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a b s t r a c t

Heterogeneity of effects between economic variables has been a frequently discussed
topic for many years now. However, the estimation of such scale-dependent effects
has proved challenging. Here, we propose a multivariate multiscale regression approach
based on the combination of detrended fluctuation analysis and detrended cross-
correlation analysis, but the idea can be easily translated into other time and frequency
domain frameworks. As illustrations, we pick two classic economic models – the Taylor’s
rule and the money demand function for the USA and Japan – and we uncover evident
scale-dependence in the individual effects not visible by the simple regression tools.
Importantly, the proposed framework can be used in any discipline where studying the
effects at various scales is of interest. Further applications are thus certainly at hand.

© 2021 Published by Elsevier B.V.

1. Introduction

The notion of a representative agent as an economic construct (or more precisely a representative firm in the
riginal specification) goes way back to the work of Alfred Marshall in the late 19th century [1] and even though it
ad been introduced as a rather limited concept, it attracted firm criticism in the early 20th century, most notably by
2]. Nevertheless, through the decades of economics evolution, many concepts have been built on the assumption of a
epresentative agent either explicitly or implicitly assumed [3]. However, the doubts kept growing stronger as insights
rom other disciplines have been coming steadily into light and helped develop more realistic theories and models based
n actual behavior and characteristics of market participants [4,5]. The traditional mainstream economics assumptions
f the expected utility, rational expectations and together with them representative agents [6] have been frequently
bandoned and replaced by a more realistic bounded rationality assumption [7,8] usually connected with the market
gents heterogeneity [9,10]. In financial economics, the heterogeneity of agents has become one of the conditions for a
table market while homogeneity of beliefs and behavior has become the sign of a possible coming disaster [11–13].
Agent-based models [14,15] have become a premier tool of modeling and examining complex economic and financial

ystems, even though their estimation has proven challenging [16,17]. These models standardly build on a set of micro-
copic assumptions that lead to observable behavior of market participants [18]. From the opposite side, we may narrow
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he agents’ heterogeneity into differences in the time scale of obtaining, analyzing, and utilizing information [19,20]
nd study differences in behavior of agents with respect to their representative time scale. This leads to a macroscopic
epresentation of the relationship between variables with respect to time scales (and frequencies). The relationship
etween two variables in the bivariate setting or among more variables in the multivariate is then characterized by a
pectrum of parameters specific for the given scales. For the simplest case when the effect is constant across scales leads
o the standard regression techniques whereas the possible spectrum of parameters needs to be estimated with more
eneral techniques. In the frequency domain, the estimators are represented by (fully modified) narrow band least squares
21–23]. In the time domain, the methods are also built on the dynamic properties of long-range dependence processes
nd lead to fractal regressions [24]. Even though these approaches are quite straightforward and intuitive as they build
n bivariate representation of the regression parameter estimation, i.e. the fraction between covariance and variance
f the impulse variable, and its substitution with scale or frequency specific counterparts, most economic and financial
eries are not simply bivariate but multivariate. To utilize the full potential of such methods, one needs to generalize into
multivariate setting. In the present work, we introduce the multivariate generalization of the regression framework
uilding on the notion of long-range dependence and fractality, i.e. in the time domain, and we show its usefulness on a
et of traditional economic and financial models.
The paper is structured as follows. In Section 2, we summarize the current literature on scale-dependence of economic

nd financial relationships and laws. In Section 3, we briefly review the detrended fluctuation analysis and detrended
ross-correlation analysis as building stones of the multiscale regression analysis. Its statistical properties and performance
n simulated data are shown as well. Sections 4 and 5 provide a brief methodological background of the economic and
inancial areas with possible utility of the multiscale approach – specifically the Taylor’s rule and the money demand
unction –, describe the datasets, and present the results. Section 6 concludes and presents ideas for future research.

. From long-range dependence to scale-dependent regressions

The application of scaling analysis is not new in economics and finance. According to Frost and Prechter [25],
pproaches to find possible patterns in financial data emerging at different time scales goes back to the 1930s. Formally,
he inclusion of scaling in models in finance could be given to Osborne [26] building on the Brownian motion proposal
f Bachelier [27]. Despite its usefulness and ease of comprehension, a massive literature on deviations from the proposal
as been accumulated, summarized in what is now known as the stylized facts of the financial time series see the
omprehensive reviews of Cont [28] and Parisi et al. [29]. This led to generalizations of the Brownian motion, like the
ractional Brownian or the Lévy motion processes with applications to finance [30–32].

