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Abstract

Overlap functions are a class of aggregation functions that measure the overlapping degree between two values. They have been 
successfully applied as a fuzzy conjunction operation in several problems in which associativity is not required, such as image 
processing and classification. Interval-valued overlap functions were defined as an extension to express the overlapping of interval-
valued data, and they have been usually applied when there is uncertainty regarding the assignment of membership degrees, as in 
interval-valued fuzzy rule-based classification systems. In this context, the choice of a total order for intervals can be significant, 
which motivated the recent developments on interval-valued aggregation functions and interval-valued overlap functions that are 
increasing to a given admissible order, that is, a total order that refines the usual partial order for intervals. Also, width preservation 
has been considered on these recent works, in an intent to avoid the uncertainty increase and guarantee the information quality, but 
no deeper study was made regarding the relation between the widths of the input intervals and the output interval, when applying 
interval-valued functions, or how one can control such uncertainty propagation based on this relation. Thus, in this paper we: (i) 
introduce and develop the concepts of width-limited interval-valued functions and width limiting functions, presenting a theoretical 
approach to analyze the relation between the widths of the input and output intervals of bivariate interval-valued functions, with 
special attention to interval-valued aggregation functions; (ii) introduce the concept of (a, b)-ultramodular aggregation functions, 
a less restrictive extension of one-dimension convexity for bivariate aggregation functions, which have an important predictable 
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behaviour with respect to the width when extended to the interval-valued context; (iii) define width-limited interval-valued overlap 
functions, taking into account a function that controls the width of the output interval and a new notion of increasingness with 
respect to a pair of partial orders (≤1, ≤2); (iv) present and compare three construction methods for these width-limited interval-
valued overlap functions, considering a pair of orders (≤1, ≤2), which may be admissible or not, showcasing the adaptability of 
our developments.
© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Aggregation functions are useful operators that combine (fuse) several numerical values into a single representa-
tive one, being especially suitable to model fuzzy logic operations and they have been widely employed in several 
theoretical and applied fields [1,2].

Overlap functions are a particular class of aggregation functions that do not need to be associative, and they were 
originally defined as continuous functions in order to deal with the overlapping between classes in image processing 
problems [3–5]. They have quickly risen in popularity due to some desirable properties that they present. In [6,7], 
one can find clear discussions on the advantages that overlap functions have over the popular t-norms. For example, 
overlap functions are closed to the convex sum and the aggregation by internal generalized composition, whereas 
t-norms are not. Also, overlap functions showed good results when applied in problems in which associativity of the 
employed aggregation operator is not required, as in fuzzy rule-based classification [8–10], decision making [11], 
wavelet-fuzzy power quality diagnosis system [12] or forest fire detection [13], among others.

In fuzzy modelling, there may be uncertainty regarding the values of the membership degrees or the definition of 
the membership functions to be employed in the system [14]. One possible solution is the adoption of interval-valued 
fuzzy sets (IVFSs) [15,16], where the membership degrees are represented by intervals. In this manner, the widths 
of the assigned intervals are intrinsically related with the uncertainty/ignorance with respect to the modelling of the 
fuzzy sets [17–19]. IVFSs have been successfully applied in many different fields, such as classification [20,21], image 
processing [22], game theory [23], multicriteria decision making [24], pest control [25], irrigation systems [26] and 
collaborative clustering [27].

Interval-valued aggregation functions were defined in [28], in order to model the aggregation of interval-valued 
data in the unit interval. Following a similar approach, interval-valued overlap functions were defined, independently, 
by Qiao and Hu [29] and Bedregal et al. [30], as an extension of overlap functions to the interval-valued context. By 
extending and generalizing the concept of interval-valued overlap functions, Asmus et al. [21] introduced the concepts 
of n-dimensional interval-valued overlap functions and general interval-valued overlap functions.

It is important to observe that not all interval-valued aggregation functions are interval extensions of some known 
aggregation function on the unit interval [31]. Nevertheless, it is noteworthy that most popular definitions of interval-
valued aggregation functions were developed to properly encompass the result of interval extensions of well known 
aggregation functions following the optimality (the least possible interval width) and correctness (the unknown value 
of the extended operation is contained in the resulting interval) criteria for interval representation (also called, the 
best interval representation), as discussed in [17,31], and taking into account the usual product order when comparing 
intervals [32]. Although this approach is both intuitive and theoretically sound, it may present some drawbacks on the 
application side:

(i) Observe that, although it is natural that the uncertainty carried out by intervals leads to a partial order, as the 
product order (and also the Fishburn interval orders [33]), one may face data that is not comparable, which is a 
serious hindrance in problems such as decision making and classification [34], in which the system must always 
decide and rely in just one interval result when comparing all possible alternatives;

(ii) In many interval-valued processes, the output intervals’ widths become larger than a desirable threshold, accord-
ing to the widths of the input intervals, which may be imposed by applications constraints concerning the quality 
of the information required for the interval results. In those cases, the interval outputs, although correct, usually 
carry no meaningful information about the exact value they are actually approximating [35,36].
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To solve the first problem (i), avoiding a stalemate when comparing intervals, Bustince et al. [34] introduced the 
concept of admissible orders, that is, total orders that refine the product order, in the sense that they coincide with the 
product order whenever the intervals are comparable. In particular, they defined the ≤α,β order, based on an operator 
Kα that corresponds to the Hurwicz’s criterion [37] for balancing pessimism and optimism under uncertainty [38].

Since then, many works using admissible orders have appeared in the literature, for example, [34,38–40]. In partic-
ular, Bustince et al. [38] presented a construction method for interval-valued aggregation functions that are increasing 
with respect to a given admissible order. In a similar line of work, Asmus et al. [40] introduced the concept of n-
dimensional admissibly ordered interval-valued overlap functions, which are n-dimensional interval-valued overlap 
functions that are increasing with respect to an admissible order.

In an initial attempt to deal with the second drawback (ii), the construction method presented by Bustince et al. [38]
produces interval-valued aggregation functions that can be width-preserving whenever some restrictive conditions are 
satisfied. Note that the width of the interval output of a width-preserving interval-valued function is equal to the width 
of the interval inputs, when they all have the same width. However, Bustince et al. [38] clearly state that, ideally, the 
definition of width preservation would have to take into account the width of the interval inputs in every case, not only 
when those inputs have the same length, which we call the drawback (iii) to be overcome.

Considering the second problem (ii), Asmus et al. [40] presented a construction method for n-dimensional admis-
sibly ordered interval-valued overlap functions in which the width of the output is always less or equal to the minimal 
width of the inputs (see Theorem 2.2 in Section 2), which also comes to avoid the problem (iii). However, this type 
of minimal width limitation has two sides: on one hand, as desired, the functions produced by the method avoid an 
increasing width (uncertainty) propagation; on the other hand, unfortunately, just one degenerate input interval (that 
is, with width equal to zero) is sufficient to completely remove all uncertainty of the output interval, which is clearly 
counterintuitive, to say the least.

Thus, the study of the relation between the width of the inputs and the output of interval-valued fuzzy operations 
coupled with adaptable tools to limit the increasing uncertainty in the output of such operations is still a challenge 
to overcome in the literature, especially regarding interval-valued aggregation and interval-valued overlap functions, 
which are of our particular interest.

The development of models that help to avoid that the interval outputs’ widths become larger than the expected/re-
quired in practical applications certainly will increase the applicability of interval-valued fuzzy-based tools to solve 
many problems, as in interval-valued fuzzy-rule based classification systems (see, e.g.: [19,40,41]) and decision mak-
ing (see, e.g.: [42,43]), by providing interval outputs with better information quality. We point out that the information 
quality of interval-valued results is a strong requirement claimed by scientists and engineers interested in interval-
based tools [32].

So, in order to present a contribution to solve the problems (ii) and (iii) in the context of interval-valued overlap 
functions, and even in a more general framework, without disregarding the problem (i), this paper has the following 
general objective:

• To develop a theoretical approach to aid the analysis of bivariate interval-valued operations with respect to the 
width of the operated intervals in order to control the uncertainty propagation, with special attention to interval-
valued overlap functions, admissibly ordered or not.

To accomplish this goal, we have the following specific objectives:

1) To introduce the concepts of width-limited interval-valued functions and width-limiting functions, which are the-
oretical tools to study the relation between the widths of the inputs with the width of the output of interval-valued 
functions, necessary for the construction of interval-valued functions with controlled uncertainty propagation;

2) To define (a, b)-ultramodular aggregation functions, a less restrictive extension of one-dimension convexity for 
bivariate aggregation functions, which shall have an important predictable behaviour with respect to their interval 
output widths when extended to the interval-valued context;

3) To study the relation between some width-limited interval-valued functions and their respective width-limiting 
functions, especially when dealing with (a, b)-ultramodular aggregation functions, giving some backdrop for 
future comparisons with similarly constructed interval-valued functions;
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4) To define the notion of increasingness for a pair of partial orders, allowing for more flexible construction methods 
for width-limited interval-valued functions;

5) To introduce the concept of width-limited interval-valued overlap functions, taking into account a width-limiting 
function and a pair of partial orders, which allows the definition of interval-valued overlap operations that provide 
output intervals that do not exceed a desirable uncertainty (width) threshold;

6) To study the relation between width-limited interval-valued overlap functions and some of their width-limiting 
functions, particularly when considering the best interval representation of some overlap function;

7) To present and study three construction methods for width-limited interval-valued overlap functions, presenting 
examples and comparisons between them to showcase the versatility and applicability of our approach.

Regarding the paper organization, in Section 2 we present some preliminary concepts, followed by Section 3, 
where Specific Objectives 1-3 are addressed. In Section 4, we encompass Specific Objectives 4-7, with the final 
remarks being presented in Section 5.

2. Preliminaries

In this section, we recall some concepts on (ultramodular) aggregation functions, overlap functions, interval math-
ematics, admissible orders and (admissibly ordered) interval-valued overlap functions.

2.1. Fuzzy negations and aggregation functions

Definition 2.1. [44] A function N : [0, 1] → [0, 1] is a fuzzy negation if the following conditions hold:

(N1) N(0) = 1 and N(1) = 0;
(N2) If x ≤ y then N(y) ≤ N(x), for all x, y ∈ [0, 1].

If N also satisfies the involutive property,

(N3) N(N(x)) = x, for all x ∈ [0, 1],

then it is said to be a strong fuzzy negation.

Example 2.1. The Zadeh negation given by

NZ(x) = 1 − x,

is a strong fuzzy negation [44].

Definition 2.2. [44] Given a fuzzy negation N : [0, 1] → [0, 1] and a function F : [0, 1]2 → [0, 1], then the function 
FN : [0, 1]2 → [0, 1] defined, for all x, y ∈ [0, 1], by

FN(x, y) = N(F(N(x),N(y))), (1)

is the N -dual of F .

When it is clear by the context, the NZ-dual function (dual with respect to the Zadeh negation) of F will be just 
called dual of F , and will be denoted by Fd .

Definition 2.3. [2] An aggregation function is any function A : [0, 1]n → [0, 1] that satisfies the following conditions:

(A1) A is increasing in each argument;
(A2) A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1.
133



T. da Cruz Asmus, G. Pereira Dimuro, B. Bedregal et al. Fuzzy Sets and Systems 441 (2022) 130–168
Table 1
Examples of overlap functions.

Name Definition

Product OP (x, y) = x · y
Minimum OM(x,y) = min{x, y}
Geom. Mean OGm(x,y) = √

x · y
OmM Overlap OM(x,y) = min{x, y} · max{x2, y2}
OB Overlap OOB(x, y) = min{x√

y, y
√

x}
Ot Overlap Ot (x, y) = (2x−1)3+1

2 · (2y−1)3+1
2

The Ot Overlap is an original definition introduced here. 
The others can be found in the literature (e.g. [10]).

Example 2.2. For α ∈ [0, 1], the mapping Kα : [0, 1]2 → [0, 1], defined, for all x, y ∈ [0, 1], by

Kα(x, y) = x + α · (y − x), (2)

is an aggregation function.

Observe that the operator Kα corresponds to Hurwicz’s criterion [37] for adjusting pessimism and optimism under 
uncertainty, when working in contexts of imperfect information.

In [2], one may find the concepts of conjunctive and disjunctive aggregation function. In this paper, we need a more 
general definition:

Definition 2.4. Consider a function F : [0, 1]2 → [0, 1]. Then, F is said to be:

a) Conjunctive, if F(x, y) ≤ min{x, y} for all x, y ∈ [0, 1];
b) Disjunctive, if F(x, y) ≥ max{x, y} for all x, y ∈ [0, 1].

The definition of ultramodular aggregation functions is a key concept in this work:

Definition 2.5. [45] An aggregation function A : [0, 1]2 → [0, 1] is called ultramodular if, for all x1, x2, y1, y2, ε, δ ∈
[0, 1], such that x2 + ε, y2 + δ ∈ [0, 1], x1 ≤ x2 and y1 ≤ y2, it holds that:

A(x1 + ε, y1 + δ) − A(x1, y1) ≤ A(x2 + ε, y2 + δ) − A(x2, y2). (3)

Proposition 2.1. [45] Assume that all partial derivatives of order 2 of the aggregation function A : [0, 1]2 → [0, 1]
exist. Then A is ultramodular if and only if all partial derivatives of order 2 are non-negative.

Theorem 2.1. [45] Let A1, A2, A3 : [0, 1]2 → [0, 1] be ultramodular aggregation functions. Then, the composite 
function A : [0, 1]2 → [0, 1] given, for all x, y ∈ [0, 1], by A(x, y) = A3(A1(x, y), A2(x, y)) is an ultramodular 
aggregation function.

Corollary 2.1. [45] Let A1, A2 : [0, 1]2 → [0, 1] be ultramodular aggregation functions and Kα : [0, 1]2 → [0, 1]
as defined in Equation (2). Then, we have that the function Aα : [0, 1]2 → [0, 1] given, for all x, y, α ∈ [0, 1], by 
Aα(x, y) = Kα(A1(x, y), A2(x, y)), is an ultramodular aggregation function.

Example 2.3. The following are examples of ultramodular aggregation functions:

1) The weighted sum Kα , as defined in Equation (2);
2) The product overlap (see Table 1).

By Propositions 2.2 and 2.7 in [45], the following result is immediate.
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Proposition 2.2. Let A : [0, 1]2 → [0, 1] be an ultramodular aggregation function. Then, it holds that:

A(x∗, y) + A(x,y∗) ≤ A(x∗, y∗) + A(x,y),

for all x∗, y∗, x, y ∈ [0, 1] such that x ≤ x∗ and y ≤ y∗.

Observe that Proposition 2.2 also follows directly from Definition 2.5, by taking x1 = x2 = x, y1 = y, y2 = y∗, 
ε = x∗ − x and δ = 0.

