the starting point andminibatch creation.Weuse tpr@fpr as the evaluation criterion.
This describes the true-positive rate at a prescribed true-negative rate, usually of 1% or 5%.
For the linear classifier w�x− t, it selects the threshold t so that the desired true-negative
rate is satisfied and then computes the true-positive rate for this threshold.

5.3. Numerical results

Figure 3 presents the standard ROC (receiver operating characteristic) curves on selected
datasets. Since all methods from this paper are supposed to work at low false-positive rates,
the x-axis is logarithmic. Both figures depict averages over ten runs with different seeds.
The left column depicts CIFAR100 while the right one Hepmass. These are the two more
complicated datasets. We selected four representative methods: Pat&Mat and Pat&Mat-
NP as our methods and TopPush and τ -FPL as state-of-the-art methods. Even though all
methods work well, Pat&Mat-NP seems to outperform the remaining methods on most
levels of false-positive rate.

While Figure 3 gave a glimpse of the behaviour of methods, Figures 4 and 5 provide a
statistically more sound comparison. It employs the Nemenyi post hoc test for the Fried-
man test recommended in [6]. This test compares if the mean ranks of multiple methods
are significantly different.

We consider 14 methods (we count different values of τ as different methods) as
depicted in this table. For each dataset mentioned in Section 5.2 and each method, we
evaluated the fpr@tpr metric and ranked all methods. Rank 1 refers to the best perfor-
mance for given criteria, while rank 14 is the worst. The x-axis shows the average rank over
all datasets. The Nemenyi test computes the critical difference. If two methods are within
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Figure 3. ROC curves (with logarithmic x axis) on CIFAR100 (left) and Hepmass (right).

Figure 4. Critical difference (CD) diagrams (level of importance 0.05) of the Nemenyi post hoc test for
the Friedman test. Each diagram shows themean rank of eachmethod, with rank 1 being the best. Black
wide horizontal lines group together methods with the mean ranks that are not significantly different.
The critical difference diagrams were computed for mean rank averages over all datasets of the tpr@fpr
(τ = 0.01) metric.

Figure 5. Critical difference (CD) diagrams (level of importance 0.05) of the Nemenyi post hoc test for
the Friedman test. Each diagram shows themean rank of eachmethod, with rank 1 being the best. Black
wide horizontal lines group together methods with the mean ranks that are not significantly different.
The critical difference diagrams were computed for mean rank averages over all datasets of the tpr@fpr
(τ = 0.05) metric.

their critical difference, their performance is not deemed to be significantly different. Black
wide horizontal lines group such methods.

From this figure and table, we make several observations:

• TopPushK (rank 5.1) provides a slight improvement over TopPush (rank 6.7) even
though this improvement is not statistically significant as both methods are connected
by the black line in both Figures 4 and 5.
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Figure 6. The p-value for the pairwise Wilcoxon signed-rank test, where the null hypothesis is that the
mean tpr@fpr(0.01) of both methods is the same. The methods are sorted bymean rank (left = better).

• NeitherGrill (ranks 12.0 and 12.1) norGrill-NP (ranks 12.1 and 12.4) perform well. We
believe this happened due to the lack of convexity as indicated in Theorem 3.3 and the
discussion after that.

• TopMean (ranks 9.2 and 9.9) does not perform well either. Since the thresholds τ are
small, then w = 0 is the global minimum as proved in Corollary 3.7.

• Pat&Mat-NP (rank 2.1 and 2.6) seems to outperform other methods.
• Pat&Mat (ranks 5.0 and 5.4), τ -FPL (ranks 4.8 and 5.8) and TopPushK (rank 5.1) per-

form similarly. Since they are connected, there is no statistical difference between their
behaviours.

• Pat&Mat-NP at level 0.01 (rank 2.1) outperforms Pat&Mat-NP at level 0.05 (rank 2.6)
for τ = 0.01. Pat&Mat-NP at level 0.05 (rank 1.9 in Figure 5) outperforms Pat&Mat-NP
at level 0.01 (rank 3.0 in Figure 5) for τ = 0.05. This should be because these methods
are optimized for the corresponding threshold. For τ − FPLwe observed this behaviour
for Figure 5 but not for Figure 4.

Figure 6 provides a similar comparison. Both axes are sorted from the best (left) to the
worst (right) average ranks. The numbers in the graph show the p-value for the pairwise
Wilcoxon signed-rank test, where the null hypothesis is that the mean tpr@fpr of both
methods is the same. Even though Figure 4 employs a comparison of mean ranks and
Figure 6 a pairwise comparison of fpr@tpr, the results are almost similar.Methods grouped
by the black line in the former figure usually show a large p-value in the latter figure.
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Table 4. Necessary hyperparameter choice for the solution to have a better objective than zero.