One of the main directions in this field builds on experience connected to scaling laws in complex systems and
tatistical physics [33,34]. The multiscale regression that we propose to generalize here is based on the detrended
luctuation analysis (DFA) and detrended cross-correlation analysis (DCCA). Both methodologies originally come from
hysics but they quickly spread to interdisciplinary applications. DFA was proposed by Peng et al. [35] to detect fractal
roperties and long-range dependence of a time series, specifically to estimate Hurst exponent. The approach was later
xtended into DCCA [36] to estimate the scaling factor of long-range cross-correlations between two time series. Putting
arts of the DFA and DCCA procedures together, Zebende [37] proposed a correlation coefficient allowing to quantify
he level of correlation between time series at various scales, i.e. the relationship between series can be described by
spectrum of correlation coefficients rather than a single one. This correlation coefficient has been extensively used in
any disciplines and its statistical properties have been studies as well [38–41]. Broadly speeking, DFA and DCCA can be
mbedded within a more general approach, the multifractal detrended cross correlation analysis MFDCCA [42].
In finance, the methodologies have been widely utilized. Most of the studies applying DFA point to the existence of

ong-term dependence: Liu et al. [43] for the S&P500, Ausloos et al. [44] and Ausloos [45] for the foreign exchange rate
arkets, Jaroszewicz et al. [46] for Latin American indices, Di Matteo et al. [47] for emerging stock markets, Alvarez-
amirez et al. [48] for oil prices, Mariani et al. [49] for the NYSE stocks, Ferreira and Dionísio [50] for the G7 stock indices,
erreira [51] for sovereign bonds or Zhang et al. [52] and Costa et al. [53] for cryptocurrencies. Long-range dependence
f volatility has been extensively studied as well (e.g. [54–56]).
The Zebende [37] correlation coefficient has been vastly utilized in finance as well. Podobnik et al. [57] study the

elationship between volume and price, Wang et al. [58] examine oil prices, Wang et al. [59] and Lin et al. [60] analyze
ommodity markets, Bashir et al. [61] inspect the exchange rate markets, Filho et al. [62] look into the Brazilian gasoline
etail market, and Zhang et al. [52] and Costa et al. [53] explore cryptocurrencies. The DCCA correlation coefficient was
sed to investigate multiscale contagion on stock markets [63–67] and also complementarily to other measures. For
xample, Zhao and Shang [68] used it in a context of multidimensional analysis of time series jointly with a Principle
omponent Analysis (PCA) to assess nonstationary time series.
A further step from the scale-dependent correlations was taken by Kristoufek [24,69] who proposed regression

rameworks based on DFA and also the detrending moving average analysis (DMA). Building on the ordinary least squares
ramework and its expression through variances and covariances, a method for estimating an actual effect (not only
correlation) of one variable on another at a specific scale was developed. The method has been further utilized in
arious applications by the author: to build a scale-specific capital asset pricing model for the DJI components [70] and
he Portuguese stock index components [71], and to study the covered and uncovered interest rate parities [72,73]. The
2
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ethodological steps and caveats between long-range dependence, scale-dependent correlations and regressions, and
ivariate long-range dependence are in detail covered by Kristoufek [74].
Tilfani et al. [65,66] used the fractal regression framework to build multiscale efficient frontiers for the US stock market,

efore, during and after the subprime crisis and found a dominance of short term investors during the crisis period which is
upportive of the fractal market hypothesis, which considers heterogeneous expectations of the investors. This framework
as found its utility in other topics as well. For example, Wang et al. [75] introduced a bivariate linear regression model
o estimate the multiscale dependence to analyze pollution. And Likens et al. [76] investigated the statistical properties
f this multiscale frameworks and identified that it works well under several conditions and they also apply the method
o a dataset on human posture, once again showing the potential interdisciplinary of the methodology.

. Methodology

In this section, we introduce the multivariate multiscale regression based on the DFA method. To keep the line from
FA to the final regression procedure clear, we present the building blocks in a necessary detail, yet for further details,
lease refer to the references therein or in the previous section.

.1. From detrended fluctuation analysis to multiscale simple regression

The detrended fluctuation analysis (DFA) approach is based on the relationship between the detrended variance
unction FDFA (s) and the time scale s. The DFA procedure is conducted as follows:

Consider a possibly nonstationary time series xt of length T:

i Integrate the original time series, i.e. get the series profile as X (t) =
∑t

k=1(xt − x), where x is the sample mean of
the time respective time series.

ii The profile is divided into Ts = ⌊T/s⌋ non-overlapping boxes of size s, where ⌊. . .⌋ is the sign of lower integer, and
s is the scale length. Within each box v, that starts at (v-1)s+1 and ends at vs, the profile series X(t) is detrended,
standardly by a linear time trend, but various detrending/filtering approaches can be utilized here.

iii The local detrended variance is calculated in each box v as follow:

f 2X (s, v) =
1
s

s∑
i=1

[X(v−1)s+i − X̃(v−1)s+i]
2 (1)

For v = 1, . . ., Ts
iv To obtain the detrended variance, we average over all segments:

F 2
X,DFA(s) =

1
Ts

Ts∑
v=1

f 2X (s, v) (2)

The procedure then leads to estimation of Hurst exponent H as a measure of long-range dependence, but as it is not
needed for the final regression that is presented, we do not delve into its details here either.