Definition 2.6. [3,46] An overlap function is any bivariate function O : [0, 1]2 → [0, 1] that satisfies the following 
conditions, for all x, y ∈ [0, 1]:

(O1) O is commutative;
(O2) O(x, y) = 0 if and only if xy = 0;
(O3) O(x, y) = 1 if and only if xy = 1;
(O4) O is increasing;
(O5) O is continuous.

Note that an overlap function is, in particular, an aggregation function. If for all x, y, z ∈ (0, 1] one has that x <

y ⇔ O(x, z) < O(y, z), then O is called a strict overlap function.
By Theorem 4 in [3], one has that:

Proposition 2.3. Let O1, O2, O3 : [0, 1]2 → [0, 1] be overlap functions. Then, the composite function OC : [0, 1]2 →
[0, 1] given, for all x, y ∈ [0, 1] by OC(x, y) = O3(O1(x, y), O2(x, y)) is an overlap function.

Proposition 2.4. [3] Let O1, O2 : [0, 1]2 → [0, 1] be overlap functions. Then, we have that function Oα : [0, 1]2 →
[0, 1] given, for all x, y, α ∈ [0, 1], by Oα(x, y) = Kα(O1(x, y), O2(x, y)) is an overlap function.

The theoretical development of both overlap functions and their dual (grouping functions) are summarized by 
Bustince et al. in [5]. Additionally, some examples of studies on overlap and grouping functions are described in 
the sequence. The basic properties of overlap functions and grouping functions, like homogeneity, migrativity and 
idempotency, were studied by Bedregal et al. in [46]. Archimedean overlap functions were introduced by Dimuro 
et al. in [47]. Additive generators of overlap functions and grouping functions were introduced by Dimuro et al. 
in [48,49], and their multiplicative generators by Qiao et al. in [50]. Further studies on the migrativity property of 
overlap functions were presented in [51,52]. Dimuro et al. developed the concept of fuzzy implication functions 
derived overlap and grouping functions in [7,53,54]. The properties of such fuzzy implications were studied in [6,55]. 
Extensions of overlap and grouping functions to the n-dimensional context were studied in [56,57].

2.2. Interval mathematics

Let us denote as L([0, 1]) the set of all closed subintervals of the unit interval [0, 1]. Given any X = [x1, x2] ∈
L([0, 1]), X = x1 and X = x2 denote, respectively, the left and right projections of X, and w(X) = X − X denotes 
the width of X. When X = X, and consequently w(X) = 0, we call X a degenerate interval.

The interval product is defined, for all X, Y ∈ L([0, 1]), by:

X · Y = [X · Y ,X · Y ].
The product and inclusion partial orders are defined for all X, Y ∈ L([0, 1]), respectively, by [32]:

X ≤Pr Y ⇔ X ≤ Y ∧ X ≤ Y ;
X ⊆ Y ⇔ X ≥ Y ∧ X ≤ Y .

We call as ≤Pr -increasing a function that is increasing with respect to the product order ≤Pr . The projections 
IF−, IF+ : [0, 1]2 → [0, 1] of IF : L([0, 1])2 → L([0, 1]) are defined, respectively, by:
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IF−(x, y) = IF ([x, x], [y, y]); (4)

IF+(x, y) = IF ([x, x], [y, y]). (5)

Given two increasing functions F, G : [0, 1]2 → [0, 1] such that F ≤ G, we define the function F̂,G : L([0, 1])2 →
L([0, 1]) as

F̂,G(X,Y ) = [F(X,Y ),G(X,Y )]. (6)

An interval-valued function IF is said to be Moore-continuous if it is continuous with respect to the Moore metric 
[32] dM : L([0, 1])2 → R, defined, for all X, Y ∈ L([0, 1]), by:

dM(X,Y ) = max(|X − Y |, |X − Y |).

Definition 2.7. [18] Let IF : L([0, 1])2 → L([0, 1]) be an ≤Pr -increasing interval function. IF is said to be repre-
sentable if there exist increasing functions F, G : [0, 1]2 → [0, 1] such that F ≤ G and F = F̂,G.

The functions F and G are the representatives of the interval function IF . When IF = F̂,F , we denote simply as 
F̂ . In this case, IF is said to be the best interval representation of F , as in [17,18].

Consider α ∈ [0, 1] and the aggregation function Kα as defined in Equation (2). Then, given an interval X ∈
L([0, 1]), we denote Kα(X, X) simply as Kα(X). Also, it is immediate that

[Kα(X) − α · w(X),Kα(X) + (1 − α) · w(X)] = X, (7)

for all α ∈ [0, 1].

2.3. Admissible orders

The notion of admissible orders for intervals came from the interest in extending the product order ≤Pr to a total 
order.

Definition 2.8. [34] Let (L([0, 1]), ≤AD) be a partially ordered set. The order ≤AD is called an admissible order if

(i) ≤AD is a total order on L([0, 1]);
(ii) For all X, Y ∈ L([0, 1]), X ≤AD Y whenever X ≤Pr Y .

In other words, an order ≤AD on L([0, 1]) is admissible, if it is total and refines the order ≤Pr [34].

Proposition 2.5. [34] Let A1, A2 : [0, 1]2 → [0, 1] be two continuous aggregation functions, such that, for all X, Y ∈
L([0, 1]), the equalities A1(X, X) = A1(Y , Y ) and A2(X, X) = A2(Y , Y ) can hold only if X = Y . Define the relation 
≤A1,A2 on L([0, 1]) by

X ≤A1,A2 Y ⇔ A1(X,X) < A1(Y ,Y ) or

(A1(X,X) = A1(Y ,Y ) and A2(X,X) ≤ A2(Y ,Y )).

Then ≤A1,A2 is an admissible order on L([0, 1]).

The pair (A1, A2) of aggregation functions that generates the order ≤A1,A2 in Proposition 2.5 is called an admissible 
pair of aggregation functions [34].

For α, β ∈ [0, 1], such that α �= β , when A1 = Kα and A2 = Kβ , with Kα and Kβ given by Equation (2), we write 
≤α,β for the order ≤Kα,Kβ , which is given by:

X ≤α,β Y ⇔ Kα(X,X) < Kα(Y ,Y ) or (8)

(Kα(X,X) = Kα(Y ,Y ) and Kβ(X,X) ≤ Kβ(Y ,Y )).

Lemma 2.1. [34] For any α, β ∈ [0, 1], α �= β , it holds that: (i) β > α ⇒≤α,β=≤α,1; (ii) β < α ⇒≤α,β=≤α,0.
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Remark 2.1. By varying the values of α and β one can recover some of the known admissible orders, e.g., the 
lexicographical orders ≤Lex1 and ≤Lex2 are recovered, respectively, by ≤0,1 and ≤1,0, and the Xu and Yager order 
[58] ≤XY is recovered by ≤0.5,1.

2.4. Interval-valued overlap functions

Definition 2.9. [28] An interval-valued function IA : L([0, 1])2 → L([0, 1]) is said to be an interval-valued aggrega-
tion function if the following conditions hold:

(IA1) IA is ≤Pr -increasing;
(IA2) IA([0, 0], [0, 0]) = [0, 0] and IA([1, 1], [1, 1]) = [1, 1].

Definition 2.10. [29,30] An interval-valued (iv) overlap function is a mapping IO : L([0, 1])2 → L([0, 1]) that re-
spects the following conditions:

(IO1) IO is commutative;
(IO2) IO(X, Y) = [0, 0] if and only if X · Y = [0, 0];
(IO3) IO(X, Y) = [1, 1] if and only if X · Y = [1, 1];
(IO4) IO is ≤Pr -increasing in the first component: IO(Y, X) ≤Pr IO(Z, X) when Y ≤Pr Z.
(IO5) IO is Moore continuous.

Note that, by (IO1) and (IO4), iv-overlap functions are also monotonic in the second component.
An iv-overlap function IO : L([0, 1])2 → L([0, 1]) is said to be o-representable [21] if there exist overlap functions 

O1, O2 : [0, 1]2 → [0, 1] such that O1 ≤ O2 and IO = Ô1,O2.

Definition 2.11. [40] A function AO : L([0, 1])2 → L([0, 1]) is an admissibly ordered interval-valued overlap func-
tion for an admissible order ≤AD (≤AD-overlap function) if it satisfies the conditions (IO1), (IO2) and (IO3) of 
Definition 2.10 and, for all X, Y, Z ∈ L([0, 1]):

(AO4) AO is ≤AD-increasing: X ≤AD Y ⇒ AO(X, Z) ≤AD AO(Y, Z).

The following construction method for admissibly ordered interval-valued overlap functions preserves the minimal 
width of the input intervals:

Theorem 2.2. [40] Let O be a strict overlap function and α ∈ (0, 1), β ∈ [0, 1] such that α �= β . Then AOα :
L([0, 1])2 → L([0, 1]) defined, for all X, Y ∈ L([0, 1]), by

AOα(X,Y ) = [O(Kα(X),Kα(Y )) − αm,O(Kα(X),Kα(Y )) + (1 − α)m], (9)

where

m = min{w(X),w(Y ),O(Kα(X),Kα(Y )),1 − O(Kα(X),Kα(Y ))}
is an ≤α,β -overlap function.

3. Width-limited interval-valued functions

As a motivation to the developments presented in this section, we pose the following question: with respect to 
a given interval-valued function, how can the width of the output interval be affected by the widths of the input 
intervals? In order to aid on such discussion, concerning the uncertainty propagation control in aggregation processes, 
we introduce the following definition:

Definition 3.1. Consider an interval-valued function IF : L([0, 1])2 → L([0, 1]) and a mapping B : [0, 1]2 → [0, 1]. 
Then, IF is said to be width-limited by B if w(IF(X, Y)) ≤ B(w(X), w(Y)), for all X, Y ∈ L([0, 1]). B is called a 
width-limiting function of IF .
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Remark 3.1. Every function IF : L([0, 1])2 → L([0, 1]) is width-limited by the function B1 : [0, 1]2 → [0, 1] defined 
by B1(x, y) = 1, for all x, y ∈ [0, 1].

In the following, denote:

IF = {IF : L([0,1])2 → L([0,1]) | IF is a binary interval-valued function}
and

F = {F : [0,1]2 → [0,1] |F is binary function}.
First, we analyze how to obtain the least width-limiting function for a given interval-valued function:

Theorem 3.1. The mapping L : IF → F defined for all IF ∈ IF and ε, δ ∈ [0, 1], by

L(IF )(ε, δ) = sup
u ∈ [0,1 − ε]
v ∈ [0,1 − δ]

{w(IF([u,u + ε], [v, v + δ]))}

provides the least width-limiting function L(IF ) : [0, 1]2 → [0, 1] for IF .

Proof. It is clear that L(IF ) is well defined, since

sup
u ∈ [0,1 − ε]
v ∈ [0,1 − δ]

{w(IF([u,u + ε], [v, v + δ]))} ∈ [0,1],

for all IF ∈ IF and all ε, δ ∈ [0, 1].
Now, observe that

L(IF )(ε, δ) = sup
u ∈ [0,1 − ε]
v ∈ [0,1 − δ]

{w(IF([u,u + ε], [v, v + δ]))}

≥ w(IF([u,u + ε], [v, v + δ]))
for all u ∈ [0, 1 −ε], v ∈ [0, 1 −δ], showing that IF is width-limited by L(IF ), since w([u, u +ε]) = ε and w([v, v+
δ]) = δ.

Finally, suppose that there exists a function B : [0, 1]2 → [0, 1] such that: (i) B is a width-limiting function for IF ; 
(ii) there exist ε0, δ0 ∈ [0, 1] such that B(ε0, δ0) < L(IF )(ε0, δ0). So, it follows that

B(ε0, δ0) < sup
u ∈ [0,1 − ε0]
v ∈ [0,1 − δ0]

{w(IF([u,u + ε0], [v, v + δ0]))}.

Then, there exist u0 ∈ [u, u + ε0], v0 ∈ [v, v + δ0] such that

B(ε0, δ0) < w(IF ([u0, u0 + ε0], [v0, v0 + δ0])),
meaning that IF cannot be width-limited by B , which is a contradiction. The conclusion is that L(IF ) is the least 
function that is width-limiting for IF . �

In the following, denote:

A = {A : [0,1]2 → [0,1] |A is an aggregation function}
and

IA = {IA : L([0,1])2 → L([0,1]) | IA is the best interval representation of an aggregation functionA ∈A}.
Then, a similar approach of Theorem 3.1 can be used to obtain the least width-liming aggregation function for a given 
representable interval-valued aggregation function.
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Theorem 3.2. The mapping L : IA →F defined for all IA ∈ IA and ε, δ ∈ [0, 1], by

L(IA)(ε, δ) = sup
u ∈ [0,1 − ε]
v ∈ [0,1 − δ]

{w(IA([u,u + ε], [v, v + δ]))} (10)

provides the least width-limiting function L(IA) : [0, 1]2 → [0, 1] for IA. Moreover, L(IA) is an aggregation func-
tion.

Proof. From Theorem 3.1, it only remains to be shown that L(IA) respects the conditions for it to be an aggregation 
function, for all IA ∈ IA:

(A1) Consider ε1, ε2, δ1, δ2 ∈ [0, 1] such that ε1 ≤ ε2 and δ1 ≤ δ2. Thus, for all u ∈ [0, 1 − ε2] and v ∈ [0, 1 − δ2], it 
holds that

[u,u + ε1] ≤ [u,u + ε2] and [v, v + δ1] ≤ [v, v + δ2].
Since IA is ≤Pr -increasing, for all u ∈ [0, 1 − ε2] and v ∈ [0, 1 − δ2], it follows that

IA([u,u + ε1], [v, v + δ1]) ≤Pr IA([u,u + ε2], [v, v + δ2]). (11)

As IA ∈ IA, then there exists an aggregation function A : [0, 1]2 → [0, 1] such that

IA(X,Y ) = [A(X,Y ),A(X,Y )],
for all X, Y ∈ L([0, 1]). Thus, by Equation (11), one has that

[A(u,v),A(u + ε1, v + δ1)] ≤Pr [A(u,v),A(u + ε2, v + δ2)]
⇒ A(u + ε1, v + δ1) − A(u,v) ≤ A(u + ε2, v + δ2) − A(u,v)

⇒ w([A(u,v),A(u + ε1, v + δ1)]) ≤ w([A(u,v),A(u + ε2, v + δ2)])
⇒ w(IA([u,u + ε1], [v, v + δ1])) ≤ w(IA([u,u + ε2], [v, v + δ2]))
⇒ sup

u ∈ [0,1 − ε1]
v ∈ [0,1 − δ1]

{w(IA([u,u + ε1], [v, v + δ1]))} ≤ sup
u ∈ [0,1 − ε2]
v ∈ [0,1 − δ2]

{w(IA([u,u + ε2], [v, v + δ2]))}

⇒ L(IA)(ε1, δ1) ≤ L(IA)(ε2, δ2),

showing that L(IA) is increasing.
(A2) As IA ∈ IA, it follows that

L(IA)(0,0) = sup
u,v∈[0,1]

{w(IA([u,u], [v, v]))} = sup
u,v∈[0,1]

{A(u,v) − A(u,v)} = 0,

and

L(IA)(1,1) = w(IA([0,1], [0,1])) = A(1,1) − A(0,0) = 1. �
Example 3.1. Let A : [0, 1]2 → [0, 1] be an aggregation function defined, for all x, y ∈ [0, 1], by A(x, y) = x+y+x·y

3 . 
Then, the mapping L(Â) : [0, 1]2 → [0, 1] defined, for all ε, δ ∈ [0, 1], by

L(Â)(ε, δ) = sup
u ∈ [0,1 − ε]
v ∈ [0,1 − δ]

{w(Â([u,u + ε], [v, v + δ]))}

= sup
u ∈ [0,1 − ε]
v ∈ [0,1 − δ]

{A(u + ε, v + δ) − A(u,v)}

= sup
u ∈ [0,1 − ε]
v ∈ [0,1 − δ]

{
u + ε + v + δ + (u + ε) · (v + δ)

3
−

(
u + v + y · v

3

)}
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= sup
u ∈ [0,1 − ε]
v ∈ [0,1 − δ]

{
ε + δ + u · δ + ε · v + ε · δ

3

}

= ε + δ + (1 − ε) · δ + ε · (1 − δ) + ε · δ
3

= 2ε + 2δ − ε · δ
3

is the least width-limiting function for Â. Observe that L(Â) is an aggregation function.