Ionosphere Hepmass FashionMNIST CIFAR100

TopPush � ✗ � ✗
TopPushK � ✗ � ✗
Grillτ = 0.01 ✗ ✗ ✗ ✗
τ = 0.0 ✗ ✗ ✗ ✗
Pat&Matτ = 0.01 � β ≤ 0.1 β ≤ 1 β ≤ 1
τ = 0.05 � β ≤ 1 � �
TopMeanτ = 0.01 ✗ ✗ ✗ ✗
τ = 0.05 ✗ ✗ ✗ ✗
Grill-NPτ = 0.01 ✗ ✗ ✗ ✗
τ = 0.05 ✗ ✗ ✗ ✗
Pat&Mat-NPτ = 0.01 � β ≤ 1 � β ≤ 1
τ = 0.05 � � � β ≤ 1
τ -FPLτ = 0.01 � ✗ � ✗
τ = 0.05 � � � λ ≤ 0.001

Notes: � means that the solution was better than zero for all hyperparameters while ✗ means that it was worse for all
hyperparameters.

Table 4 investigates the impact of w = 0 as a potential global minimum. Each method
was optimized for six different values of hyperparameters. The table depicts the condition
under which the final value has a lower objective than w = 0. Thus, � means that it is
always better while ✗ means that the algorithm made no progress from the starting point
w = 0. The latter case implies that w = 0 seems to be the global minimum. We make the
following observations:

• Pat&Mat and Pat&Mat-NP are the only methods that succeeded at every dataset
for some hyperparameter. Moreover, for each dataset, there was some β0 such that
these methods were successful if and only if β ∈ (0,β0). This is in agreement with
Theorem 3.8.

• TopMean fails everywhere which agrees with Corollary 3.7.
• Figure 2 states that the methods from Section 2.2 has a higher threshold than their Ney-

man–Pearson variants from Section 2.3. This is documented in the table as the latter
have a higher number of successes.

6. Conclusion

In this paper, we achieved the following results:

• We presented a unified framework for the three criteria from Section 2. These criteria
include ranking, accuracy at the top and hypothesis testing.

• We showed that several knownmethods (TopPush,Grill, τ -FPL) fall into our framework
and derived some completely new methods (Pat&Mat, Pat&Mat-NP).

• We performed a theoretical analysis of the methods. We showed that known methods
suffer from certain disadvantages. While TopPush and τ -FPL are sensitive to outliers,
Grill is non-convex.We proved the global convergence of the stochastic gradient descent
for Pat&Mat and Pat&Mat-NP.

• We performed a numerical comparison and we showed a good performance of our
method Pat&Mat-NP.
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Note

1. https://github.com/VaclavMacha/AccuracyAtTopPrimal_experiments.jl
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Appendices

Appendix 1. Additional results and proofs

Here, we provide additional results and proofs of results mentioned in the main body. For conve-
nience, we repeat the result statements.

A.1 Equivalence of (10) and (11)
To show this equivalence, we will start with an auxiliary lemma.

Lemma A.1: Denote by t the exact quantile from (9). Then for all μ ∈ [0, 1], we have

fp(w, t) = μfp(w, t)+ (1− μ)fn(w, t)+ (1− μ)(nτ − n+)+ (1− μ)(q− 1), (A1)

where q := #{x ∈ X |w�x = t}.

Proof: By the definition of the quantile, we have

tp(w, t)+ fp(w, t) = nτ + q− 1.

This implies

fp(w, t) = nτ + q− 1− tp(w, t) = nτ + q− 1− n+ + fn(w, t).

From this relation, we deduce

fp(w, t) = μfp(w, t)+ (1− μ)fp(w, t) = μfp(w, t)+ (1− μ)(fn(w, t)+ nτ − n+ + q− 1)

= μfp(w, t)+ (1− μ)fn(w, t)+ (1− μ)(nτ − n+)+ (1− μ)(q− 1),

which is precisely the lemma statement. �

The right-hand side of (A1) consists of three parts. The first one is a convex combination of false
positives and false negatives. The second one is a constant term that has no impact on optimization.
Finally, the third term (1− μ)(q− 1) equals the number of samples for which their classifier equals
the quantile.However, this term is small in comparisonwith the true-positives and the false negatives
and can be neglected. Moreover, when the data are ‘truly’ random such as whenmeasurement errors
are present, then q = 1 and this term vanishes completely. This gives the (almost) equivalence of (10)
and (11). Note that the term q is ignored in many papers.

A.2 Results related to convexity

Proposition 3.2: Thresholds t2 and t3 are convex functions of the weights. The threshold function t1
is non-convex.

Proof: It is easy to show that the quantile t1 is not convex. Due to [14], the mean of the k highest
values of a vector is a convex function and therefore, t2 is a convex function. It remains to analyse
t3. It is defined via an implicit equation, where we consider for simplicity β = 1,

g(w, t) := 1
n

∑
x∈X

l(w�x− t)− τ = 0.