To perform the detrended cross-correlation analysis (DCCA), there are similar steps as for DFA but applied for two series
instead of one. First, we get profiles of xt and yt . Second, both series are divided into non-overlapping boxes of equal length
s. Now we only translate the univariate fluctuation function in each box and the detrended fluctuation function into the
bivariate case:

f 2XY (s, v) =
1
s

s∑
i=1

[X(v−1)s+i − X̃(v−1)s+i][Y(v−1)s+i − Ỹ(v−1)s+i] (3)

And, the detrend covariance is obtained by averaging over all segments:

F 2
XY ,DCCA(s) =

1
Ts

Ts∑
v=1

f 2XY (s, v) (4)

Both DFA and DCCA can be used even for non-stationary time series and such, both can be used to study time series in
various disciplines. Building on DFA and DCCA, Zebende [37] developed a measure to quantify the level of cross-correlation
between two-time series for a specific scale s defining the correlation coefficient as:

ρDCCA (s) =
F 2
XY ,DCCA(s)

FXDFA(s)FYDFA(s)
(5)

Clearly, this correlation coefficient uses the standard definition of a fraction of covariance and a product of standard
deviations while substituting these with their scale-specific counterparts based on DCCA and DFA, respectively. This cross-
correlation coefficient is thus scale dependent, identifying differences in behavior according to different time scales. The
3
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CCA cross-correlation coefficient has the desired property, i.e., −1 ≤ ρDCCA(s) ≤ 1 with the standard interpretation, only
ow for the specific scale s. The different properties of the correlation coefficient are described in [38,39,41].
Kristoufek [24] extends the idea of using the DFA and DCCA fluctuation functions as substitutes for variance and

ovariance, respectively, to construct an estimator for a simple regression model:

yt = α + βxt + εt (6)

here yt is a dependent (response) variable, and xt is an independent (impulse) variable, and εt is an error term, and
oefficients α and β are parameters indicating the relationship between x and y. The standard regression framework
sing the OLS approach estimates α and β though

β̂OLS
=

∑T
t=1(xt − x)(yt − y)∑T

t=1(xt − x)2
∼

σ̂xy

σ̂x
2 (7)

where x =
1
T

∑T
t=1 xt and y =

1
T

∑T
t=1 yt and

α̂OLS
= y − β̂OLSx. (8)

In the same logic as in [37], Kristoufek [24] translates the standard variances and covariances in detrended fluctuation
measures from DFA and DCCA. The estimators in Eqs. (7) and (8) can be expressed in a scale-dependent form by using
the scale-dependent variance and covariance defined in Eqs. (1) and (3) as

β̂DFA(s) =
F 2
xy,DCCA(s)

F 2
x,DFA(s)

(9)

and α̂DFA (s) = y − β̂DFA(s)x. (10)

.2. Multivariable multiscale regression

The aim of our work is to provide a new framework, generalizing the DFA-based regression into the multivariable
etting. To do so, we express the estimators of the beta coefficients into variances/covariances and explore the bridge
oward the DFA and DCCA approaches. Let us consider the following multivariate regression equation:

yt = β0 + β1x1t + β2x2t + · · · + βkxkt + εt t = 1, 2, . . ., T (11)

n the matrix form, this can be expressed as Y = Xβ + ε with Y = (y1, y2, . . . , yT )′, β = (β0, β1, . . . , βk)′, ε =

ε1, ε2, . . . , εT )′ and

X =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 x11 x21 . . . xk1

1 x12 x22 . . . xk2

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

1 x1T x2T . . . xkT

⎞⎟⎟⎟⎟⎟⎟⎟⎠
The OLS procedure aims to minimize the sum of squared residuals S(β̂) =

∑T
t=1 ε̂2

t = ε̂′ε̂ = (Y − Xβ)′(Y − Xβ) to get
to the vector estimators

β̂OLS
= (X ′X)−1(X ′Y ) (12)

We define two new variables x′

k = Xk − X̃k and y′

k = Yk − Ỹk, which are residuals of the least square estimation of
trends X̃k and Ỹk, by the fact they are zero mean variables, [77], showed that Eqs. (2) and (4) can be expressed as:

F 2
X,DFA(s) =

1
s.Ts

s.Ts∑
k=1

(Xk − X̃k)2 (13)

F 2
X,DFA(s) =

1
s.Ts

s.Ts∑
k=1

x′2
k = Var(x′

k) (14)

and F 2
XY ,DCCA(s) =

1
s.Ts

s.Ts∑
k=1

(Xk − X̃k)(Yk − Ỹk) = Cov(x′

k, y
′

k) (15)

Furthermore, Zhao and Shang [68] showed that a transformation ϕ(xt ) from xt to Xk − X̃k, which consists of calculating
profile series and local detrending as specified in the DFA/DCCA procedures, is linear.
4
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If we consider the matrix form of Eq. (11): Y = Xβ + ε and by applying ϕ to both sides we obtain ϕ(Y ) = ϕ(Xβ + ε)
nd using linearity of ϕ:

ϕ(Y ) = ϕ(X)β + ϕ(ε) (16)

The sum of squared residuals of Eq. (16) is defined as

S(β̂) = ϕ(ε̂)′ϕ(ε̂) = (ϕ(Y ) − ϕ(X)β)′(ϕ(Y ) − ϕ(X)β) (17)

We define β̂ that minimizes Eq. (17), as

β̂
DFA

(s)=(ϕ(X)′ϕ(X))−1(ϕ (X)′ ϕ(Y )) (18)

hich can be expressed analytically as:

(ϕ(X)′ϕ(X))−1
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s. Ts 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..0

0
s.Ts∑
t=1

x
′2

1t

s.Ts∑
t=1

x′

1t x′

2t . . .

s.Ts∑
t=1

x′

1t x′

kt

. . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . ..