Based on the concept of ultramodularity, let us define a less restrictive extension of one-dimension convexity for 
bivariate aggregation functions:

Definition 3.2. Consider a, b ∈ [0, 1]. An aggregation function A : [0, 1]2 → [0, 1] is called (a, b)-ultramodular if, for 
all x, y, ε, δ ∈ [0, 1] and x + ε, y + δ, a − ε, b − δ ∈ [0, 1], it holds that:

A(x + ε, y + δ) − A(x,y) ≤ A(a,b) − A(a − ε, b − δ). (12)

Proposition 3.1. Let A : [0, 1]2 → [0, 1] be an ultramodular aggregation function. Then, A is an (1, 1)-ultramodular 
aggregation function.

Proof. Immediate, since Equation (12), with a = b = 1, is a particular case of Equation (3) when ε + x2 = 1 and 
δ + y2 = 1. �
Remark 3.2. If an aggregation function A : [0, 1]2 → [0, 1] is (1, 1)-ultramodular, then, for all x, y, ε, δ ∈ [0, 1] such 
that x + ε, y + δ, a − ε, b − δ ∈ [0, 1], it holds that:

A(x + ε, y + δ) − A(x,y) ≤ Ad(ε, δ), (13)

where Ad is the dual of A.

Remark 3.3. From Proposition 3.1, we have that every ultramodular function is also (1, 1)-ultramodular. However, 

the converse may not hold. For example, the Ot overlap (Table 1) given by Ot(x, y) = (2x−1)3+1
2 · (2y−1)3+1

2 , for 
all x, y ∈ [0, 1], is an (1, 1)-ultramodular function. However, by Proposition 2.1, Ot is clearly not an ultramodular 
aggregation function.

Now, let us present a characterization for the least width-limiting function of the best interval representation of an 
(1, 1)-ultramodular aggregation function, or the best interval representation of its dual:

Theorem 3.3. Let A : [0, 1]2 → [0, 1] be an aggregation function, L(Â), L(Âd) : [0, 1]2 → [0, 1] be the least width-
limiting functions for Â and Âd , respectively. Then, L(Â) = L(Âd) = Ad if and only if A is an (1, 1)-ultramodular 
aggregation function.

Proof. (⇒) Suppose that L(Â) = L(Âd) = Ad . Then, we have that:

L(Â) = Ad

⇒ sup
u ∈ [0,1 − ε]
v ∈ [0,1 − δ]

{w(Â([u,u + ε], [v, v + δ]))} = 1 − A(1 − ε,1 − δ)

⇒ A(u + ε, v + δ) − A(u,v) ≤ A(1,1) − A(1 − ε,1 − δ), for all u ∈ [0,1 − ε], v ∈ [0,1 − δ]. (14)

From Equation (14), we conclude that A is (1, 1)-ultramodular.
(⇐) Suppose that A : [0, 1]2 → [0, 1] is an (1, 1)-ultramodular aggregation function. Then, for all ε, δ ∈ [0, 1], it 

holds that:
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L(Â)(ε, δ) = sup
u ∈ [0,1 − ε]
v ∈ [0,1 − δ]

{w(Â([u,u + ε], [v, v + δ]))}

= sup
u ∈ [0,1 − ε]
v ∈ [0,1 − δ]

{A(u + ε, v + δ) − A(u,v)}

= A(1 − ε + ε,1 − δ + δ) − A(1 − ε,1 − δ)

= 1 − A(1 − ε,1 − δ)

= Ad(ε, δ),

and

L(Âd)(ε, δ) = sup
u ∈ [0,1 − ε]
v ∈ [0,1 − δ]

{w(Âd([u,u + ε], [v, v + δ]))}

= sup
u ∈ [0,1 − ε]
v ∈ [0,1 − δ]

{A(1 − u,1 − v) − A(1 − u − ε,1 − v − δ)}

= A(1,1) − A(1 − ε,1 − δ)

= Ad(ε, δ),

since A is (1, 1)-ultramodular. Thus, if A is an (1, 1)-ultramodular aggregation function, then L(Â) = L(Âd) =
Ad . �
Remark 3.4. In the context of Theorem 3.3, as Â and Âd are representable iv-aggregation functions, then their least 
width-limiting function Ad is an aggregation function, as stated by Theorem 3.2. Also, observe that the function A
does not need to be ultramodular.

Example 3.2. The least width-limiting function for either Ôt (the best interval representation of the overlap function 
Ot , shown in Table 1) or Ôd

t (the best interval representation of the dual of Ot ) is Od
t , as Ot is an (1, 1)-ultramodular 

aggregation function.

Since every ultramodular aggregation function is also (1, 1)-ultramodular, the following result is immediate.

Corollary 3.1. Let A : [0, 1]2 → [0, 1] be an aggregation function, L(Â), L(Âd) : L([0, 1])2 → L([0, 1]) be the least 
width-limiting functions for Â and Âd , respectively. Then, L(Â) = L(Âd) = Ad if and only if A is an ultramodular 
aggregation function.

Example 3.3. Here we present some examples of width-limiting functions for the best interval representation of either 
an ultramodular aggregation function or its dual:

1) The least width-limiting function for either ÔP (the best interval representation of the product overlap) or Ôd
P

(the best interval representation of the dual of OP ) is Od
P ;

2) The least width-limiting function for K̂α (the best interval representation of the weighted sum), is Kd
α = Kα , with 

α ∈ [0, 1];
3) Consider the aggregation function AM : [0, 1]2 → [0, 1] given by AM(x, y) = x+y

2 (arithmetic mean). So, the 
least width-limiting function for ÂM (the best interval representation of the arithmetic mean), is AMd = AM .

Proposition 3.2. Let IF1, IF2, IG, IH ∈ IA, such that IH(X, Y) = IG(IF1(X, Y), IF2(X, Y)), for all X, Y ∈
L([0, 1]). Then, it holds that:

L(IH) ≤ L(IG)(L(IF1),L(IF2)).
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Proof. Consider IF1([x1, x1 + ε], [x2, x2 + δ]) = [y1, y1 + ε∗], IF2([x1, x1 + ε], [x2, x2 + δ]) = [y2, y2 + δ∗], with 
ε, δ, ε∗, δ∗, ∈ [0, 1] and x1 + ε, x2 + δ, y1 + ε∗, y2 + δ∗ ∈ [0, 1]. Then, it follows that:

w(IH([x1, x1 + ε], [x2, x2 + δ]))
= w(IG(IF1([x1, x1 + ε], [x2, x2 + δ]), IF2([x1, x1 + ε], [x2, x2 + δ])))
= w(IG([y1, y1 + ε∗], [y2, y2 + δ∗])
≤ L(IG)(ε∗, δ∗), by Theorem 3.2

≤ L(IG)(L(IF1)(ε, δ),L(IF2)(ε, δ)),

which means that L(IG)(L(IF1), L(IF2)) is a width-limiting function for IH .
However, as L(IH) is the least width-limiting function for IH (by Theorem 3.2), thus, one concludes that

L(IH) ≤ L(IG)(L(IF1),L(IF2)). �
Example 3.4.

1) Take IF1 = ÂM , IF2 = ÔP , IG = K̂α , as presented in Example 3.3. Then, let IH : L([0, 1])2 → L([0, 1]) be 
an iv-aggregation function defined, for all X, Y ∈ L([0, 1]) with α ∈ [0, 1], by

IH(X,Y ) = K̂α(ÂM(X,Y ), ÔP (X,Y ))

= K̂α([AM(X,Y ),AM(X,Y )], [OP (X,Y ),OP (X,Y )]))

= K̂α

([
X + Y

2
,
X + Y

2

]
, [X · Y ,X · Y ]

)
.

Since AM, OP and Kα are ultramodular, it holds that:

L(IH)(ε, δ)

= sup
u ∈ [0,1 − ε]
v ∈ [0,1 − δ]

{
Kα

(
u + ε + v + δ

2
, (u + ε) · (v + δ)

)
− Kα

(
u + v

2
, u · v

)}

= Kα

(
1 − ε + ε + 1 − δ + δ

2
, (1 − ε + ε) · (1 − δ + δ)

)
− Kα

(
1 − ε + 1 − δ

2
, (1 − ε) · (1 − δ)

)
= Kα (1,1) − Kα

(
(1 − ε) + (1 − δ)

2
, (1 − ε) · (1 − δ)

)
= 1 − Kα (AM(1 − ε,1 − δ),OP (1 − ε,1 − δ))

= 1 − Kα

(
1 − AM(ε, δ),1 − Od

P (ε, δ)
)

= Kα

(
AM(ε, δ),Od

P (ε, δ)
)

.

From Theorem 3.3 we have that L(ÔP ) = Od
P , L(ÂM) = AMd = AM and L(K̂α) = Kd

α = Kα , for all α ∈ [0, 1]. 
So, we conclude that

L(K̂α)(L(ÂM)(ε, δ),L(ÔP )(ε, δ)) = Kα(AM(ε, δ),Od
P (ε, δ)) = L(IH).

2) Now, take IF1 = ÔP , IF2 = Ôd
P , IG = K̂0.25, with α = 0.25. Then, let IH : L([0, 1])2 → L([0, 1]) be the 

iv-aggregation function defined, for all X, Y ∈ L([0, 1]), by

IH(X,Y ) = K̂0.25(ÔP (X,Y ), Ôd
P (X,Y ))

= K̂0.25([OP (X,Y ),OP (X,Y )], [Od
P (X,Y ),Od

P (X,Y )]))
= K̂0.25

([
X · Y ,X · Y ]

, [X + Y − X · Y ,X + Y − X · Y ])
=

[
X + Y + 2 · X · Y

4
,
X + Y + 2 · X · Y

4

]
.
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Thus,

L(IH)(ε, δ)

= sup
u ∈ [0,1 − ε]
v ∈ [0,1 − δ]

{
u + ε + v + δ + 2 · (u + ε) · (v + δ)

4
− u + v + 2 · u · v

4

}

= sup
u ∈ [0,1 − ε]
v ∈ [0,1 − δ]

{
ε + δ + 2 · u · δ + 2 · ε · v + 2 · ε · δ

4

}

= ε + δ + 2 · (1 − ε) · δ + 2 · ε · (1 − δ) + 2 · ε · δ
4

= 3ε + 3δ − 2εδ

4
.

From Theorem 3.3 we have that L(ÔP ) = L(Ôd
P ) = Od

P and L(K̂0.25) = Kd
0.25 = K0.25. So, we have that

L(K̂0.25)(L(ÔP )(ε, δ),L(Ôd
P )(ε, δ))

= K0.25(O
d
P (ε, δ),Od

P (ε, δ))

= Od
P (ε, δ)

≥ 3ε + 3δ − 2εδ

4
= L(IH).

Remark 3.5. Consider an interval-valued function IF : L([0, 1])2 → L([0, 1]) and an aggregation function A :
[0, 1]2 → [0, 1]. If IF is width-limited by A, we have that, for any X, Y ∈ L([0, 1]):

1) If A = max, then IF is limited by the maximal width of the input intervals X, Y ;
2) If A = min, then IF is limited by the minimal width of the input intervals X, Y ;
3) If A is conjunctive and either X or Y is degenerate, then IF (X, Y) is also degenerate;
4) If A is averaging, then min{w(X), w(Y)} ≤ w(IF(X, Y)) ≤ max{w(X), w(Y)}.

4. Width-limited interval-valued overlap functions

The aim of this section is to apply the newly developed concepts of width-limited interval-valued functions and 
width limiting functions to obtain a new definition of width-limited interval-valued overlap functions, taking into 
consideration different partial orders. Also, we are going to present three construction methods for width-limited 
interval-valued overlap functions, followed by some examples and comparisons.

First, to enable a more flexible definition of interval-valued functions, let us define the concept of increasingness 
with respect to a pair of partial orders:

Definition 4.1. Let IF : L([0, 1])2 → L([0, 1]) be an interval-valued function and ≤1, ≤2 be two partial or-
der relations on L([0, 1]). Then, IF is said to be (≤1, ≤2)-increasing if the following condition holds, for all 
X1, X2, Y1, Y2 ∈ L([0, 1]):

X1 ≤1 X2 ∧ Y1 ≤1 Y2 ⇒ IF (X1, Y1) ≤2 IF (X2, Y2).

When an interval-valued function IF : L([0, 1])2 → L([0, 1]) is (≤, ≤)-increasing, we denote it simply as ≤-
increasing, for any partial order relation ≤ on L([0, 1]).

Proposition 4.1. Let ≤AD be an admissible order on L([0, 1]). Then, an ≤Pr -increasing function IF : L([0, 1])2 →
L([0, 1]) is also (≤Pr , ≤AD)-increasing.
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Proof. Immediate, as ≤AD is an admissible order and, as such, refines ≤Pr . �
Example 4.1. Given an overlap function O : [0, 1]2 → [0, 1], the ≤α,β -overlap function AOα : L([0, 1])2 → L([0, 1])
defined in Equation (9) (Theorem 2.2) is (≤Pr , ≤α,β)-increasing for all α, β ∈ [0, 1] such that α �= β .