Since l is convex, we immediately obtain that g is jointly convex in both variables.
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To show the convexity, consider w, ŵ and the corresponding t = t3(w), t̂ = t3(ŵ). Note that this
implies g(w, t) = g(ŵ, t̂) = 0. Then for any λ ∈ [0, 1], we have

g(λw + (1− λ)ŵ, λt + (1− λ)t̂) ≤ λg(w, t)+ (1− λ)g(ŵ, t̂) = 0, (A2)

where the inequality follows from the convexity of g and the equality from g(w, t) = g(ŵ, t̂) = 0.
From the definition of the surrogate quantile function t3, we have

g(λw + (1− λ)ŵ, t3(λw + (1− λ)ŵ)) = 0. (A3)

Since g is nonincreasing in the second variable, from (A2) and (A3), we deduce

t3(λw + (1− λ)ŵ) ≤ λt + (1− λ)t̂ = λt3(w)+ (1− λ)t3(ŵ),

which implies that function w 
→ t3(w) is convex. �

Theorem3.3: If the threshold t is a convex function of the weightsw, then function f (w) = fn(w, t(w))

is convex.

Proof: Due to the definition of the surrogate counts (4), the objective of (5) equals to
1
n+

∑
x∈X+

l(t(w)− w�x).

Here, we write t(w) to stress the dependence of t on w. Since w 
→ t(w) is a convex function, we
also have thatw 
→ t(w)− w�x is a convex function. From its definition, the surrogate function l is
convex and nondecreasing. Since a composition of a convex function with a nondecreasing convex
function is a convex function, this finishes the proof. �

A.3 Results related to differentiability

Theorem 3.4: If the surrogate function l is differentiable, then threshold t3 is a differentiable function
of the weights w and its derivative equals to

∇t3(w) =
∑

x∈X l′(β(w�x− t3(w)))x∑
x∈X l′(β(w�x− t3(w)))

.

The threshold functions t1 and t2 are non-differentiable.

Proof: The result for t3 follows directly from the implicit function theorem. The nondifferentiability
of t1 and t2 happens whenever the threshold value is achieved at two different scores. �

A.4 Results related to stability

Theorem 3.5: Consider any of these formulations: TopPush, TopPushK, TopMean or τ -FPL. Fix any
w and denote the corresponding threshold t(w). If we have

t(w) ≥ 1
n+

∑
x+∈X+

w�x+, (A4)

then f (0) ≤ f (w). Specifically, denote the scores z+ = w�x+ for x+ ∈ X+ and z− = w�x− for x− ∈
X− and the ordered variants with decreasing components of z− by z−[·]. Then

z−[1] ≥
1
n+

n+∑
i=1

z+i =⇒ f (0) ≤ f (w) for TopPush,

1
k

k∑
i=1

z−[i] ≥
1
n+

n+∑
i=1

z+i =⇒ f (0) ≤ f (w) for TopPushK,
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1
n−τ

n−τ∑
i=1

z−[i] ≥
1
n+

n+∑
i=1

z+i =⇒ f (0) ≤ f (w) for τ−FPL.

Proof: Due to l(0) = 1 and the convexity of lwe have l(z) ≥ 1+ cz, where c equals to the derivative
of l at 0. Then we have

f (w) ≥ 1
n+

fn(w, t) = 1
n+

∑
x∈X+

l(t − w�x) ≥ 1
n+

∑
x∈X+

(1+ c(t − w�x))

= 1+ c
n+

∑
x∈X+

(t − w�x) = 1+ ct − c
n+

∑
x∈X+

w�x ≥ 1,

where the last inequality follows from (A4). Now, we realize that for any formulation from the
statement, the corresponding threshold for w = 0 equals to t = 0, and thus f (0) = 1. But then
f (0) ≤ f (w). The second part of the result follows from the form of thresholds t(w). �

Theorem 3.8: Consider the Pat&Mat or Pat&Mat-NP formulation with the hinge surrogate and no
regularization. Assume that for some w, we have

1
n+

∑
x+∈X+

w�x+ >
1
n−

∑
x−∈X−

w�x−. (A5)

Then there is a scaling parameter β0 from (13) such that f (w) < f (0) for all β ∈ (0,β0).

Proof: Define first

zmin = min
x∈X

w�x, z̄ = 1
n

∑
x∈X

w�x, zmax = max
x∈X

w�x.