0
s.Ts∑
t=1

x′

kt x′

1t

s.Ts∑
t=1

x′

kt x′

2t . . .

s.Ts∑
t=1

x
′2

kt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1

(19)

(ϕ(X)′ϕ(Y )) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
s.Ts∑
t=1

x′

1ty
′

t

. . .

. . .
s.Ts∑
t=1

x′

kty
′

t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(20)

In DFA/DCCA language:

(ϕ(X)′ϕ(X))−1(ϕ (X)′ ϕ(Y )) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

0 F 2
X1,DFA (s) . . . . . . .. . . . F 2

X1Xk,DCCA(s)

. . . . . .

0 . . . .. . . . F 2
Xj,DFA (s) . . . .F 2

XjXk,DCCA(s)

. . . . . .

0 . . . . . . F 2
XjXk,DCCA(s) . . . F

2
Xk,DFA(s)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1 ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

F 2
X1Y ,DCCA(s)

. . . . . .

F 2
XjY ,DCCA(s)

. . . . . .

F 2
XkY ,DCCA(s)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(21)

We write β̂DFA
= (β̂DFA

0 , β̂DFA
1 ,. . . ., β̂DFA

k ) = (β̂DFA
0 , β̂

′DFA) where β̂
′DFA

= (β̂DFA
1 ,. . . , β̂DFA

k )

β̂
′DFA

(s) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F 2
x1,DFA (s) . . . . . . . . . . . . . . . . F 2

x1xk,DCCA(s)

F 2
x1x2,DCCA (s) . . . . . . . . . . . . . . F 2

x2xk,DCCA(s)

. . . . . .

F 2
x1xj,DCCA(s) . . . F

2
xj,DFA (s) . . . F 2

xjxk,DCCA(s)

. . . . . .

F 2
x1xk,DCCA(s) . . . F

2
xjxk,DCCA(s) . . . F

2
xk,DFA(s)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1 ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F 2
x1y,DCCA(s)

F 2
x2y,DCCA(s)

. . . . . .

F 2
xjy,DCCA(s)

. . . . . .

F 2
xky,DCCA(s)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(22)

for β̂DFA
1 to β̂DFA

k and independently

β̂DFA
0 (s) = y − β̂DFA

1 (s) x1 − · · · − β̂DFA
k (s) xk. (23)
5
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.3. Statistical inference on estimated parameters and scale dependence

The estimated β̂DFA
j (s) are used to describe the effect of the independent variables on the dependent variable at a

given time scale s. In the standard regression framework, we define the t-statistic as tj =
β̂j−βj√
var(β̂j)

(j = 1, . . . , k) with

j ∼ tT−k−1. In general, if |tj| > t1−α/2,T−k−1, we should reject the null hypothesis of βj = 0, and the dependence between
j and Y is statistically significant, i.e., statistically different from zero. In our case, we estimate a multiscale β̂DFA

j (s). Using
he single critical value t1−α/2,T−k−1 for all scales may be inappropriate, with another alternative based on generating a
ritical value tc(s) for each scale. To do so, we followed the procedure of Podobnik et al. [78] to test the significance of the
CCA correlation coefficients by shuffling the time index of the considered series Yj and Xj and repeat the DFA regression
alculations several times (1000 or more). We let the integral of the probability distribution function (PDF) from -tc(s)
o tc(s) be equal to 1-α (in the empirical applications, we stick to the standard α = 0.01 or 0.05). By using tc(s), we can
test whether the dependence between Y and Xj is significant or not at scale s. The scale dependent statistic tDFAj (s) can be
expressed as:

tDFAj (s) =
β̂DFA
j (s) − βj√
var(β̂DFA

j (s))
(24)

We know that var(β̂OLS
j ) is the jth diagonal component of the matrix σ 2

ε (X’X)-1 with σ 2
ε as the variance of residuals. In

he multiscale case, var(β̂DFA
j (s)) is the jth diagonal of the matrix F 2

ε (s)A(s), with:

A(s) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F 2
x1,DFA (s) . . . . . . . . . . . . . . . . F 2

x1xk,DCCA(s)

F 2
x1x2,DCCA (s) . . . . . . . . . . . . . . F 2

x2xk,DCCA(s)

. . . . . .

F 2
x1xj,DCCA(s) . . . F

2
xj,DFA (s) . . . F 2

xjxk,DCCA(s)

. . . . . .