Here, we present the definition of width-limited interval-valued overlap functions:

Definition 4.2. Let B : [0, 1]2 → [0, 1] be a commutative and increasing function and ≤1, ≤2 be two partial order 
relations on L([0, 1]). Then, the mapping IOw : L([0, 1])2 → L([0, 1]) is said to be a width-limited interval-valued 
overlap function (w-iv-overlap function) with respect to the tuple (≤1, ≤2, B), if the following conditions hold for all 
X, Y ∈ L([0, 1]):

(IOw1) IOw is commutative;
(IOw2) IOw(X, Y) = [0, 0] ⇔ X · Y = [0, 0];
(IOw3) IOw(X, Y) = [1, 1] ⇔ X · Y = [1, 1];
(IOw4) IOw is (≤1, ≤2)-increasing;
(IOw5) IOw is width-limited by B.

Remark 4.1. Taking a similar approach as in [40] when defining admissibly ordered interval-valued overlap functions, 
we do not require the continuity as a condition in Definition 4.2. The original definition of overlap functions (Defini-
tion 2.10) included the Moore continuity as a necessary condition as the goal was to be applied in image processing 
problems [3], which is not the case here.

Now, let us presents some results regarding width-limited interval-valued overlap functions obtained through the 
best interval representation of an overlap function:

Proposition 4.2. Let O : [0, 1]2 → [0, 1] be an (1, 1)-ultramodular overlap function. Then, the function IF :
L([0, 1])2 → L([0, 1]), such that IF = Ô is an w-iv-overlap function for the tuple (≤Pr, ≤Pr , Od), where Od is 
the dual of O .

Proof. Immediate from Theorem 3.3. �
Example 4.2. Let Ot : [0, 1]2 → [0, 1] be the Ot overlap, given in Table 1. Then, the function IF : L([0, 1])2 →
L([0, 1]), such that IF = Ôt is an w-iv-overlap function for the tuple (≤Pr, ≤Pr , Od

t ), where Od
t is the dual of Ot .

Proposition 4.3. Let O1, O2, O3 : [0, 1]2 → [0, 1] be ultramodular overlap functions, and OC : [0, 1]2 → [0, 1]
be an overlap function given, for all x, y ∈ [0, 1], by OC(x, y) = O3(O1(x, y), O2(x, y)). Then, the function 
IF : L([0, 1])2 → L([0, 1]), such that IF = ÔC is an w-iv-overlap function for the tuple (≤Pr, ≤Pr , Od

C), where 
Od

C is the dual of OC .

Proof. Immediate from Theorem 2.1, Proposition 2.3 and Theorem 3.3. �
Example 4.3. Consider the overlap functions O1, O2, O3, OC : [0, 1]2 → [0, 1] given, for all x, y, ∈ [0, 1], respec-
tively, by O1(x, y) = x2p · y2p , O2(x, y) = x2q · y2q , O3(x, y) = x · y and OC(x, y) = O3(O1(x, y), O2(x, y)), with 
p, q ∈ N+. Since O1, O2 and O3 are ultramodular, it follows that the function IF : L([0, 1])2 → L([0, 1]), such that 
IF = ÔC , is an w-iv-overlap function for the tuple (≤Pr, ≤Pr , Od

C).

Proposition 4.4. Let O1, O2 : [0, 1]2 → [0, 1] be ultramodular overlap functions, and Oα : [0, 1]2 → [0, 1] be an 
overlap function given, for all x, y, α ∈ [0, 1], by Oα(x, y) = Kα(O1(x, y), O2(x, y)). Then, the function IF :
L([0, 1])2 → L([0, 1]) such that IF = Ôα , for all α ∈ [0, 1], is an w-iv-overlap function for (≤Pr, ≤Pr , Od

α), where 
Od

α is the dual of Oα .
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Proof. Immediate from Corollary 2.1, Proposition 2.4 and Theorem 3.3. �
Example 4.4. Consider the ultramodular overlap functions O1, O2, Oα : [0, 1]2 → [0, 1] given, for all x, y, α ∈ [0, 1], 
respectively, by O1(x, y) = x2y2, O2(x, y) = x4y4 and Oα = Kα(O1(x, y), O2(x, y)). It follows that the function 
IF : L([0, 1])2 → L([0, 1]), such that IF = Ôα , for all α ∈ [0, 1], is an w-iv-overlap function for the tuple (≤Pr,

≤Pr , Od
α).

As discussed in the Introduction, our aim is to construct interval-valued overlap functions in which the width of the 
interval output does not surpass a desirable threshold, according to the width-limiting function applied to the widths 
of the interval inputs. We point out that the desirable maximal threshold is determined by the application requirement, 
concerning the extent of the necessity to conserve the information quality of the results, with respect to the information 
quality of the inputs (see Remark 4.6).

In the following, we introduce the definition of such maximal width threshold, a key concept to be applied in two 
of the construction methods presented latter in the paper:

Definition 4.3. Consider a function B : [0, 1]2 → [0, 1] and let IF : L([0, 1])2 → L([0, 1]) be an interval-valued 
function. Then, the function mIF,B : L([0, 1])2 → [0, 1], defined for all X, Y ∈ L([0, 1]) by:

mIF,B(X,Y ) = min{w(IF(X,Y )),w(IF (Y,X)),B(w(X),w(Y )),B(w(Y ),w(X))}, (15)

is called the maximal width threshold for the pair (IF, B). Whenever B and IF are both commutative, then Equation 
(15) can be reduced to:

mIF,B(X,Y ) = min{w(IF(X,Y )),B(w(X),w(Y ))}.

Proposition 4.5. Let mF̂,B : L([0, 1])2 → [0, 1] be the maximal width threshold for the pair (F̂ , B) with F̂ :
L([0, 1])2 → L([0, 1]) being an interval-valued function having an increasing function F : [0, 1]2 → [0, 1] as both 
its representatives. Whenever it holds that: i) both X and Y are degenerate or ii) either X or Y is degenerate and B
is a conjunctive function, then mF̂,B(X, Y) = 0.

Proof. Consider an increasing function F : [0, 1]2 → [0, 1], a conjunctive function B : [0, 1]2 → [0, 1] and the maxi-
mal width threshold mF̂,B : L([0, 1])2 → [0, 1] given by Definition 4.3. Then:

i) Take X, Y ∈ L([0, 1]) such that X = X and Y = Y , that is, both X and Y are degenerate. Then, we have that 
w(F̂ (X, Y)) = F(X, Y) − F(X, Y ) = 0 and, similarly, w(F̂ (Y, X)) = 0. So, it holds that

mF̂,B(X,Y ) = min{0,0,B(w(X),w(Y )),B(w(Y ),w(X))} = 0;
ii) Take X, Y ∈ L([0, 1]) such that X = X, meaning that w(X) = 0. Since B is conjunctive, it holds that 

B(w(X), w(Y)) = B(0, w(Y)) = 0 and, analogously, B(w(Y ), w(X)) = 0. Then, we have that

mF̂,B(X,Y ) = min{w(F̂ (X,Y )),w(F̂ (Y,X)),0,0} = 0.

The same result applies when Y is degenerate. �
Lemma 4.1. Consider a strict overlap function O : [0, 1]2 → [0, 1] and X, Y, Z ∈ L([0, 1]) such that X ≤Pr Y and 
Z > 0. Then, one has that:

a) If X = Y and X < Y , then Kα(Ô(X, Z)) < Kα(Ô(Y, Z)), for all α ∈ (0, 1];
b) If X < Y and X = Y , then Kα(Ô(X, Z)) < Kα(Ô(Y, Z)), for all α ∈ [0, 1);
c) If X < Y and X < Y , then Kα(Ô(X, Z)) < Kα(Ô(Y, Z)), for all α ∈ [0, 1].

Proof. Consider a strict overlap function O : [0, 1]2 → [0, 1] and X, Y, Z ∈ L([0, 1]) such that X <Pr Y . Then, we 
have the following cases:
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a) X = Y and X < Y . As O is strict and Z > 0, we have that O(X, Z) = O(Y , Z) and O(Y , Z) < O(Y , Z). Then, 
Kα(Ô(X, Z)) = (1 − α) · O(X, Z) + α · O(X, Z) < (1 − α) · O(Y , Z) + α · O(Y , Z) = Kα(Ô(Y, Z)), for all 
α ∈ (0, 1];

b) X < Y and X = Y . Again, as O is strict and Z > 0, we have that O(X, Z) < O(Y , Z) and O(Y , Z) = O(Y , Z). 
So, Kα(Ô(X, Z)) = (1 −α) ·O(X, Z) +α ·O(X, Z) < (1 −α) ·O(Y , Z) +α ·O(Y , Z) = Kα(Ô(Y, Z)), for all 
α ∈ [0, 1);

c) X < Y and X < Y . Analogously to the other cases, we have that O(X, Z) < O(Y , Z) and O(Y , Z) < O(Y , Z). 
Thus, Kα(Ô(X, Z)) = (1 − α) · O(X, Z) + α · O(X, Z) < (1 − α) · O(Y , Z) + α · O(Y , Z) = Kα(Ô(Y, Z)), for 
all α ∈ [0, 1]. �

Here, we present the first construction method for w-iv-overlap functions:

Theorem 4.1. Consider a commutative and increasing function B : [0, 1]2 → [0, 1], a strict overlap function O :
[0, 1]2 → [0, 1] and take α ∈ (0, 1] and β ∈ [0, α). Then, the interval-valued function IOwα

B : L([0, 1])2 → L([0, 1])
defined, for all X, Y ∈ L([0, 1]), by

IOwα
B(X,Y ) = [Kα(Ô(X,Y )) − α · mÔ,B(X,Y ),Kα(Ô(X,Y )) + (1 − α) · mÔ,B(X,Y )], (16)

is a w-iv-overlap function for the tuple (≤Pr, ≤α,β, B).

Proof. See Appendix A. �
Proposition 4.6. Let O : [0, 1]2 → [0, 1] be a strict overlap function, B : [0, 1]2 → [0, 1] be an increasing and 
commutative function and IOwα

B : L([0, 1])2 → L([0, 1]) be an w-iv-overlap function for the tuple (≤Pr, ≤α,β, B)

obtained through Theorem 4.1 for any α, β ∈ [0, 1] such that α �= β . Then, for any X, Y ∈ L([0, 1]) one has that 
IOwα

B(X, Y) ⊆ Ô(X, Y).

Proof. It is immediate that Kα(IOwα
B(X, Y)) = Kα(Ô(X, Y)), for any α ∈ [0, 1]. Then, either IOwα

B(X, Y) ⊆
Ô(X, Y) or Ô(X, Y) ⊆ IOwα

B(X, Y). On the other hand, as

w(IOwα
B(X,Y )) = mÔ,B(X,Y ) = min{w(Ô(X,Y )),B(w(X),w(Y ))} ≤ w(Ô(X,Y )),

then IOwα
B(X, Y) ⊆ Ô(X, Y). �

The next result is immediate from Theorem 3.3.

Proposition 4.7. Let O : [0, 1]2 → [0, 1] be an (1, 1)-ultramodular overlap function, A : [0, 1]2 → [0, 1] be an ag-
gregation function such that A ≥ Od and IOwα

A : L([0, 1])2 → L([0, 1]) be the w-iv-overlap function for the tuple 
(≤Pr , ≤α,β, A), obtained by Theorem 4.1 with α, β ∈ [0, 1]. Then, IOwα

A(X, Y) = Ô(X, Y), for all X, Y ∈ L([0, 1]).
Remark 4.2. From Proposition 4.7, when we apply construction method presented in Theorem 4.1 to obtain an w-
iv-overlap function IOwα

A based on an (1, 1)-ultramodular overlap function O with a width-limiting aggregation 
function A, such that A < Od and α, β ∈ [0, 1], the output interval is narrower (with greater quality of information) 
than the one obtained by Ô. Furthermore, from Proposition 4.6, it holds that this interval is contained in the one 
obtained by Ô , which is a desirable property, since Ô is the best interval representation of O , in the sense of [17,31].

The following examples aim to illustrate how the construction method presented in Theorem 4.1 works, comparing 
the results with the ones obtained through o-representable iv-overlap functions.

Example 4.5. Consider an increasing and commutative function B : [0, 1]2 → [0, 1], the product overlap function 
Op : [0, 1]2 → [0, 1], α ∈ (0, 1] and β ∈ [0, α). Then, the interval-valued function IOpwα

B : L([0, 1])2 → L([0, 1])
defined, for all X, Y ∈ L([0, 1]), by

IOpwα
B(X,Y ) = [Kα(Ôp(X,Y )) − α · mÔp,B(X,Y ),Kα(Ôp(X,Y )) + (1 − α) · mÔp,B(X,Y )], (17)

is a w-iv-overlap function for the tuple (≤Pr, ≤α,β, max).
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1) Take B = max, X = [0.2, 0.8] and Y = [0.5, 1]. So, we have that Ôp([0.2, 0.8], [0.5, 1]) = [0.1, 0.8]. It is 
clear that Ôp is not width-limited by max, as w(Ôp([0.2, 0.8], [0.5, 1])) = 0.7 > 0.6 = max(w([0.2, 0.8]),
w([0.5, 1])). Also, by Equation (7), observe that Ôp([0.2, 0.8], [0.5, 1]) can be obtained as:

Ôp([0.2,0.8], [0.5,1]) = [Kα([0.1,0.8]) − α · 0.7,Kα([0.1,0.8]) + (1 − α) · 0.7], (18)

which also results in [0.1, 0.8], for all α ∈ (0, 1].
The maximal width threshold for the pair (Op, max) in this context is given by

mÔp,max([0.2,0.8], [0.5,1]) =
min{w(Ôp([0.2,0.8], [0.5,1])),max(w([0.2,0.8]),w([0.5,1]))} = min{0.7,max{0.6,0.5}} = 0.6.

By Equation (17), we have that

IOpwα
max([0.2,0.8], [0.5,1]) = [Kα([0.1,0.8]) − α · 0.6,Kα([0.1,0.8]) + (1 − α) · 0.6], (19)

and w(IOpwα
max([0.2, 0.8], [0.5, 1])) = 0.6 ≤ max(w([0.2, 0.8]), w([0.5, 1])), which is expected as IOpwα

max is 
width-limited by max.
Notice, from Equations (18) and (19), that Kα(Ôp([0.2, 0.8], [0.5, 1])) = Kα(IOpwα

max([0.2, 0.8], [0.5, 1])), and 
that w(Ôp([0.2, 0.8], [0.5, 1])) = 0.7 > 0.6 = w(IOpwα

max([0.2, 0.8], [0.5, 1])).
Let us assign some values for α to observe what is the resulting interval for IOpwα

max([0.2, 0.8], [0.5, 1]).
a) If α = 0.01, then

IOp0.01
max ([0.2,0.8], [0.5,1]) = [K0.01([0.1,0.8]),K0.01([0.1,0.8]) + 0.6] = [0.107,0.707];

b) If α = 0.5, then

IOp0.5
max([0.2,0.8], [0.5,1]) = [K0.5([0.1,0.8]) − 0.5 · 0.6,K0.5([0.1,0.8]) + 0.5 · 0.6] = [0.15,0.75];

c) If α = 1, then

IOp1
max([0.2,0.8], [0.5,1]) = [K1([0.1,0.8]) − 0.6,K1([0.1,0.8])] = [0.2,0.8].