Then we have the following chain of relations:

z̄ = 1
n

∑
x∈X

w�x = 1
n

∑
x∈X+

w�x+ 1
n

∑
x∈X−

w�x <
1
n

∑
x∈X+

w�x+ n−

nn+
∑
x∈X+

w�x

= 1
n

(
1+ n−

n+

) ∑
x∈X+

w�x = 1
n
n+ + n−

n+
∑
x∈X+

w�x = 1
n+

∑
x∈X+

w�x. (A6)

The only inequality follows from (A5) and the last equality follows from n+ + n− = n.
Due to (A5) we have zmin < z̄ < zmax. Then we can define

β0 = min
{

τ

z̄ − zmin
,

1− τ

zmax − z̄
, τ

}
,

observe that β0 > 0, fix any β ∈ (0,β0) and define

t = 1− τ

β0
+ z̄.

Then we obtain

1+ β(w�x− t) ≥ 1+ β(zmin − t) = 1+ βzmin − 1+ τ − β z̄ = β(zmin − z̄)+ τ ≥ 0. (A7)

Here, the first equality follows from the definition of t and the last inequality from the definition of
β0. Moreover, we have

1
n

∑
x∈X

l(β(w�x− t)) = 1
n

∑
x∈X

max{1+ β(w�x− t), 0} = 1
n

∑
x∈X

(1+ β(w�x− t))
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= 1− βt + β

n

∑
x∈X

w�x = 1− βt + β z̄ = τ ,

where the second equality employs (A7), the third one the definition of z̄ and the last one the
definition of t. But this means that t is the threshold corresponding to w.

Similarly to (A7), we get

1+ t − w�x ≥ 1+ t − zmax = 1+ 1− τ

β
+ z̄ − zmax ≥ 1− τ

β
+ z̄ − zmax ≥ 0, (A8)

where the last inequality follows from the definition of β0. Then for the objective, we have

f (w) = 1
n+

∑
x∈X+

l(t − w�x) = 1
n+

∑
x∈X+

max{1+ t − w�x, 0}

= 1
n+

∑
x∈X+

(1+ t − w�x) = 1+ t − 1
n+

∑
x∈X+

w�x < 1+ t − z̄

= 1+ 1− τ

β
+ z̄ − z̄ = 1+ 1− τ

β
= f (0),

where we the third equality follows from (A8), the only inequality from (A6) and the last equality
from Appendix A2. Thus, we finished the proof for Pat&Mat. The proof for Pat&Mat-NP can be
performed in an identical way by replacing in the definition of z̄ the mean with respect to all samples
by the mean with respect to all negative samples. �

A.5 Results related to threshold comparison

LemmaA.2: Define vector z+ with components z+ = w�x+ for x+ ∈ X+ and similarly define vector
z− with components z− = w�x− for x− ∈ X−. Denote by z+[·] and z−[·] the sorted versions of z+ and
z−, respectively. Then we have the following statements:

z+[n+τ ] > z−[n−τ ] =⇒ Grill has larger threshold than Grill−NP,

1
n+τ

n+τ∑
i=1

z+[i] >
1

n−τ

n−τ∑
i=1

z−[i] =⇒ TopMean has larger threshold than τ−FPL.

Proof: Since z+ and z− are computed on disjunctive indices, we have

z[nτ ] ≥ min{z+[n+τ ], z
−
[n−τ ]}.

Since z[nτ ] is the threshold forGrill and z−[n−τ ] is the threshold forGrill-NP, the first statement follows.
The second part can be shown in a similar way. �

Since the goal of the presented formulations is to push z+ above z−, we may expect that the
conditions in Lemma A.2 hold true.

Appendix 2. Computation for Section 3.4.1

We derive the results presented in Section 3.4.1 more properly. We recall that we have n nega-
tive samples randomly distributed in [−1, 0]× [−1, 1], n positive samples randomly distributed
in [0, 1]× [−1, 1] and one negative sample at (2, 0). We assume that n is large and the outlier
may be ignored for the computation of thresholds that require a large number of points. Since the
computation is simple for other formulations, we show it only for Pat&Mat.
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For w0 = (0, 0), we get

τ = 1
n

∑
x∈X

l(β(w�0 x− t)) = l(0− βt) = 1− βt,

which implies t = 1
β
(1− τ) and consequently

1
n+

fn(w0, t) = 1
n+

∑
x∈X+

l(t − 0) = l(t) = 1+ t.

This finishes the computation for w0.
For w1 = (1, 0) the computation goes similar. Then w�1 x+ has the uniform distribution on [0, 1]

while w�1 x has the uniform distribution on [−1, 1]. If β ≤ τ , then

τ = 1
n

∑
x∈X

l(w�1 x− t) ≈ 1
2

∫ 1

−1
l(z − t) dz = 1

2

∫ 1

−1
max{0, 1+ β(z − t)} dz

= 1
2

∫ 1

−1
(1+ β(z − t)) dz = 1− βt + β

2

∫ 1

−1
z dz = 1− βt, (A9)

and thus again t = 1
β
(1− τ). Note that

1+ β(z − t) ≥ 1+ β(−1− t) = 1− β − 1+ τ = −β + τ ≥ 0

and we could have ignored the max operator in (A9). Finally, we have

1
n+

fn(w1, t) ≈
∫ 1

0
l(t − z) dz =

∫ 1

0
(1+ t − z) dz = 0.5+ t.