F 2
x1xk,DCCA(s) . . . F

2
xjxk,DCCA(s) . . . F

2
xk,DFA(s)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1

(25)

In the similar vein, the goodness of fit can be measured using the scale-specific adjusted R2
adj(s) defined parallelly as

R2
adj (s) = 1 −

T − 1
T − k − 1

F 2
ε (s)
F 2
y (s)

. (26)

The multiscale regression approach proposed above provides a vector of β̂ for different scales, however it is necessary
o identify the statistical significance of βs variability across scales. To do so, we construct a scale-dependent confidence
nterval and if the estimated β̂DFA(s) falls outside the confidence intervals, we conclude about the heterogeneity of the
ffect the given independent variable has on the dependent variable. In the procedure, we estimate a multiple linear
egression using the standard OLS regression and obtain the estimated parameters and residuals. We create a surrogate
eries of the residuals and using the phase randomization of Theiler et al. [79], we reconstruct the series using the
urrogate residuals and the estimated parameters β̂ . We repeat this procedure 1000 times and to construct the upper
lower) bounds of the 95% confidence intervals, we use the 97.5th quantiles (2.5th quantiles) of the estimated parameters.
lease, refer to [70] for a more detailed description of this procedure with a specific application on financial data.
The use of the DFA-based approaches requires time series with a minimum of 500 observations [76]. To satisfy this

ondition, the following estimation of the Taylor rule and money demand function was based on monthly data. This data
requency has been used in various studies both for Taylor rule [80–82] and for money demand function [83,84].

.4. Performance of DFA estimators on simulated data

The DFA based multivariable regression provides a scale dependent coefficient, which allows to detect the dependence
f a response variable and k dependent variables at different time scales. In order to examine empirically our suggested
pproach, we perform a numerical test on the following equation:

Yt = β0 + β1X1t + β2X2t + β3X3t + β4X4t + εt (27)

We follow the approach described by [24] and [75] and construct five time series with equal length (N = 10000)
o show how the DFA estimators perform under various levels of long-range dependence in series X1t,2t,3t,4t and Yt.
he former series are generated as an AFIRMA(0,d,0) processes with identical fractional integration parameter d and
ndependent Gaussian noises ξi(t) i = 1, 2 and 3, so that Xi(t) =

∑
∞

n=0 an (d) ξi(t − n), the quantity an (d) is defined
by a d =

0(n−d) , where 0(.) is the Gamma function. The error-term is set as a standard Gaussian noise so that the
n ( )
[0(−d)0(n+1)]

6
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Fig. 1. Simulated results I. Mean values (solid lines, left axis) and standard deviation (dashed lines, right axis) for model yt = β0 + β1X1t + β2X2t +

β3X3t + β4X4t + εt , where β0 = β1 = 1, β2 = 1.5, β3 = 2 and β4 = 2.5, Xi (i=1,..,4) are 4 independent processes generated by AFRIMA model with
the same changing fractional integration parameter (x-axis) and independent Gaussian noise. Each simulation has a length of 10000 and repeated
1000 times.

response variable Y has the same parameter d. The regression coefficients are set as: β0 = β1 = 1, β2 = 1.5, β3 = 2 and
β4 = 2.5, the parameter d is ranging from −0.5 to 0.5 with a step 0.1. This test, allows to investigate the performance of
the DFA estimators under different levels of long-term dependence in X1,2,3,4 and Y.

The estimators are averaged over scales between 10 and 1000 with a logarithmic isometric step. Each case is repeated
1000 times to eliminate the noise interference. We report our findings in Fig. 1 where we show that the estimated
coefficients are unbiased regardless of the value of d.

Furthermore, the standard deviations of the 4 estimated coefficients decreases with the increasing memory. Second,
to investigate the performance of our approach faced with a long-range dependent error term ε, we generate our model
as follow: we fix parameter d = 0.4 for X1,2,3,4, and the ε is generated by an AFRIMA process with dε varying from −0.5
to 0.5, the rest of setting remains unchanged. In Fig. 2, we report similar behavior as for the previous case. We observe
that the estimated parameters are unbiased and stable, with an increasing standard deviation of estimated parameters,
which is expected as the memory of the error term increases leading to an increasing variance of the error term.

4. Example I: Taylor rule for interest rates

4.1. Brief theoretical background and dataset description

The main objective of the modern central banks is to ensure price stability [85] and the Taylor rule [86] is one of
their traditional instruments. The rule was firstly estimated for the US economy as a linear representation of connections
between interest rate, inflation, and output gap:

i = π + ϕ
(
π − π∗

)
+ γ y + R∗ (28)
t t t t

7
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Fig. 2. Simulation results II. Mean values (solid lines, left axis) and standard deviation (dashed lines, right axis) for model yt = β0 +β1X1t +β2X2t +

3X3t +β4X4t + εt , with same β coefficients as in settings I, and Xi (i=1,..,4) are 4 independent processes generated by AFRIMA model with the same
ractional integration parameter (d=0.4) and εt is an AFRIMA process with changing parameter dε (x-axis). Each simulation has a length of 10000
nd repeated 1000 times.

here it is the target interest rate, πt the inflation rate, π∗ is the target level of inflation, yt is the output gap (the deviation
of actual real GDP from the estimated potential level) and R∗ is the equilibrium level of the real interest rate. The simplified
and also more popular form [87,88], also known as the modified Taylor rule, is given as

it = µ + απt + βyt . (29)

The original empirical formulation of the rule led to the following specification [86,89]:

it = 1 + 1.5πt + 0.5yt (30)

Standardly, the most interest lays on the values of α higher than one as it suggests amplification of the inflation effect
into the interest rates, and similar for β as values above unity suggest overheating.