2) Now, consider B = max and take X = [0.6, 0.9] and Y = [0.8, 0.8]. So, we have that

Ôp([0.6,0.9], [0.8,0.8]) = [0.48,0.72].
Although Ôp is not width-limited by max, in this case it holds that as

w(Ôp([0.6,0.9], [0.8,0.8])) = 0.24 < 0.3 = max(w([0.6,0.9]),w([0.8,0.8])).
Moreover, by Equation (7), Ôp([0.6, 0.9], [0.8, 0.8]) can be written as:

Ôp([0.6,0.9], [0.8,0.8]) = [Kα([0.48,0.72]) − α · 0.24,Kα([0.48,0.72]) + (1 − α) · 0.24] = [0.48,0.72].
The maximal width threshold for the pair (Op, max) in this context is given by

mÔp,max([0.6,0.9], [0.8,0.8]) =
min{w(Ôp([0.6,0.9], [0.8,0.8])),max(w([0.6,0.9]),w([0.8,0.8]))} = min{0.24,max{0.3,0}} = 0.24.

By Equation (17), we have that

IOpwα
max([0.6,0.9], [0.8,0.8]) = [Kα([0.48,0.72])−α ·0.24,Kα([0.48,0.72])+(1−α) ·0.24] = [0.48,0.72].

Thus, Ôp([0.6, 0.9], [0.8, 0.8]) = IOpwα
max([0.6, 0.9], [0.8, 0.8]) = [0.48, 0.72], for all α ∈ (0, 1].

3) Next, take the same X = [0.6, 0.9], and Y = [0.8, 0.8], but now with B = min. So,

mÔp,min([0.6,0.9], [0.8,0.8]) =
min{w(Ôp([0.6,0.9], [0.8,0.8])),min{w([0.6,0.9]),w([0.8,0.8])}} = min{0.24,min{0.3,0}} = 0,

and, therefore,
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IOpα
min([0.6,0.9], [0.8,0.8]) = [Kα([0.48,0.72]),Kα([0.48,0.72])],

for any α ∈ (0, 1]. One can observe that w(IOpα
min([0.6, 0.9], [0.8, 0.8])) = 0, which is expected from Remark 3.5

as Y = [0.8, 0.8] is degenerate and min is a conjunctive function.
4) Finally, take X = [0.2, 0.8] and Y = [0.5, 1], and let B = Opd . Then, the maximal width threshold for the pair 

(Ôp, Opd) is given by

mÔp,Opd ([0.2,0.8], [0.5,1]) =
min{w(Ôp([0.2,0.8], [0.5,1])),Opd(w([0.2,0.8]),w([0.5,1]))} = min{0.7,Opd(0.6,0.5)} = 0.7.

By Equation (17), we have that

IOpwα
Opd ([0.2,0.8], [0.5,1])

= [Kα([0.1,0.8]) − α · 0.7,Kα([0.1,0.8]) + (1 − α) · 0.7]
= Ôp([0.2,0.8], [0.5,1])
= [0.1,0.8],

which is expected, by Proposition 4.7, since Op is an (1, 1)-ultramodular overlap function.

Next, we present the second construction method for w-iv-overlap functions:

Theorem 4.2. Let O : [0, 1]2 → [0, 1] be a strict overlap function, B : [0, 1]2 → [0, 1] be a commutative, increasing 
and conjunctive function and α ∈ (0, 1), β ∈ [0, 1] such that α �= β . Then IOwα

B : L([0, 1])2 → L([0, 1]) defined, for 
all X, Y ∈ L([0, 1]), by

IOwα
B(X,Y ) = [O(Kα(X),Kα(Y )) − αθ,O(Kα(X),Kα(Y )) + (1 − α)θ ],

where

θ = B(B(w(X),w(Y )),B(O(Kα(X),Kα(Y )),1 − O(Kα(X),Kα(Y ))))

is a w-iv-overlap function for the tuple (≤α,β, ≤α,β, B).

Proof. See Appendix B. �
The following result is immediate as a w-iv-overlap function for the tuple (≤α,β, ≤α,β, B) is also a ≤α,β -overlap 

function (Definition 2.11), in the sense of [40].

Corollary 4.1. Let O : [0, 1]2 → [0, 1] be a strict overlap function, B : [0, 1]2 → [0, 1] be a commutative, increasing 
and conjunctive function and α ∈ (0, 1), β ∈ [0, 1] such that α �= β . Then IOwα

B : L([0, 1])2 → L([0, 1]) defined, for 
all X, Y ∈ L([0, 1]), by

IOwα
B(X,Y ) = [O(Kα(X),Kα(Y )) − αθ,O(Kα(X),Kα(Y )) + (1 − α)θ ],

where

θ = B(B(w(X),w(Y )),B(O(Kα(X),Kα(Y )),1 − O(Kα(X),Kα(Y ))))

is a ≤α,β -overlap function.

Example 4.6. Consider a function B : [0, 1]2 → [0, 1] such that B = min and the product overlap function 
Op : [0, 1]2 → [0, 1]. Then, the interval-valued function IOpwα

min : L([0, 1])2 → L([0, 1]) defined, for all X, Y ∈
L([0, 1]), by

IOpwα
min(X,Y ) = [Op(Kα(X),Kα(Y )) − αθ,Op(Kα(X),Kα(Y )) + (1 − α)θ ], (20)
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where

θ = min(min(w(X),w(Y )),min(Op(Kα(X),Kα(Y )),1 − Op(Kα(X),Kα(Y ))))

is a w-iv-overlap function for the tuple (≤α,β, ≤α,β, min), for all α ∈ (0, 1), β ∈ [0, 1] with α �= β .

1) Take X = [0.2, 0.8], and Y = [0.5, 1]. By Equation (20), we have that

IOpwα
min([0.2,0.8], [0.5,1])

= [Op(Kα([0.2,0.8]),Kα([0.5,1])) − αθ,Op(Kα([0.2,0.8]),Kα([0.5,1])) + (1 − α)θ ],
where

θ = min(min(w([0.2,0.8]),w([0.5,1])),
min(Op(Kα([0.2,0.8]),Kα([0.5,1])),1 − Op(Kα([0.2,0.8]),Kα([0.5,1]))))

Let us assign some values for α to observe what is the resulting interval for IOpwα
min([0.2, 0.8], [0.5, 1]).

a) If α = 0.01 then

θ = min(min(w([0.2,0.8]),w([0.5,1])),
min(Op(K0.01([0.2,0.8]),K0.01([0.5,1])),1 − Op(K0.01([0.2,0.8]),K0.01([0.5,1]))))

= min(min(0.6,0.5),min(0.104,0.896)) = 0.104

and

IOpw0
min([0.2,0.8], [0.5,1]) = [0.104 − 0.01 · 0.104,0.104 + 0.99 · 0.104] = [0.103,0.207];

b) If α = 0.5 then

θ = min(min(w([0.2,0.8]),w([0.5,1])),
min(Op(K0.5([0.2,0.8]),K0.5([0.5,1])),1 − Op(K0.5([0.2,0.8]),K0.5([0.5,1]))))

= min(min(0.6,0.5),min(0.375,0.625)) = 0.375

and

IOpw0.5
min([0.2,0.8], [0.5,1]) = [0.375 − 0.5 · 0.375,0.375 + 0.5 · 0.375] = [0.1875,0.5625];

c) If α = 0.99 then

θ = min(min(w([0.2,0.8]),w([0.5,1])),
min(Op(K0.99([0.2,0.8]),K0.99([0.5,1])),1 − Op(K0.99([0.2,0.8]),K0.99([0.5,1]))))

= min(min(0.6,0.5),min(0.79,0.2099)) = 0.2099

and

IOpw0.99
min ([0.2,0.8], [0.5,1]) = [0.79 − 0.99 ∗ 0.2099,0.79 + 0.01 ∗ 2099] = [0.5822,0.7921].

2) Now, take X = [0.6, 0.9], and Y = [0.8, 0.8]. By Equation (20), we have that

IOpwα
min([0.6,0.9], [0.8,0.8])

= [Op(Kα([0.6,0.9]),Kα([0.8,0.8])) − αθ,Op(Kα([0.6,0.9]),Kα([0.8,0.8])) + (1 − α)θ ],
where

θ = min(min(w([0.6,0.9],w([0.8,0.8])),min(Op(Kα([0.6,0.9]),
Kα([0.8,0.8])),1 − Op(Kα([0.6,0.9]),Kα([0.8,0.8])))) = 0.

Thus, IOpwα ([0.6, 0.9], [0.8, 0.8]) = [Kα([0.6, 0.9]) · Kα([0.8, 0.8])], for any α ∈ (0, 1). For example:
min
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a) If α = 0.01 then IOpw0.01
min ([0.6, 0.9], [0.8, 0.8]) = [0.603 · 0.8, 0.603 · 0.8] = [0.4824, 0.4824];

b) If α = 0.5 then IOpw0.5
min([0.6, 0.9], [0.8, 0.8]) = [0.7 · 0.8, 0.7 · 0.8] = [0.56, 0.56];

c) If α = 0.99 then IOpw0.99
min ([0.6, 0.9], [0.8, 0.8]) = [0.897 · 0.8, 0.897 · 0.8] = [0.7176, 0.7176].

Remark 4.3. Considering Theorem 4.2, when B = min we recover the construction method presented in Theorem 2.2, 
meaning that Theorem 4.2 is more general. Also, it is noteworthy that the reason for α ∈ (0, 1) is to assure that the 
construction method produces an w-iv-overlap function. For example, if α = 0, then IOw0

B([0, 1], [0.2, 0.2]) = [0, 0], 
which would contradict (IOw2). Also, one can observe that IOwα

B falls into the conditions of Remark 3.5, meaning 
that if either X or Y is degenerate, then IOwα

B(X, Y) is also degenerate, as shown in Example 4.6, for X = [0.6, 0.9]
and Y = [0.8, 0.8]. Finally, although the w-iv-overlap constructed by the method presented in Theorem 4.2 is width-
limited by the chosen function B , the output interval may not be contained in the best interval representation of the 
chosen overlap function O , as shown in the next example.

Example 4.7. Consider an w-iv-overlap function IOpw0.99
min for the tuple (≤0.99,β , ≤0.99,β , min) obtained via the con-

struction method presented in Theorem 4.2 by taking B = min, O = OP (the product overlap) and β ∈ [0, 1] such 
that β �= 0.99. In the case when X = Y = [0.1, 0.4], we have that

Ôp([0.1,0.4], [0.1,0.4]) = [0.1 · 0.1,0.4 · 0.4] = [0.01,0.16].
From Theorem 4.2, it holds that

θ = min(min(w([0.1,0.4]),w([0.1,0.4])),
min(Op(K0.99([0.1,0.4]),K0.99([0.1,0.4])),1 − Op(K0.99([0.1,0.4]),K0.99([0.1,0.4]))))

= min(min(0.3,0.3),min(Op(0.397,0.397),1 − Op(0.397,0.397))))

= min(0.3,min(0.1576,0.8424)))

= 0.1576.

So,

IOpw0.99
min ([0.1,0.4], [0.1,0.4]) = [Op(K0.99([0.1,0.4]),K0.99([0.1,0.4])) − 0.99 · 0.1576,

Op(K0.99([0.1,0.4]),K0.99([0.1,0.4])) + 0.01 · 0.1576]
= [0.0016,0.1502],

showing that IOpw0.99
min ([0.1, 0.4], [0.1, 0.4]) � Ôp([0.1, 0.4], [0.1, 0.4]).

Before presenting the third construction method for w-iv-overlaps, let us recall some important concepts presented 
in [38]:

Definition 4.4. Let c ∈ [0, 1] and α ∈ [0, 1]. We denote by dα(c) the maximal possible width of an interval Z ∈
L([0, 1]) such that Kα(Z) = c. Moreover, for any X ∈ L([0, 1]), define

λα(X) = w(X)

dα(Kα(X))
,

where we set 0
0 = 1.

Proposition 4.8. For all α ∈ [0, 1] and X ∈ L([0, 1]) it holds that

dα(Kα(X)) = min

{
Kα(X)

α
,

1 − Kα(X)

1 − α

}
,

where we set r
0 = 1, for all r ∈ [0, 1].

Now, we present a version of Theorem 3.16 in [38] in the context of 2-dimensional functions.
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Theorem 4.3. Let α, β ∈ [0, 1], such that, α �= β . Let A1, A2 : [0, 1]2 → [0, 1] be two aggregation functions where A1
is strictly increasing. Then IFα : L([0, 1])2 → L([0, 1]) defined by:

IFα
A1,A2(X,Y ) = R, where,

{
Kα(R) = A1(Kα(X),Kα(Y )),

λα(R) = A2(λα(X),λα(Y )),

for all X, Y ∈ L([0, 1]), is an ≤α,β -increasing iv-aggregation function.

Proof. It follows from Theorem 3.16 in [38]. �
As overlap functions are a class of aggregation functions, the following result is immediate.

Corollary 4.2. Let α, β ∈ [0, 1], such that, α �= β . Let O : [0, 1]2 → [0, 1] be a strict overlap function and A :
[0, 1]2 → [0, 1] be an aggregation function. Then IFα

O,A : L([0, 1])2 → L([0, 1]) defined by:

IFα
O,A(X,Y ) = R, where,

{
Kα(R) = O(Kα(X),Kα(Y )),

λα(R) = A(λα(X),λα(Y )),

for all X, Y ∈ L([0, 1]), is an ≤α,β -increasing iv-aggregation function.

The following result is immediate from Definition 4.4 and Corollary 4.2.

Corollary 4.3. Let α, β ∈ [0, 1] be such that, α �= β . Let O : [0, 1]2 → [0, 1] be a strict overlap function, A : [0, 1]2 →
[0, 1] be an aggregation function and IFα

O,A : L([0, 1])2 → L([0, 1]) be an iv-aggregation function constructed as in 
Corollary 4.2. Then, for all X, Y ∈ L([0, 1]), we have that

w(IFα
O,A(X,Y )) = A(λα(X),λα(Y )) · dα(Kα(IFα

O,A(X,Y ))).