Appendix 3. Computing the threshold for Pat&Mat

We show how to efficiently compute the threshold (13) for Pat&Mat and the hinge surrogate (3). As
always define the scores zi = w�xi and consider function

h(t) =
n∑
i=1

l(β(zi − t))− nτ . (A10)

Then solving (30) is equivalent to looking for t̂ such that h(t̂) = 0. We have the following properties
of h.

Lemma A.3: Function h is continuous and strictly decreasing (until it hits the global minimum) with
h(t)→∞ as t→−∞ and h(t)→−nτ as t→∞. Thus, there is a unique solution to the equation
h(t) = 0.

For sorted data, the following lemma gives advice on how to solve equation h(t) = 0.

Lemma A.4: Let z1 ≤ z2 ≤ · · · ≤ zn be sorted. Define γ = 1
β
. Then

h(zi + γ ) = h(zi+1 + γ )+ (n− i)β(zi+1 − zi) (A11)

for all i = n− 1, . . . , 1 with the initial condition h(zn + γ ) = −nτ .
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Proof: Observe first that

h(zj + γ ) =
n∑
i=1

l(β(zi − zj − γ ))− nτ =
n∑

i=1
max(0,β(zi − zj))− nτ =

n∑
i=j+1

β(zi − zj)− nτ .

From here, we obtain h(zn + γ ) = −nτ . Moreover, we have

h(zj + γ ) =
n∑

i=j+1
β(zi − zj)− nτ =

n∑
i=j+2

β(zi − zj)+ β(zj+1 − zj)− nτ

=
n∑

i=j+2
β(zi − zj+1)+

n∑
i=j+2

β(zj+1 − zj)+ β(zj+1 − zj)− nτ

=
n∑

i=j+2
β(zi − zj+1)+ (n− j)β(zj+1 − zj)− nτ

= h(zj+1 + γ )+ (n− j)β(zj+1 − zj),

which finishes the proof. �

Thus, to solve h(t) = 0 with the hinge surrogate, we start with tn = zn + γ and h(tn) = −nτ .
Then we start decreasing t according to (A11) until we find some ti = zi + γ such that h(ti) > 0.
The desired t then lies between ti and ti+1. Since h is a piecewise linear function with

h(t) = h(ti)+ t − ti
ti+1 − ti

(h(ti+1)− h(ti))

for t ∈ [ti, ti+1], the precise value of t̂ can be computed by a simple interpolation

t̂ = ti − h(ti)
ti+1 − ti

h(ti+1)− h(ti)
= ti − h(ti)

ti+1 − ti
−(n− i)β(ti+1 − ti)

= ti + h(ti)
β(n− i)

.

Appendix 4. Proof of Theorem 4.1

The proof is divided into three parts. In Section A.6, we prove a general statement for convergence
of stochastic gradient descent with a convex objective. In Section A.7 we apply it to Theorem 4.1.
The proof is based on auxiliary results from Section A.8.

A.6 General result

Consider a differentiable objective function f and the optimization method

wk+1 = wk − αkg(wk), (A12)

where αk > 0 is a stepsize and g(wk) is an approximation of the gradient ∇f (wk). Assume the
following:

(A1) f is differentiable, convex and attains a global minimum;
(A2) ‖g(wk)‖ ≤ B for all k;
(A3) the stepsize is non-increasing and satisfies

∑∞
k=0 αk = ∞;

(A4) the stepsize satisfies
∑∞

k=0(αk)2 <∞;
(A5) the stepsize satisfies

∑∞
k=0 |αk+1 − αk| <∞.

Assumptions (A3)–(A5) are satisfied, for example, for αk = α0 1
k+1 . We start with the general

result.



OPTIMIZATION METHODS & SOFTWARE 1663

Theorem A.6: Assume that (A1)–(A4) is satisfied. If there exists some C such that for some global
minimum of w∗ of f, we have

∞∑
k=0

αk〈g(wk)− ∇f (wk),w∗ − wk〉 ≤ C, (A13)

then the sequence {wk} generated by (A12) is bounded and f (wk)→ f (w∗). Thus, all its convergent
subsequences converge to some global minimum of f.