In this example, we are interested in the scale structure of the effects in the Taylor rule, specifically whether the
effects differ in the short run and the long run. We study the economies of the USA and Japan between 1970 and 2019
(600 monthly observations each) using the data from the Federal Reserve of St. Louis. To be able to perform the analysis
at the monthly frequency, and thus ensuring enough data points, and also make the datasets comparable, we represent
the inflation rate by the year-over-year change in the Consumer Price Index (CPI) for both the USA and Japan, and for the
real product, we utilize the Industrial Production Index (IPI). Following [90], we define the output gap as a deviation from
the potential output, which is approximated as a quadratic trend of the monthly real product (either GDP or IPI). For the
policy rate, we follow [80] and use the effective federal funds rate for the USA and the call money market rate for Japan.

4.2. Results and interpretation

We estimate the model in Eq. (22) with the use of the DFA-based multivariate fractal regression introduced above for
the scales of 6, 12, 24, 48, 60, and 120 months, i.e. 0.5, 1, 2, 4, 5, and 10 years to possibly uncover complex dynamics
8
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Table 1
Taylor rule for USA.

Intercept α (inflation) β (output
gap)

R2

scale s = 6 4,42 0,052
(0,051)

0,42***
(0,0279)

29%

scale s = 12 2,79 0,501***
(0,042)

0,288***
(0,0197)

41%

scale s = 24 3,69 0,311***
(0,041)

0,183***
(0,018)

34%

scale s = 48 2,34 0,665***
(0,03)

0,124***
(0,012)

54%

scale s = 60 2,24 0,676 ***
(0,023)

0,169***
(0,0095)

80%

scale s = 120 1,76 0,838***
(0,023)

0,03
(0,012)

61%

OLS regression 2,392 0,665***
(0,039)

0,082***
(0,006)

67%

* critical values at 10%, ** critical values at 5%, *** critical values at 1%. Terms between brackets are the
standard errors

that is heterogeneous across scales. For statistical validity of this potentially scale-specific effects, we utilize a bootstrap-
like mechanics of firstly estimating the model with the OLS estimator, reorganizing the residuals (while keeping the
distributional properties and the autocorrelation structure), reconstructing the dependent variable with the estimated
effects, to eventually estimate the scale-specific effect via the multivariate fractal regression. This procedure is repeated
1000 times to obtain critical values of the DFA-based estimates under the null hypothesis of no heterogeneity, i.e. the null
hypothesis that a constant effect is sufficient for the given scales, rather than a spectrum of effects over the scales.

Table 1 summarizes the results for the USA and Table 2 shows the results for Japan. Starting with the USA, we see that
in the short term (6 months), there is no significant effect of inflation on the interest rate and the inverse for the output
gap, not significant for long term (10 years). The effect of inflation then increases with the time scale and reaches its
maximum at the highest analyzed scale of 10 years at around unity, the effect estimated using the simple OLS procedure
corresponds to results obtained for the medium-term horizon (4 and 5 years), i.e., in effect an average effect. However,
the dynamics is apparently much richer than a single-parameter estimation would suggest, and it is only in the long run
when inflation fully propagates into the interest rates. The effects of 1.5 and 0.5 for inflation and output gap, respectively,
as originally suggested by Taylor [86] are thus either not attained either at all (for inflation) or only in the very short
run (for output gap). The effect of inflation is thus very far from its baseline levels and the heterogeneity is very high.
The average effect of 0.6–0.7, represented by the OLS estimate, is representative only for the medium run between 4 and
5 years. In the long run, the effect is much stronger, whereas for the shorter run, the effect drops. For the output gap, the
effect is at its highest for the shortest scales of 6 and 12 months with the effect of 0.4 and 0.3, respectively. Therefore, the
effects of the standard strength, i.e. at 0.5, or at least close to it are observed only for the very short run and the effect
almost vanishes for the long run (becoming insignificant for the highest analyzed scale). The output deviations from the
its potential thus have only a short-lived effect on the interest rate.

The heterogeneity of the effect is further illustrated in Fig. 3 which shows the bootstrap-based critical values for the
constant effect. We see that the differences between the short-term effect for inflation and the medium-term effect for
output gap are so pronounced that their estimates fall well outside of these critical values (these represent the critical
values for the 95% significance level). The results thus add an important perspective to the previous results such as [91,92],
and [93].

In the case of Japan, we observe that output gap parameters are not significant for any scale. Moreover, parameters
are rather unstable, a finding consistent with [94]. While the inflation coefficient is significant for medium and long term
(scale of two years and higher), its magnitude is smaller than one and even smaller than in the case of the USA, which
could be related with the low interest rates practiced in Japan [95]. In response to the economic downturn, Japanese
monetary authority decided to relax monetary conditions, with the discount rate below 0.5% since the mid-1990s, and at
zero since April 2017. Yet again, we find that the effect of inflation mostly grows with the time scale, suggesting that it
takes several years for the inflation effects to fully propagate to the economy.