Finally, the third construction method for w-iv-overlaps is obtained as follows:

Theorem 4.4. Consider a strict overlap function O : [0, 1]2 → [0, 1], a commutative aggregation function B :
[0, 1]2 → [0, 1], an interval-valued aggregation function IFα

O,B : L([0, 1])2 → L([0, 1]) defined as in Corollary 4.2, 
the maximal width threshold mIFα

O,B,B : L([0, 1])2 → L([0, 1]) for the pair (IFα
O,B, B), α ∈ (0, 1) and β ∈ [0, 1] with 

α �= β . Then, the interval-valued function IOwα
B : L([0, 1])2 → L([0, 1]) defined by

IOwα
B(X,Y ) = R,

where:

(i) Kα(R) = O(Kα(X), Kα(Y ));
(ii) w(R) = mIFα

O,B,B(X, Y),

is a w-iv-overlap function for the tuple (≤α,β, ≤α,β, B).

Proof. See Appendix C. �
The following result is immediate as a w-iv-overlap function for the tuple (≤α,β, ≤α,β, B) is also a ≤α,β -overlap 

function (Definition 2.11), in the sense of [40].

Corollary 4.4. Consider a strict overlap function O : [0, 1]2 → [0, 1], a commutative aggregation function B :
[0, 1]2 → [0, 1], an interval-valued aggregation function IFα

O,B : L([0, 1])2 → L([0, 1]) defined as in Corollary 4.2, 
the maximal width threshold mIFα

O,B,B : L([0, 1])2 → L([0, 1]) for the pair (IFα
O,B, B), α ∈ (0, 1) and β ∈ [0, 1] with 

α �= β . Then, the interval-valued function IOwα
B : L([0, 1])2 → L([0, 1]) defined by

IOwα
B(X,Y ) = R,
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where:

(i) Kα(R) = O(Kα(X), Kα(Y ));
(ii) w(R) = mIFα

O,B,B(X, Y).

is a ≤α,β -overlap function.

Example 4.8. Consider a commutative aggregation function B : [0, 1]2 → [0, 1] and the product overlap function Op :
[0, 1]2 → [0, 1]. Then, the interval-valued function IOpwα

B : L([0, 1])2 → L([0, 1]) defined, for all X, Y ∈ L([0, 1]), 
by

IOpwα
B(X,Y ) = R,

where:

(i) Kα(R) = Op(Kα(X), Kα(Y ));
(ii) w(R) = mIFα

Op,B,B(X, Y),

is a w-iv-overlap function for the tuple (≤α,β, ≤α,β, B), for all α, β ∈ [0, 1] such that α �= β .

1) Take B = max, X = [0.2, 0.8] and Y = [0.5, 1]. By (i), we have that

Kα(R) = Op(Kα([0.2,0.8]),Kα([0.5,1]))
and

w(R) = mIFα
Op,max,max([0.2,0.8], [0.5,1]) by (ii)

= min{w(IFα
O,max([0.2,0.8], [0.5,1])),max(w([0.2,0.8]),w([0.5,1]))} by Definition 4.3

= min{max(λα([0.2,0.8]), λα([0.5,1])) · dα(Kα(IFα
O,max([0.2,0.8], [0.5,1]))),max(0.6,0.5)}

by Corollary 4.3

= min{max(λα([0.2,0.8]), λα([0.5,1])) · dα(Op(Kα([0.2,0.8]),Kα([0.5,1]))),0.6}.
by Corollary 4.2

Let us assign some values for α to observe what is the resulting interval for IOpwα
max([0.2, 0.8], [0.5, 1]).

a) If α = 0.01 then

K0.01(R) = Op(K0.01([0.2,0.8]),K0.01([0.5,1])) = 0.206 · 0.505 = 0.104,

and

w(R)

= min{max(λ0.01([0.2,0.8]), λ0.01([0.5,1])) · d0.01(Op(Kα([0.2,0.8]),K0.01([0.5,1]))),0.6}
= min

{
max

(
w([0.2,0.8])

d0.01(K0.01([0.2,0.8])) ,
w([0.5,1])

d0.01(K0.01([0.5,1]))
)

· d0.01(0.104),0.6

}
by Definition 4.8

= min

⎧⎨⎩max

⎛⎝ 0.6

min
{

0.206
0.01 , 0.794

0.99

} ,
0.5

min
{

0.505
0.01 , 0.495

0.99

}
⎞⎠ · min

{
0.104

0.01
,

0.896

0.99

}
,0.6

⎫⎬⎭
by Proposition 4.4

= min

{
max

(
0.6

0.802
,

0.5

0.5

)
· 0.905,0.6

}
= min{0.905,0.6} = 0.6.

So, by Equation (7), IOpw0.01
max ([0.2, 0.8], [0.5, 1]) = [0.104 − 0.01 · 0.6, 0.104 + 0.99 · 0.6] = [0.098, 0.698].

In the next cases, we will just present the final results.
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b) If α = 0.5 then

K0.5(R) = Op(K0.5([0.2,0.8]),K0.5([0.5,1])) = 0.5 · 0.75 = 0.375,

and

w(R) = min

{
max

(
0.6

1
,

0.5

0.5

)
· 0.625,0.6

}
= min{0.625,0.6} = 0.6.

Thus, IOpw0.5
max([0.2, 0.8], [0.5, 1]) = [0.375 − 0.5 · 0.6, 0.375 + 0.5 · 0.6] = [0.075, 0.675].

c) If α = 0.99 then

K0.99(R) = Op(K0.99([0.2,0.8]),K0.99([0.5,1])) = 0.794 · 0.995 = 0.79,

and

w(R) = min

{
max

(
0.6

0.802
,

0.5

0.5

)
· 0.798,0.6

}
= min{0.798,0.6} = 0.6.

Therefore, IOpw0.99
max ([0.2, 0.8], [0.5, 1]) = [0.79 − 0.99 · 0.6, 0.79 + 0.01 · 0.6] = [0.196, 0.796].

2) Now, take X = [0.6, 0.9], and Y = [0.8, 0.8]. Then, we have that

Kα(R) = Op(Kα([0.6,0.9]),Kα([0.8,0.8]))
and, by (ii),

w(R) = min{max(λα([0.6,0.9]), λα([0.8,0.8])) · dα(Op(Kα([0.6,0.9]),Kα([0.8,0.8]))),0.3}.
by Corollary 4.2

Once again, let us observe the value of IOpwα
max([0.6, 0.9], [0.8, 0.8]) by varying the value of α:

a) If α = 0.01 then

K0.01(R) = Op(K0.01([0.6,0.9]),K0.01([0.8,0.8])) = 0.603 · 0.8 = 0.4824,

and

w(R) = min

{
max

(
0.3

0.401
,

0

0.202

)
· 0.5228,0.3

}
= min{0.3911,0.3} = 0.3.

So, IOpw0.01
max ([0.6, 0.9], [0.8, 0.8]) = [0.4824 − 0.01 · 0.3, 0.4824 + 0.99 · 0.3] = [0.4794, 0.7794].

b) If α = 0.5 then

K0.5(R) = Op(K0.5([0.6,0.9]),K0.5([0.8,0.8])) = 0.75 · 0.8 = 0.6,

and

w(R) = min

{
max

(
0.3

0.5
,

0

0.4

)
· 0.8,0.3

}
= min{0.48,0.3} = 0.3.

Thus, IOpw0.5
max([0.6, 0.9], [0.8, 0.8]) = [0.6 − 0.5 · 0.3, 0.6 + 0.5 · 0.3] = [0.45, 0.75].

c) If α = 0.99 then

K0.99(R) = Op(K0.99([0.6,0.9]),K0.99([0.8,0.8])) = 0.897 · 0.8 = 0.7176,

and

w(R) = min

{
max

(
0.3

0.906
,

0

0.808

)
· 0.7248,0.3

}
= min{0.24,0.3} = 0.24.

Therefore, IOpw0.99
max ([0.6, 0.9], [0.8, 0.8]) = [0.7176 − 0.99 · 0.24, 0.7176 + 0.01 · 0.24] = [0.48, 0.72].
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Table 2
Comparison between construction methods of a w-iv-overlap IOwα

B
, based on an overlap function O and a width-

limiting function B .

Construction 1 Construction 2 Construction 3

Advantages
IOwα

B
is (≤Pr ,≤α,β )-increasing � � �

IOwα
B

is ≤α,β -increasing � �
For all X,Y ∈ L([0,1]): IOwα

B
(X,Y ) ⊆ Ô(X,Y ) �

Drawbacks
α must be different than 1 ✗ ✗

β < α must hold ✗

B needs to be conjunctive ✗

For all B: (w(X) = 0 or w(Y ) = 0) ⇒ IOwα
B

(X,Y ) = 0 ✗

3) Finally, take X = [0.6, 0.9], and Y = [0.8, 0.8], but consider B = min. Then, we have that

Kα(R) = Op(Kα([0.6,0.9]),Kα([0.8,0.8]))
and, by (ii),

w(R) = min{min(λα([0.6,0.9]), λα([0.8,0.8])) · dα(Op(Kα([0.6,0.9]),Kα([0.8,0.8]))),0} = 0.

So, let us see the different values of IOpwα
min([0.6, 0.9], [0.8, 0.8]) in this case by varying the value of α:

a) If α = 0.01 then IOpw0.01
min ([0.6, 0.9], [0.8, 0.8]) = [0.4824, 0.4824];

b) If α = 0.5 then IOpw0.5
min([0.6, 0.9], [0.8, 0.8]) = [0.56, 0.56];

c) If α = 0.99 then IOpw0.99
min ([0.6, 0.9], [0.8, 0.8]) = [0.7176, 0.7176].

Remark 4.4. The reason why α ∈ (0, 1) is to assure that the construction method results in an w-iv-overlap function, so 
that conditions (IOw2) and (IOw3) are respected. Moreover, one may observe that the construction method presented 
in Theorem 4.4, for a given overlap O , may not produce intervals contained in the best interval representation of O . 
However, it generates an interval-valued function which is ≤α,β-increasing and the chosen width-limiting aggregation 
function B does not need to be conjunctive. In the case when B is conjunctive, as Remark 3.5 states, when either X
or Y is degenerate, then IOwα

B(X, Y) is also degenerate.

Table 2 shows a comparison between the three construction methods for w-iv-overlap functions presented in Theo-
rems 4.1 (Construction 1), 4.2 (Construction 2) and 4.4 (Construction 3), regarding some desirable properties (marked 
with �) and some possible drawbacks (marked with ✗).

On Table 3, we review the results obtained from Examples 4.5 and 4.8, to further compare the constructions 
methods presented on Theorems 4.1 (Construction 1) and 4.4 (Construction 3), all based on the product overlap OP , 
but with different choices of the width-limiting function B and different values of α. As the construction method 
provided by Theorem 4.4 (Construction 3) does not allow for α = 1, we present the values obtained by this method 
for α = 0.99, instead. We omitted the results from Example 4.6 on Table 3, as the construction method based on 
Theorem 4.2 (Construction 2) presented itself as the most restrictive one, by a simple analysis of Table 2.

Remark 4.5. It is noteworthy that our construction methods of w-iv-overlap functions are all based on a core overlap 
function O , but do not necessarily provide a proper interval extension of O . However, such constructed w-iv-overlap 
functions satisfy interval counterparts ((IOw1)-(IOw4) of Definition 4.2) of most of the defining properties of O
((O1)-(O4) of Definition 2.6), being well fitted to measure the overlap of interval data in a similar manner as O
measures overlap of real data.

Remark 4.6. Concerning the application of the presented construction methods of width-limited iv-overlap functions 
in practical problems, a number of choices need to be made by the domain expert:
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Table 3
Comparison of the results obtained in Examples 4.5 and 4.8.

Construction 1 Construction 3 Best interval representation

X = [0.2,0.8]
Y = [0.5,1] IOwp0.01

max = [0.107,0.707] IOwp0.01
max = [0.098,0.698] ÔP (X,Y ) = [0.1,0.8]

A = max
α = 0.01

X = [0.2,0.8]
Y = [0.5,1] IOwp0.5

max = [0.15,0.75] IOwp0.5
max = [0.075,0.675] ÔP (X,Y ) = [0.1,0.8]

A = max
α = 0.5

X = [0.2,0.8]
Y = [0.5,1] IOwp1

max = [0.2,0.8] IOwp0.99
max = [0.196,0.796] ÔP (X,Y ) = [0.1,0.8]

A = max
α = 1

X = [0.6,0.9]
Y = [0.8,0.8] IOwp0.01

max = [0.48,0.72] IOwp0.01
max = [0.4794,0.7794] ÔP (X,Y ) = [0.48,0.72]

A = max
α = 0.01

X = [0.6,0.9]
Y = [0.8,0.8] IOwp0.5

max = [0.48,0.72] IOwp0.5
max = [0.45,0.75] ÔP (X,Y ) = [0.48,0.72]

A = max
α = 0.5

X = [0.6,0.9]
Y = [0.8,0.8] IOwp1

max = [0.48,0.72] IOwp0.99
max = [0.48,0.72] ÔP (X,Y ) = [0.48,0.72]

A = max
α = 1

X = [0.6,0.9]
Y = [0.8,0.8] IOwp0

min = [0.4824,0.4824] IOwp0.01
min = [0.4824,0.4824] ÔP (X,Y ) = [0.48,0.72]

A = min
α = 0.01

X = [0.6,0.9]
Y = [0.8,0.8] IOwp0.5

min = [0.6,0.6] IOwp0.5
min = [0.56,0.56] ÔP (X,Y ) = [0.48,0.72]

A = min
α = 0.5

X = [0.6,0.9]
Y = [0.8,0.8] IOwp1

min = [0.72,0.72] IOwp0.99
min = [0.7176,0.7176] ÔP (X,Y ) = [0.48,0.72]

A = min
α = 1

1. The choice of overlap function O: According to the considered application, some overlap functions produce 
better results than others. For example, in the literature, it is possible to verify that some overlap functions are 
more suitable to be applied in image processing [4] while others present good behaviour in classification problems 
[59,60,21,40].

2. The choice of α and β: It is completely determined by the admissible order ≤α,β that is suitable for the application, 
reflecting the adopted attitude of the expert in front of uncertainty [37]. A pessimist/caution attitude towards the 
uncertainty is considered when one relies that the exact real value that an interval is approximating is much closer 
to its left endpoint than to its right endpoint [38]. The optimist/audacious attitude is defined analogously.
That is, the more pessimist/cautious attitude is needed in the decision process, the closer to zero should be α
stated. On the contrary, the more optimist/audacious attitude is expected in the decision process, the closer to 
one should be α defined. The value of β is only used when the compared Kα points have the same value. In this 
case, β determines the ordering according to the interval widths, that is, the information quality required by the 
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application. For β = 0, the ordering respects the information quality ordering. On the other hand, for β = 1, the 
ordering respects the inclusion set order.