Proof: Note first that the convexity from (A1) implies

〈∇f (wk),w∗ − wk〉 ≤ f (w∗)− f (wk). (A14)

Then we have

‖wk+1 − w∗‖2 = ‖wk − αkg(wk)− w∗‖2

= ‖wk − w∗‖2 + 2αk〈g(wk),w∗ − wk〉 + (αk)2‖g(wk)‖2

≤ ‖wk − w∗‖2 + 2αk〈g(wk)− ∇f (wk),w∗ − wk〉
+ 2αk(f (w∗)− f (wk))+ (αk)2B2,

where the inequality follows from (A14) and assumption (A2). Summing this expression for all k
and using (A13) leads to

lim sup
k
‖wk − w∗‖2 ≤ ‖w0 − w∗‖2 + 2C + 2

∞∑
k=0

αk(f (w∗)− f (wk))+
∞∑
k=0

(αk)2B2.

Using assumption (A4) results in the existence of some Ĉ such that

lim sup
k
‖wk − w∗‖2 + 2

∞∑
k=0

αk(f (wk)− f (w∗)) ≤ 2Ĉ. (A15)

Since αk > 0 and f (wk) ≥ f (w∗) as w∗ is a global minimum of f, we infer that sequence {wk} is
bounded and (A15) implies

∞∑
k=0

αk(f (wk)− f (w∗)) ≤ Ĉ.

Since f (wk)− f (w∗) ≥ 0, due to assumption (A3) we obtain lim f (wk)→ f (w∗), which implies the
theorem statement. �

A.7 Proof of Theorem 4.1

For the proof, we will consider a general surrogate which satisfies:

(S1) l(z) ≥ 0 for all z ∈ R, l(0) = 1 and l(z)→ 0 as z→−∞;
(S2) l is convex and strictly increasing function on (z0,∞), where z0 := sup{z | l(z) = 0};
(S3) l′

l is a decreasing function on (z0,∞);
(S4) l′ is a bounded function;
(S5) l′ is a Lipschitz continuous function with modulus L.

All these requirements are satisfied for the surrogate logistic or by the Huber loss, which is the
hinge surrogate that is smoothened on an ε-neighbourhood of zero.
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Theorem4.1: Consider the Pat&Mat or Pat&Mat-NP formulation, stepsizes αk = α0

k+1 and piecewise
disjoint minibatches I1, . . . , Is which cycle periodically Ik+s = Ik. If l is the smoothened (Huberized)
hinge function, then Algorithm 4.1 converges to the global minimum of (16).

Proof: We intend to apply Theorem A.6 and thus, we need to verify its assumptions. Assump-
tion (A1) is satisfied as f is convex due to Theorem 3.3. Assumption (A2) follows directly from
LemmaA.6. Assumptions (A3), (A4) and (A5) are imposed directly in the statement of this theorem.
It remains to verify (A13).

For simplicity, we will do so only for β = 1 and for s = 2 minibatches of the same size. However,
the proof would be identical for other values. This implies that there are some Ik and Ik+1 which are
pairwise disjoint, they cover all samples and that Ik = Ik+2 for all k. The assumptions imply that the
number of positive samples in each minibatch is equal to nk+ = 1

2n+, where n+ is the total number
of positive samples.

First, we estimate the difference between zki defined in (29) and x�i wk. For any i ∈ Ik due to the
construction (29), we have

zki = x�i w
k,

zk−1i = zk−2i = x�i w
k−2 = x�i (wk + αk−2g(wk−2)+ αk−1g(wk−1))

= x�i w
k + αk−2x�i g(w

k−2)+ αk−1x�i g(w
k−1).

(A16)

Similarly, for i /∈ Ik, we have

zki = zk−1i = x�i w
k−1 = x�i (wk + αk−1g(wk−1)) = x�i w

k + αk−1x�i g(w
k−1). (A17)

Recall that we already verified (A1)–(A5). Combining (A2)with (A16) and (A17) yields the existence
of some C2 such that for all i ∈ X we have

|zki − x�i w
k| ≤ C2α

k−1,

|zk−1i − x�i w
k| ≤ C2(α

k−1 + αk−2).
(A18)

This also immediately implies

|tk − t(wk)| ≤ C2α
k−1,

|tk−1 − t(wk)| ≤ C2(α
k−1 + αk−2).

(A19)

Since l′ is Lipschitz continuous with modulus L according to (S5), due to (A18) and (A19) we get

|l′(tk − zki )− l′(t(wk)− x�i w
k)| ≤ L|tk − zki − t(wk)+ x�i w

k| ≤ 2C2Lαk−1. (A20)

In an identical way, we can show

|l′(tk−1 − zk−1i )− l′(t(wk)− x�i w
k)| ≤ 2C2L(αk−1 + αk−2),

|l′(zki − tk)− l′(x�i w
k − t(wk))| ≤ 2C2Lαk−1,

|l′(zk−1i − tk−1)− l′(x�i w
k − t(wk))| ≤ 2C2L(αk−1 + αk−2).