For the scale-dependence significance (Fig. 4), we observe that inflation coefficient is significantly scale dependent for
a horizon smaller than four years. For output gap, as the estimated coefficient is not statistically significant and unstable,
it seems difficult to judge for scale-dependence significance at all.
9
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Table 2
Estimation of Taylor rule using DFA based regression on Japanese data.

Intercept α β R2

scale s = 6 2,49 0,011
(0,018)

0,431
(0,536)

0%

scale s = 12 2,49 −0,007
(0,012)

1,044
(0,598)

0%

scale s = 24 1,97 0,227
(0,015)

0,137
(0,387)

29%

scale s = 48 2,02 0,204***
(0,011)

0,193
(0,526)

44%

scale s = 60 1,69 0,327***
(0,008)

0,254
(0,3334)

76%

scale s = 120 1,95 0,298***
(0,006)

−1,834
(0,436)

80%

OLS regression 1,068 0,412***
(0,012)

5,079***
(0,234)

79%

*** denotes significance with a 1% level; ** denotes significance with a 5% level; * denotes significance
with a 10% level. Information in brackets is for the standard errors of the estimated coefficients.

Fig. 3. Statistical inference of the scale dependence for Taylor rule coefficients for US. Red line indicates the estimated coefficients with DFA regression
and the shaded area refers to the confidence intervals. In the x-axis, we report time scales.

5. Example II: Money demand

5.1. Brief theoretical background and dataset description

The Quantity Theory of Money [96] is one of the oldest economic laws. Building on a pure accounting tautology, it
says that

MsVT = PTT (31)

where Ms is the quantity of money in circulation, PT the price level, T the volume of transactions and VT is the transactions
velocity. An alternative given by [97] and [98] relates the quantity of money to the nominal income, and V is determined
by the agents’ preferences rather than by the payment mechanism [99], which leads to the standard expression of the
quantity theory given as

MV = Py (32)

For the empirical investigation, the equation is given in its combined logarithmic representation as given e.g. by
[100,101], and [102]:

ln M − ln P = α + α ln y + α π + α i + α e (33)
( ) ( ) 0 y ( ) π i e

10
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Fig. 4. Statistical inference of the scale dependence for Taylor rule coefficients for US. Red line indicates the estimated coefficients with DFA regression
and the shaded area refers to the confidence intervals. In the x-axis, we report time scales.

Here M is the money supply, P the price level, π the inflation rate, y the real output, i the interest rate and e the
exchange rate. This representation thus extends the original equation by additional variables important for the monetary
system [103].

In addition to the variables used in the Taylor rule example, we use the monetary aggregate M2 in USD for the USA and
in JPY for Japan, and for the real effective exchange rate, we use the CPI-based narrow index [104]. The money demand
equation is examined for monthly data between 1970 and 2019 under the same setting as the Taylor rule inspection in
the previous section.

5.2. Results and interpretation

The results suggest that the main driver for the money demand is the output, i.e. the more productive the economy
is the more economic agents tend to spend. This is not a surprising result, but as it is usually the case, the details tell a
more complete story. For the USA (Table 3), we see that the effect of the output on money demand is scale-dependent
and positive, in accordance with economic theory. Regarding the inflation, we observe that coefficients are significant in
short term (from 6 months to two years) with negative coefficients, highlighting that goods are reasonable substitute to
holding domestic currency. However, even though the effect of inflation is statistically significant, inspecting both the
scale-dependent and the OLS estimates (albeit with a different sign) uncovers that the economic significance is quite
weak. The specification given in Eq. (33) makes inflation coefficient a semi-elasticity. This makes, e.g., the OLS estimate
translate into the change in inflation by 1%, i.e., a strong effect, causing 1% increase in money demand, which is a weak
effect. For interest rates, coefficients are significant and negative across all scales. The sign is supportive of the Keynesian
theory of money demand highlighting the speculative motive [104,105]. Yet again, the economic significance is not high
as an increase in interest rates by 1%, i.e., again a large swing, leads to a decrease in the real money demand in small
units of percentages, lower than 1% in the short run. The real exchange rate effect is not significant, except for horizons
of two and ten years, with a negative sign for the former and positive one for the later.

The heterogeneity is illustrated in Fig. 5 and we can see that it is less pronounced than for the Taylor’s rule shown above.
Apparently, the confidence intervals are made wider by the higher number of independent variables in the system so that,
combined with the rather low number of observations, most of the heterogeneity remains hidden within the confidence
intervals. Even though the intervals for inflation and REER suggest scale-dependence of the effects, we see that the effects
are rather flat. Yet the effects for the real output and interest rate show a more relevant story. Interestingly, the period
after which the effect dynamics flattens for the real output is the same or at least similar here as for the Taylor’s rule
— between 4 and 5 years. The transmission time for the real output thus seems to be in this interval.

In the case of Japan, we observe similar patterns, however some differences should be highlighted (Table 4). The effect
of the real output is greater than unity in the long term and the sign of inflation is negative in the short run, positive and
greater in magnitude in the long run (for 60 and 120 months). For interest rates, estimates are significant for all scales
except in the short term (6 months), and they show a negative sign. For REER, only estimates for scales of 12 and 24
months are significant and positive. Regarding the scale-dependence significance, we observe that the coefficients of real

output, inflation and interest rates fall outside the limits of the confidence intervals for short and medium term while the
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Fig. 5. Statistical inference of the scale dependence for money demand coefficients for US. Red line indicates the estimated coefficients with DFA
regression and the shaded area refers to the confidence intervals. In the x-axis, we report time scales.

coefficients for REER mostly remain within the confidence bands. It is again the real output and interest rate, as in the
USA case, that show more pronounced dynamics and scale dependence (Fig. 6).