3. The choice of the width-limiting function B: Different applications may require that the aggregation process 
produces interval-valued outputs with more or less uncertainty tolerance, which will inform the definition of B . 
This will be determined by the information quality required by the application. For example, when using B = min
one has a more rigid control of the information quality of the interval result than when B = max. That is, the higher 
the output’s width, the lesser will be the information quality [35].

5. Conclusion

We introduced and developed the concepts of width-limited interval-valued functions and their respective width-
limiting functions, as a way to analyze the effect of the width of the input intervals on the width of the output 
interval, accordingly to the interval-valued function at hand. Furthermore, it was shown a way to obtain the least 
width-limiting function for a given interval-valued function, which informs how much width-propagation one can 
expect for such interval-valued operation. A relaxation of the concept of ultramodularity was presented, in the form of 
(a, b)-ultramodular functions, allowing us to analyze the width-limiting functions of the best interval representation 
of some aggregation functions. Also, we introduced the notion of an interval-valued function that is increasing with 
respect to a pair of partial orders, a more flexible approach for increasingness of interval-valued functions.

These new developed concepts could aid the definition of different interval-valued functions with controlled width 
propagation. As our primary interest was to apply such notions on interval-valued overlap operations, width-limited 
interval-valued overlap functions were defined and studied. Following that, three construction methods for w-iv-
overlap functions were presented, analyzed and compared. As these construction methods are all based on choices 
of overlap functions, width-limiting functions and admissible orders, it was made clear the adaptability of the devel-
oped concepts, as one can obtain an interval-valued overlap operations that best satisfy the restrictions of the context 
regarding the acceptable amount of width propagation and/or the ordering of intervals to be applied.

Thus, the contributions of this work aimed to address the gap in the literature regarding the analysis of the width 
of interval-valued functions, especially interval-valued overlap functions, while providing the initial theoretical tools 
to allow the application of similarly defined width-limited interval-valued functions in practical problems, where the 
increasing uncertainty associated with the widths of the operated intervals may be an obstacle to overcome, in order 
to maintain the information quality. On the near future, we intend to generalize adequately the presented theoretical 
approach to allow for applications in the context of interval-valued fuzzy rule-based classification systems.
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Appendix A. Proof of Theorem 4.1

Proof. Consider a commutative and increasing function B : [0, 1]2 → [0, 1], a strict overlap function O : [0, 1]2 →
[0, 1] and take α ∈ (0, 1], β ∈ [0, α). Observe that, for all X, Y ∈ L([0, 1]):

(i) Kα(IOwα
B(X, Y)) = Kα(Ô(X, Y));

(ii) w(IOwα (X, Y)) = mÔ,B(X, Y) = min{w(Ô(X, Y)), B(w(X), w(Y))}.
B
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So, it is immediate that IOwα
B is well defined. Now, let us verify if IOwα

B respects conditions (IOw1)-(IOw5) of 
Definition 4.2.

(IOw1) Immediate, as O and B are both commutative;

(IOw2) (⇒) Suppose that there are X, Y ∈ L([0, 1]) such that IOwα
B(X, Y) = [0, 0]. Then, we have the following 

cases:

1) mÔ,B(X, Y) = w(Ô(X, Y))

From Equations (2) and (16), it follows that:

[Kα(Ô(X,Y )) − α · w(Ô(X,Y )),Kα(Ô(X,Y )) + (1 − α) · w(Ô(X,Y ))] = [0,0]
⇒ [O(X,Y ) + α · w(Ô(X,Y )) − α · w(Ô(X,Y )),

O(X,Y ) + α · w(Ô(X,Y )) + w(Ô(X,Y )) − α · w(Ô(X,Y ))] = [0,0]
⇒ [O(X,Y ),O(X,Y ) + w(Ô(X,Y ))] = [0,0] ⇒ [O(X,Y ),O(X,Y )] = [0,0]
⇒ Ô(X,Y ) = [0,0] ⇔ X · Y = [0,0].

2) mÔ,B(X, Y) = B(w(X), w(Y))

From Equations (2) and (16), it holds that:

[Kα(Ô(X,Y )) − α · B(w(X),w(Y )),Kα(Ô(X,Y )) + (1 − α) · B(w(X),w(Y ))] = [0,0]
⇒ −α · B(w(X),w(Y )) = (1 − α) · B(w(X),w(Y )) ⇒ B(w(X),w(Y )) = 0

⇒ [Kα(Ô(X,Y )),Kα(Ô(X,Y ))] = [0,0] ⇒ Kα(Ô(X,Y )) = 0

⇒ Ô(X,Y ) = [0,0] ⇔ X · Y = [0,0].

(⇐) Consider X, Y ∈ L([0, 1]) such that X · Y = [0, 0]. Then, it is immediate that Ô(X, Y) = [0, 0] and 
mÔ,B(X, Y) = 0. Furthermore, from Equation (16):

IOwα
B(X,Y ) = [Kα([0,0]) − α · 0,Kα([0,0]) + (1 − α) · 0] = [0,0].

(IOw3) (⇒) Consider X, Y ∈ L([0, 1]) such that IOwα
B(X, Y) = [1, 1]. Then, we have the following cases:

1) mÔ,B(X, Y) = w(Ô(X, Y))

From Equations (2) and (16), it follows that:

[Kα(Ô(X,Y )) − α · w(Ô(X,Y )),Kα(Ô(X,Y )) + (1 − α) · w(Ô(X,Y ))] = [1,1]
⇒ [O(X,Y ) + α · w(Ô(X,Y )) − α · w(Ô(X,Y )),

O(X,Y ) + α · w(Ô(X,Y )) + w(Ô(X,Y )) − α · w(Ô(X,Y ))] = [1,1]
⇒ [O(X,Y ),O(X,Y ) + w(Ô(X,Y ))] = [1,1] ⇒ [O(X,Y ),O(X,Y )] = [1,1]
⇒ Ô(X,Y ) = [1,1] ⇔ X · Y = [1,1].

2) mÔ,B(X, Y) = B(w(X), w(Y))

From Equations (2) and (16), it holds that:

[Kα(Ô(X,Y )) − α · B(w(X),w(Y )),Kα(Ô(X,Y )) + (1 − α) · B(w(X),w(Y ))] = [1,1]
⇒ −α · B(w(X),w(Y )) = (1 − α) · B(w(X),w(Y )) ⇒ B(w(X),w(Y )) = 0

⇒ [Kα(Ô(X,Y )),Kα(Ô(X,Y ))] = [1,1] ⇒ Kα(Ô(X,Y )) = 1

⇒ Ô(X,Y ) = [1,1] ⇔ X · Y = [1,1].
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(⇐) Consider X, Y ∈ L([0, 1]) such that X · Y = [1, 1]. Then, it is immediate that Ô(X, Y) = [1, 1] and 
mÔ,B(X, Y) = 0. Furthermore, from Equation (16):

IOwα
B(X,Y ) = [Kα([1,1]) − α · 0,Kα([1,1]) + (1 − α) · 0] = [1,1].

(IOw4) Consider X, Y, Z ∈ L([0, 1]) such that X ≤Pr Y . Then:

IOwα
B(X,Z) = [Kα(Ô(X,Z)) − α · mÔ,B(X,Z),Kα(Ô(X,Z)) + (1 − α) · mÔ,B(X,Z)], (A.1)

and

IOwα
B(Y,Z) = [Kα(Ô(Y,Z)) − α · mÔ,B(Y,Z),Kα(Ô(Y,Z)) + (1 − α) · mÔ,B(Y,Z)]. (A.2)

Observe that IOwα
B(X, Z) is obtained by constructing an interval around the value of Kα(Ô(X, Z)), and that 

Ô(X, Z) is an o-representable iv-overlap function with O as both its representatives. Then, from Equations (2) and 
(A.1), it follows that:

Kα(IOwα
B(X,Z)) = Kα(Ô(X,Z)), (A.3)

Kβ(IOwα
B(X,Z)) = Kα(Ô(X,Z)) − α · mÔ,B(X,Z) + β · mÔ,B(X,Z).

As β < α, by Lemma 2.1, one can consider β = 0. Thus, we have that:

Kβ(IOwα
B(X,Z)) = Kα(Ô(X,Z)) − α · mÔ,B(X,Z). (A.4)

Analogously, from Equations (2) and (A.2), it follows that:

Kα(IOwα
B(Y,Z)) = Kα(Ô(Y,Z)), (A.5)

Kβ(IOwα
B(Y,Z)) = Kα(Ô(Y,Z)) − α · mÔ,B(Y,Z). (A.6)

Now, we have the following possibilities regarding mÔ,B(X, Z) and mÔ,B(Y, Z) that affects the values of 
IOwα

B(X, Z) and IOwα
B(Y, Z), respectively:

1) mÔ,B(X, Z) = w(Ô(X, Z)) and mÔ,B(Y, Z) = w(Ô(Y, Z))

In this case, we have

IOwα
B(X,Z) = Ô(X,Z) ≤Pr Ô(Y,Z) = IOwα

B(Y,Z),

meaning that IOwα
B(X, Z) ≤α,β IOwα

B(Y, Z).
2) mÔ,B(X, Z) = B(w(X), w(Z)) and mÔ,B(Y, Z) = B(w(Y ), w(Z))

It follows that

IOwα
B(X,Z) = [Kα(Ô(X,Z)) − α · B(w(X),w(Z)),Kα(Ô(X,Z)) + (1 − α) · B(w(X),w(Z))],

and

IOwα
B(Y,Z) = [Kα(Ô(Y,Z)) − α · B(w(Y ),w(Z)),Kα(Ô(Y,Z)) + (1 − α) · B(w(Y ),w(Z))].

Now, let us verify all the cases in which X ≤Pr Y holds:
a) X = Y and X = Y :

We have that X = Y , meaning that

IOwα
B(X,Z) = IOwα

B(Y,Z) ⇒ IOwα
B(X,Z) ≤α,β IOwα

B(Y,Z).

b) X = Y and X < Y :
When Z �= 0, from Lemma 4.1, it holds that Kα(Ô(X, Z)) < Kα(Ô(Y, Z)), since O is a strict overlap function 
and α ∈ (0, 1]. As Kα(IOwα

B(X, Z)) = Kα(Ô(X, Z)) and Kα(IOwα
B(Y, Z)) = Kα(Ô(Y, Z)), we have that

Kα(IOwα
B(X,Z)) < Kα(IOwα

B(Y,Z)) ⇒ IOwα
B(X,Z) ≤α,β IOwα

B(Y,Z).
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If Z = 0 and Z �= 0, by (O2), one has that

Ô(X,Z) = [0,O(X,Z)],
and

Ô(Y,Z) = [0,O(Y ,Z)].
Since X < Y and O is strict, then

Kα(IOwα
B(X,Z)) = Kα(Ô(X,Z)) < Kα(Ô(Y,Z)) = Kα(IOwα

B(Y,Z))

⇒ IOwα
B(X,Z) ≤α,β IOwα

B(Y,Z).

If Z = 0 and Z = 0, then

Ô(X,Z) = IOwα
B(X,Z) = [0,0] = IOwα

B(Y,Z) = Ô(X,Z).

So, we have that IOwα
B(X, Z) ≤α,β IOwα

B(Y, Z), for all X, Y, Z ∈ L([0, 1]), such that X = Y and X < Y .
c) X < Y and X = Y :

When Z �= 0 and α �= 1, from Lemma 4.1, we have that Kα(Ô(X, Z)) < Kα(Ô(Y, Z)). So, it holds that

Kα(IOwα
B(X,Z)) < Kα(IOwα

B(Y,Z)) ⇒ IOwα
B(X,Z) ≤α,β IOwα

B(Y,Z).

When taking Z �= 0 and α = 1, we have that Kα(IOwα
B(X, Z)) = Kα(IOwα

B(Y, Z)). Moreover, from Equa-
tions (A.4) and (A.6):

Kβ(IOw1
B(X,Z)) = O(X,Z) − B(w(X),w(Z))

and

Kβ(IOw1
B(Y,Z)) = O(Y ,Z) − B(w(Y ),w(Z)).

As X < Y and X = Y , we have that w(Y) < w(X), and thus, B(w(Y ), w(Z)) ≤ B(w(X), w(Z)), as B is 
increasing. So,

Kβ(IOw1
B(X,Z)) = O(X,Z) − B(w(X),w(Z)) ≤ O(Y ,Z) − B(w(Y ),w(Z)) = Kβ(IOw1

B(Y,Z)).

Then,

Kα(IOwα
B(X,Z)) = Kα(IOwα

B(Y,Z)) and Kβ(IOwα
B(X,Z)) ≤ Kβ(IOwα

B(Y,Z))

⇒ IOwα
B(X,Z) ≤α,β IOwα

B(Y,Z).

If Z = 0, by (O2), one has that

Ô(X,Z) = [0,O(X,Z)],
and

Ô(Y,Z) = [0,O(Y ,Z)].
Since X = Y , then Kα(IOwα

B(X, Z)) = Kα(IOwα
B(Y, Z)) and, analogous to the previous case when Z �= 0

and α = 1, we have that

Kα(IOwα
B(X,Z)) = Kα(IOwα

B(Y,Z)) and Kβ(IOwα
B(X,Z)) ≤ Kβ(IOwα

B(Y,Z))

⇒ IOwα
B(X,Z) ≤α,β IOwα

B(Y,Z).

So, we have that IOwα (X, Z) ≤α,β IOwα (Y, Z), for all X, Y, Z ∈ L([0, 1]), such that X < Y and X = Y .
B B
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d) X < Y and X < Y :
When Z �= 0, from Lemma 4.1, it holds that Kα(Ô(X, Z)) < Kα(Ô(Y, Z)). So, we have that

Kα(IOwα
B(X,Z)) < Kα(IOwα

B(Y,Z)) ⇒ IOwα
B(X,Z) ≤α,β IOwα

B(Y,Z).

If Z = 0 and Z �= 0, by (O2), one has that

Ô(X,Z) = [0,O(X,Z)],
and

Ô(Y,Z) = [0,O(Y ,Z)].
Since X < Y and O is strict, then

Kα(IOwα
B(X,Z)) = Kα(Ô(X,Z)) < Kα(Ô(Y,Z)) = Kα(IOwα

B(Y,Z))

⇒ IOwα
B(X,Z) ≤α,β IOwα

B(Y,Z).

If Z = 0 and Z = 0, then

Ô(X,Z) = IOwα
B(X,Z) = [0,0] = IOwα

B(Y,Z) = Ô(X,Z).

So, we have that IOwα
B(X, Z) ≤α,β IOwα

B(Y, Z), for all X, Y, Z ∈ L([0, 1]), such that X < Y and X < Y .
Thus, one can conclude that, for all X, Y, Z ∈ L([0, 1]), when mÔ,B(X, Z) = B(w(X), w(Z)) and mÔ,B(Y, Z) =
B(w(Y ), w(Z)), then

X ≤Pr Y ⇒ IOwα
B(X,Z) ≤α,β IOwα

B(Y,Z).