(A21)

Now, we need to estimate the distance between ∇t(wk) and ∇tk. We have

∇tk =
∑

i∈Ik l′(z
k
i − tk)xi +

∑
i∈Ik−1 l′(z

k−1
i − tk−1)xi∑

i∈X l′(zki − tk)
,

∇t(wk) =
∑

i∈Ik l′(x�i wk − t(wk))xi +
∑

i∈Ik−1 l′(x�i wk − t(wk))xi∑
i∈X l′(x�i wk − t(wk))

.

(A22)

The first equality in (A22) follows from (33) and (31) while the second equality in (A22) follows
from Theorem 3.4 and X = Ik ∪ Ik−1. From Lemma A.5, we deduce that the denominators in (A22)
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are bounded away from zero uniformly in k. Assumption (A4) implies αk→ 0. This allows us to
use Lemma A.7 which together with (A21) implies that there is some C3 such that for all sufficiently
large k we have

‖∇tk − ∇t(wk)‖ ≤ C3(α
k−1 + αk−2). (A23)

Using the assumptions above, we can simplify the terms for g(wk) and ∇f (wk) to

g(wk) = 2
n+

∑
i∈Ik+

l′(tk − zki )(∇tk − xi),

g(wk+1) = 2
n+

∑
i∈Ik+1+

l′(tk+1 − zk+1i )(∇tk+1 − xi),

∇f (wk) = 1
n+

∑
i∈X+

l′(t(wk)− x�i w
k)(∇t(wk)− xi),

∇f (wk+1) = 1
n+

∑
i∈X+

l′(t(wk+1)− x�i w
k+1)(∇t(wk+1)− xi).

Due to the assumptions, we have X+ = Ik+ ∪ Ik+1+ and ∅ = Ik+ ∩ Ik+1+ , which allows us to write

n+(g(wk)+ g(wk+1)− ∇f (wk)− ∇f (wk+1)) (A24a)

=
∑
i∈Ik+

l′(tk − zki )(∇tk − xi)−
∑
i∈Ik+

l′(t(wk)− x�i w
k)(∇t(wk)− xi) (A24b)

+
∑
i∈Ik+

l′(tk − zki )(∇tk − xi)−
∑
i∈Ik+

l′(t(wk+1)− x�i w
k+1)(∇t(wk+1)− xi) (A24c)

+
∑
i∈Ik+1+

l′(tk+1 − zk+1i )(∇tk+1 − xi)−
∑
i∈Ik+1+

l′(t(wk)− x�i w
k)(∇t(wk)− xi) (A24d)

+
∑
i∈Ik+1+

l′(tk+1 − zk+1i )(∇tk+1 − xi)−
∑
i∈Ik+1+

l′(t(wk+1)− x�i w
k+1)(∇t(wk+1)− xi).

(A24e)

Then relations (A23) and (A20) applied to Lemma A.8 imply∥∥∥∥∥∥∥
∑
i∈Ik+

l′(tk − zki )(∇tk − xi)−
∑
i∈Ik+

l′(t(wk)− x�i w
k)(∇t(wk)− xi)

∥∥∥∥∥∥∥ ≤ C4(α
k−1 + αk−2)

for some C4, which gives a bound for (A24b). Bound for (A24e) is obtained by increasing k by one.
Bounds for (A24c) and (A24d) can be find similarly using (A21). Altogether, we showed

‖g(wk)+ g(wk+1)−∇f (wk)− ∇f (wk+1)‖ ≤ C1(α
k−2 + αk−1 + αk + αk+1) (A25)

for some C1.
We now estimate

αk〈g(wk)− ∇f (wk),w∗ − wk〉 + αk+1〈g(wk+1)− ∇f (wk+1),w∗ − wk+1〉 (A26a)

= 〈g(wk)− ∇f (wk),αk(w∗ − wk)〉 + 〈g(wk+1)− ∇f (wk+1),αk+1(w∗ − wk+1)〉 (A26b)

= 〈g(wk)− ∇f (wk)+ g(wk+1)− ∇f (wk+1),αk(w∗ − wk)〉 (A26c)

+ 〈g(wk+1)− ∇f (wk+1),αk+1(w∗ − wk+1)− αk(w∗ − wk)〉. (A26d)
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To estimate (A26d), we make use of Lemma A.6 to obtain the existence of some C5 such that

〈g(wk+1)− ∇f (wk+1),αk+1(w∗ − wk+1)− αk(w∗ − wk)〉
≤ 2B‖αk+1(w∗ − wk+1)− αk(w∗ − wk)‖
= 2B‖αk+1(w∗ − wk + αkg(wk))− αk(w∗ − wk)‖
= 2B‖(αk+1 − αk)w∗ + (αk − αk+1)wk + αkαk+1g(wk)‖
≤ C5|αk+1 − αk| + C5(α

k)2 +5 (αk+1)2. (A27)