6. Concluding remarks

Heterogeneity and temporal distribution of effects between economic and financial variables have been frequently
discussed topics for many years now. However, the estimation of such scale-dependent effects has been challenging.
Even though the research into scale-dependent correlations as well as scale-dependent regressions between a pair of
variables have already been quite widely explored, both in the time and the frequency domain, the final steps toward a
multivariate regression have been long missing even though it is obvious that studying not only economic and financial
variables in only pairs has limited implications for interpretation and possible policy utilization of the results. Here, we
propose a multivariate multiscale regression approach based on the combination of detrended fluctuation analysis and
detrended cross-correlation analysis, but the idea can be easily translated into other time domain frameworks. Even more,
the multiscale regression can be generalized for the frequency domain estimators as well.

Even though we illustrate the framework on the set of traditional economic models, it can be used in any discipline
where studying the effects at various scales is of interest. In fact, the methodology will certainly benefit from multivariate
12
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r

Fig. 6. Statistical inference of the scale dependence for money demand coefficients for Japan. Red line indicates the estimated coefficients with DFA
egression and the shaded area refers to the confidence intervals. In the x-axis, we report time scales.

Table 3
Estimation of money demand using DFA regression on US data.

Intercept αoutput αinflation αinterest αREER R2

scale s = 6 2,28 0,252***
(0,03)

−0,008***
(5,12E−04)

−0,0028***
(3,94E−04)

−5,38E−06
(5,92-05)

35%

scale s = 12 1,89 0,341 ***
(0,035)

−0,0073***
(8,04E−04)

−0,0032***
(6,64E−04)

1,75E−04
(8,62E−05)

29%

scale s = 24 1,078 0,547***
(0,032)

−0,0132***
(9,45E−04)

−0,0082***
(7,44E−04)

−7,4E04***
(1,06E−04)

41%

scale s = 48 0,64 0,645***
(0,032)

−0,0032
(0,0012)

−0,0121***
(0,0011)

4,64E−04
(1,72E−04)

50%

scale s = 60 0,33 0,717***
(0,029)

−0,0013
(0,0016)

−0,0134***
(0,0017)

1,75E−05
(2,09E−04)

52%

scale s = 120 0,08 0,758***
(0,028)

−6,42E−04
(0,0024)

−0,001***
(0,0024)

0,0077***
(4,33E−04)

65%

OLS regression −0,203 0,846 ***
(0,026)

0,0098 ***
(0,003)

−0,026***
(0,002)

0,0009*
(5,72E−04)

85%

*** denotes significance with a 1% level; ** denotes significance with a 5% level; * denotes significance
with a 10% level. Information in brackets is for the standard errors of the estimated coefficients.

setting where more data is available so that the results are more clear-cut. Still, our two examples – the Taylor’s rule and
the money demand function for the USA and Japan – uncovered evident scale dependence in the individual effects not
visible by the simple regression tools. Further applications are certainly at hand as well as further developments in the
13



O. Tilfani, L. Kristoufek, P. Ferreira et al. Physica A 588 (2022) 126530

K
t
E

D

a

A

o

R

Table 4
Estimation of money demand using DFA regression on Japanese data.

Intercept αoutput αinflation αinterest αREER R2

scale s = 6 28,51 0,159***
(0,021)

−0,0045***
(5,81E−04)

−0,0023
(0,0015)

2,61E−04
(1,32E−04)

18%

scale s = 12 27,74 0,334***
(0,026)

−0,0028*
(0,0011)

−0,0076**
(0,0023)

4,83E−04*
(1,74E−04)

26%

scale s = 24 27,92 0,294***
(0,032)

−6,64E−04
(8,88E−04)

−0,0117**
(0,0026)

0,0019***
(2,86E−04)

17%

scale s = 48 26,14 0,694***
(0,036)

−0,001
(0,0013)

−0,0133*
(0,0029)

−2,069E−04
(4,22E−04)

42%

scale s = 60 26,03 0,727***
(0,035)

0,0144***
(0,0013)

−0,045***
(0,003)

7,69E−04
(4,88E−04)

65%

scale s = 120 24,76 1,231***
(0,032)

0,0094**
(0,0011)

−0,0312***
(0,002)

−6,53E−05
(4,36E−04)

86%

OLS regression 23,55 1,313***
(0,041)

0,02***
(0,002)

−0,107***
(0,004)

0,006***
(9,8E−04)

92%

*** denotes significance with a 1% level; ** denotes significance with a 5% level; * denotes significance
with a 10% level. Information in brackets is for the standard errors of the estimated coefficients.

methodological and statistical aspects such as treating autocorrelation and heteroskedasticity in error terms or different
types of distributions and their influence on estimators’ performance.
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