In the last inequality, we used the equality 2ab ≤ a2 + b2. To estimate (A26c), we can apply (A25)
together with the boundedness of {wk} to obtain the existence of some C6 such that

〈g(wk)− ∇f (wk)+ g(wk+1)− ∇f (wk+1),αk(w∗ − wk)〉
≤ C6(α

k−2)2 + C6(α
k−1)2 + C6(α

k)2 + C6(α
k+1)2. (A28)

Plugging (27) and (A28) into (A26) and summing the terms yields (A13). Then the assumptions of
Theorem A.6 are verified and the theorem statement follows. �

A.8 Auxiliary results

Lemma A.5: Let l satisfy (S1)–(S3). Then there exists some Ĉ such that for all k we have∑
i∈X

l′(zki − tk) ≥ Ĉ > 0,

∑
i∈X

l′(x�i w
k − t(wk)) ≥ Ĉ > 0.

Proof: First, we will find an upper bound of zki − tk. Fix any index i0. Since l is nonnegative due to
(S1), Equation (30) implies

nτ =
∑
i∈X

l(zki − tk) ≥ l(zki0 − tk).

Moreover, as l is a strictly increasing function due to (S2) and nτ > 0, this means

l−1(nτ) ≥ zki0 − tk. (A29)

Since i0 was an arbitrary index, it holds true for all indices. Then (S3)which leads to a further estimate

∑
i∈X

l′(zki − tk) =
∑
i∈X

l(zki − tk)
l′(zki − tk)
l(zki − tk)

≥
∑
i∈X

l(zki − tk)
l′(l−1(nτ))

l(l−1(nτ))

= nτ
l′(l−1(nτ))

l(l−1(nτ))
= l′(l−1(nτ)),

where the inequality follows from (A29) and the following equality from (30). Due to (S2) we obtain
that l′(l−1(nτ)) is a positive number, which finishes the proof of the first part. The second part can
be obtained in an identical way. �

LemmaA.6: Let l satisfy (S1)–(S4). Then there exists someB such that for all kwe have ‖∇f (wk)‖ ≤ B
and ‖g(wk)‖ ≤ B.
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Proof: Due to (S4) the derivative l′ is bounded by some B̂. Then Theorem 3.4 and LemmaA.5 imply

‖∇t(wk)‖ ≤ B̂
∑

i∈X ‖xi‖∑
i∈X l′(x�i w− t(w))

≤ B̂
Ĉ

∑
i∈X
‖xi‖,

which is independent of k. Then (28) and again the boundedness of l′ imply the existence of some B
such that ‖∇f (wk)‖ ≤ B for all k. The proof for g(wk) can be performed identically. �

Lemma A.7: Consider uniformly bounded positive sequences ck1, c
k
2, d

k
1, d

k
2,α

k and positive constants
C1, C2 such that for all k we have |ck1 − ck2| ≤ C1α

k, |dk1 − dk2| ≤ C1α
k, dk1 ≥ C2 and dk2 ≥ C2. If αk →

0, then there exists a constant C3 such that for all sufficiently large k we have∣∣∣∣∣ c
k
1

dk1
− ck2

dk2

∣∣∣∣∣ ≤ C3α
k.

Proof: Since dk1 and dk are bounded away from zero and since αk→ 0, we have∣∣∣∣∣ c
k
1

dk1
− ck2

dk2

∣∣∣∣∣ ≤ max

{
ck1
dk1
− ck1 + C1α

k

dk1 − C1αk
,
ck1
dk1
− ck1 − C1α

k

dk1 + C1αk

}
.

The first term can be estimated as∣∣∣∣∣ c
k
1

dk1
− ck1 + C1α

k

dk1 − C1αk

∣∣∣∣∣ =
∣∣∣∣∣ (ck1 + dk1)C1α

k

dk1(d
k
1 − C1αk)

∣∣∣∣∣ ≤ (ck1 + dk1)C1α
k

C2|dk1 − C1αk| .

Since αk → 0 by assumption, for large k we have |dk1 − C1α
k| ≥ 1

2C2. Since the sequences are
uniformly bounded, the statement follows. �

LemmaA.8: Consider scalars ai, ci and vectors bi, di. If there is some Ĉ such that |ai| ≤ Ĉ and ‖di‖ ≤
Ĉ, then ∥∥∥∥∥

n∑
i=1

aibi −
n∑
i=1

cidi

∥∥∥∥∥ ≤ Ĉ
n∑

i=1
(|ai − ci| + ‖bi − di‖).

Proof: It is simple to verify∥∥∥∥∥
n∑

i=1
aibi −

n∑
i=1

cidi

∥∥∥∥∥ ≤
n∑
i=1
‖di‖|ai − ci| +

n∑
i=1
|ai|‖bi − di‖,

from which the statement follows. �
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