3) mÔ,B(X, Z) = w(Ô(X, Z)) and mÔ,B(Y, Z) = B(w(Y ), w(Z))

It follows that

IOwα
B(X,Z) = Ô(X,Z),

and

IOwα
B(Y,Z) = [Kα(Ô(Y,Z)) − α · B(w(Y ),w(Z)),Kα(Ô(Y,Z)) + (1 − α) · B(w(Y ),w(Z))].

Now, let us verify all the cases in which X ≤Pr Y holds:
a) X = Y and X = Y :

We have that X = Y and

IOwα
B(X,Z) = IOwα

B(Y,Z) ⇒ IOwα
B(X,Z) ≤α,β IOwα

B(Y,Z).

b) X = Y and X < Y :
When Z �= 0, from Lemma 4.1, it holds that Kα(Ô(X, Z)) < Kα(Ô(Y, Z)), since O is a strict overlap function 
and α ∈ (0, 1]. So, as Kα(IOwα

B(X, Z)) = Kα(Ô(X, Z)) and Kα(IOwα
B(Y, Z)) = Kα(Ô(Y, Z)), we have 

that

Kα(IOwα
B(X,Z)) < Kα(IOwα

B(Y,Z)) ⇒ IOwα
B(X,Z) ≤α,β IOwα

B(Y,Z).

If Z = 0 and Z �= 0, by (O2), one has that

Ô(X,Z) = [0,O(X,Z)],
and

Ô(Y,Z) = [0,O(Y ,Z)].
Since X < Y and O is strict, then

Kα(IOwα
B(X,Z)) = Kα(Ô(X,Z)) < Kα(Ô(Y,Z)) = Kα(IOwα

B(Y,Z))

⇒ IOwα
B(X,Z) ≤α,β IOwα

B(Y,Z).
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If Z = 0 and Z = 0, then

Ô(X,Z) = IOwα
B(X,Z) = [0,0] = IOwα

B(Y,Z) = Ô(X,Z).

So, we have that IOwα
B(X, Z) ≤α,β IOwα

B(Y, Z), for all X, Y, Z ∈ L([0, 1]), such that X = Y and X < Y .
c) X < Y and X = Y :

When Z �= 0 and α �= 1, from Lemma 4.1, we have that Kα(Ô(X, Z)) < Kα(Ô(Y, Z)). So, it holds that

Kα(IOwα
B(X,Z)) < Kα(IOwα

B(Y,Z)) ⇒ IOwα
B(X,Z) ≤α,β IOwα

B(Y,Z).

If Z �= 0 and α = 1, we have that Kα(IOwα
B(X, Z)) = Kα(IOwα

B(Y, Z)). Moreover, from Equations (A.4)
and (A.6):

Kβ(IOw1
B(X,Z)) = O(X,Z) − w(Ô(X,Z))

and

Kβ(IOw1
B(Y,Z)) = O(Y ,Z) − B(w(Y ),w(Z)).

As X < Y and X = Y , we have that

B(w(Y ),w(Z)) ≤ w(Ô(Y,Z)) = O(Y ,Z) − O(Y ,Z) ≤ O(X,Z) − O(X,Z) = w(Ô(X,Z)),

as O is increasing. So,

Kβ(IOw1
B(X,Z)) = O(X,Z) − w(Ô(X,Z)) ≤ O(Y ,Z) − B(w(Y ),w(Z)) = Kβ(IOw1

B(Y,Z)).

Then,

Kα(IOwα
B(X,Z)) = Kα(IOwα

B(Y,Z)) and Kβ(IOwα
B(X,Z)) ≤ Kβ(IOwα

B(Y,Z))

⇒ IOwα
B(X,Z) ≤α,β IOwα

B(Y,Z).

When Z = 0, by (O2) we have that

Ô(X,Z) = [0,O(X,Z)],
and

Ô(Y,Z) = [0,O(Y ,Z)].
Since X = Y , then Kα(IOwα

B(X, Z)) = Kα(IOwα
B(Y, Z)) and, analogous to the previous case when Z �= 0

and α = 1, we have that

Kα(IOwα
B(X,Z)) = Kα(IOwα

B(Y,Z)) and Kβ(IOwα
B(X,Z)) ≤ Kβ(IOwα

B(Y,Z))

⇒ IOwα
B(X,Z) ≤α,β IOwα

B(Y,Z).

So, we have that IOwα
B(X, Z) ≤α,β IOwα

B(Y, Z), for all X, Y, Z ∈ L([0, 1]), such that X < Y and X = Y

d) X < Y and X < Y :
If Z �= 0, from Lemma 4.1, it holds that Kα(Ô(X, Z)) < Kα(Ô(Y, Z)). So, we have that

Kα(IOwα
B(X,Z)) < Kα(IOwα

B(Y,Z)) ⇒ IOwα
B(X,Z) ≤α,β IOwα

B(Y,Z).

If Z = 0 and Z �= 0, by (O2), one has that

Ô(X,Z) = [0,O(X,Z)],
and

Ô(Y,Z) = [0,O(Y ,Z)].
Since X < Y and O is strict, then
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Kα(IOwα
B(X,Z)) = Kα(Ô(X,Z)) < Kα(Ô(Y,Z)) = Kα(IOwα

B(Y,Z))

⇒ IOwα
B(X,Z) ≤α,β IOwα

B(Y,Z).

If Z = 0 and Z = 0, then

Ô(X,Z) = IOwα
B(X,Z) = [0,0] = IOwα

B(Y,Z) = Ô(X,Z).

So, we have that IOwα
B(X, Z) ≤α,β IOwα

B(Y, Z), for all X, Y, Z ∈ L([0, 1]), such that X < Y and X < Y .
Thus, one can conclude that, for all X, Y, Z ∈ L([0, 1]), when mÔ,B(X, Z) = w(Ô(X, Z)) and mÔ,B(Y, Z) =
B(w(Y ), w(Z)), then

X ≤Pr Y ⇒ IOwα
B(X,Z) ≤α,β IOwα

B(Y,Z).

4) mÔ,B(X, Z) = B(w(X), w(Z)) and mÔ,B(Y, Z) = w(Ô(Y, Z))

It follows that

IOwα
B(X,Z) = [Kα(Ô(X,Z)) − α · B(w(X),w(Z)),Kα(Ô(X,Z)) + (1 − α) · B(w(X),w(Z))],

and

IOwα
B(Y,Z) = Ô(Y,Z).

Now, let us verify all the cases in which X ≤Pr Y holds:
a) X = Y and X = Y :

We have that X = Y and IOwα
B(X, Z) = IOwα

B(Y, Z) ⇒ IOwα
B(X, Z) ≤α,β IOwα

B(Y, Z).
b) X = Y and X < Y :

When Z �= 0, from Lemma 4.1, it holds that Kα(Ô(X, Z)) < Kα(Ô(Y, Z)), since O is a strict overlap function 
and α ∈ (0, 1]. So, as Kα(IOwα

B(X, Z)) = Kα(Ô(X, Z)) and Kα(IOwα
B(Y, Z)) = Kα(Ô(Y, Z)), we have 

that

Kα(IOwα
B(X,Z)) < Kα(IOwα

B(Y,Z)) ⇒ IOwα
B(X,Z) ≤α,β IOwα

B(Y,Z).

If Z = 0 and Z �= 0, by (O2), one has that

Ô(X,Z) = [0,O(X,Z)],
and

Ô(Y,Z) = [0,O(Y ,Z)].
Since X < Y and O is strict, then

Kα(IOwα
B(X,Z)) = Kα(Ô(X,Z)) < Kα(Ô(Y,Z)) = Kα(IOwα

B(Y,Z))

⇒ IOwα
B(X,Z) ≤α,β IOwα

B(Y,Z).

If Z = 0 and Z = 0, then

Ô(X,Z) = IOwα
B(X,Z) = [0,0] = IOwα

B(Y,Z) = Ô(X,Z).

So, we have that IOwα
B(X, Z) ≤α,β IOwα

B(Y, Z), for all X, Y, Z ∈ L([0, 1]), such that X = Y and X < Y .
c) X < Y and X = Y :

When Z �= 0 and α �= 1, from Lemma 4.1, we have that Kα(Ô(X, Z)) < Kα(Ô(Y, Z)). So, it holds that

Kα(IOwα
B(X,Z)) < Kα(IOwα

B(Y,Z)) ⇒ IOwα
B(X,Z) ≤α,β IOwα

B(Y,Z).

If Z �= 0 and α = 1, we have that Kα(IOwα
B(X, Z)) = Kα(IOwα

B(Y, Z)). Moreover, from Equations (A.4)
and (A.6):

Kβ(IOw1
B(X,Z)) = O(X,Z) − B(w(X),w(Z))

and
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Kβ(IOw1
B(Y,Z)) = O(Y ,Z) − w(Ô(Y,Z)).

As X < Y and X = Y , we have that w(Y) < w(X), and thus,

w(Ô(Y,Z)) ≤ B(w(Y ),w(Z)) ≤ B(w(X),w(Z)),

as B is increasing. So,

Kβ(IOw1
B(X,Z)) = O(X,Z) − w(Ô(X,Z)) ≤ O(Y ,Z) − B(w(Y ),w(Z)) = Kβ(IOw1

B(Y,Z)).

Then,

Kα(IOwα
B(X,Z)) = Kα(IOwα

B(Y,Z)) and Kβ(IOwα
B(X,Z)) ≤ Kβ(IOwα

B(Y,Z))

⇒ IOwα
B(X,Z) ≤α,β IOwα

B(Y,Z).

So, we have that IOwα
B(X, Z) ≤α,β IOwα

B(Y, Z), for all X, Y, Z ∈ L([0, 1]), such that X < Y and X = Y .
d) X < Y and X < Y :

When Z �= 0, from Lemma 4.1, it holds that Kα(Ô(X, Z)) < Kα(Ô(Y, Z)). So, we have that

Kα(IOwα
B(X,Z)) < Kα(IOwα

B(Y,Z)) ⇒ IOwα
B(X,Z) ≤α,β IOwα

B(Y,Z).

If Z = 0 and Z �= 0, by (O2), one has that

Ô(X,Z) = [0,O(X,Z)],
and

Ô(Y,Z) = [0,O(Y ,Z)].
Since X < Y and O is strict, then

Kα(IOwα
B(X,Z)) = Kα(Ô(X,Z)) < Kα(Ô(Y,Z)) = Kα(IOwα

B(Y,Z))

⇒ IOwα
B(X,Z) ≤α,β IOwα

B(Y,Z).

If Z = 0 and Z = 0, then

Ô(X,Z) = IOwα
B(X,Z) = [0,0] = IOwα

B(Y,Z) = Ô(X,Z).

So, we have that IOwα
B(X, Z) ≤α,β IOwα

B(Y, Z), for all X, Y, Z ∈ L([0, 1]), such that X < Y and X < Y .
Thus, one can conclude that, for all X, Y, Z ∈ L([0, 1]), when mÔ,B(X, Z) = B(w(X), w(Z)) and mÔ,B(Y, Z) =
w(Ô(Y, Z)), then

X ≤Pr Y ⇒ IOwα
B(X,Z) ≤α,β IOwα

B(Y,Z).

As verified for all possible scenarios, it holds that IOwα
B is (≤Pr , ≤α,β)-increasing, for all α, β ∈ [0, 1] such that 

α �= β .

(IOw5)

w(IOwα
B(X,Y )) = Kα(Ô(X,Y )) + (1 − α) · mÔ,B(X,Y ) − (Kα(Ô(X,Y )) − α · mÔ,B(X,Y ))

= mÔ,B(X,Y )

= min{w(Ô(X,Y )),B(w(X),w(Y ))}
≤ B(w(X),w(Y )).

Then, it holds that IOwα is width-limited by B for all α ∈ [0, 1]. �
B
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Appendix B. Proof of Theorem 4.2

Proof. Consider a commutative, increasing and conjunctive function B : [0, 1]2 → [0, 1], a strict overlap function 
O : [0, 1]2 → [0, 1] and let α ∈ (0, 1), β ∈ [0, 1] such that α �= β . Observe that, for all X, Y ∈ L([0, 1]):

(i) Kα(IOwα
B(X, Y)) = O(Kα(X), Kα(Y ));

(ii) w(IOwα
B(X, Y)) = θ = B(B(w(X), w(Y)), B(O(Kα(X), Kα(Y )), 1 − O(Kα(X), Kα(Y )))).

So, it is clear that IOwα
B is well defined. Now, let us verify if IOwα

B respects conditions (IOw1)-(IOw5) from 
Definition 4.2.

(IOw1) Immediate, as O and B are commutative;

(IOw2) (⇒) Take X, Y ∈ L([0, 1]) and suppose that IOwα
B(X, Y) = [0, 0]. Then, by (i), we have that

Kα(IOwα
B(X,Y )) = Kα([0,0]) = 0 = O(Kα(X),Kα(Y )),

since α ∈ (0, 1). Thus, by condition (O2), either Kα(X) = 0 or Kα(Y ) = 0, and, therefore, X · Y = [0, 0];
(⇐) Consider X, Y ∈ L([0, 1]) such that X · Y = [0, 0]. So, Kα(X) · Kα(Y ) = 0, since α ∈ (0, 1). Then, by (i) and

(O2), one has that Kα(IOwα
B(X, Y)) = O(Kα(X), Kα(Y )) = 0, meaning that IOwα

B(X, Y) = [0, 0];

(IOw3) (⇒) Take X, Y ∈ L([0, 1]) such that IOwα
B(X, Y) = [1, 1]. Then, by (i), one has that

Kα(IOwα
B(X,Y )) = Kα([1,1]) = 1 = O(Kα(X),Kα(Y )).

By (O3), Kα(X) · Kα(Y ) = 1, since α ∈ (0, 1), meaning that X · Y = [1, 1];
(⇐) Consider X, Y ∈ L([0, 1]) such that X · Y = [1, 1]. So, Kα(X) · Kα(Y ) = 1, since α ∈ (0, 1). Then, by (i) and

(O3), one has that Kα(IOwα
B(X, Y)) = O(Kα(X), Kα(Y )) = 1, meaning that IOwα

B(X, Y) = [1, 1];

(IOw4) Consider X, Y, Z ∈ L([0, 1]) such that X ≤α,β Y with α ∈ (0, 1), β ∈ [0, 1], α �= β . By Lemma 2.1, it is 
sufficient to consider the cases β = 0 and β = 1. First, for X <α,β Y and β = 0 we have the following possibilities:

1) X <α,0 Y and Kα(Z) = 0. Then, O(Kα(X), Kα(Z)) = 0 = O(Kα(Y ), Kα(Z)), and, therefore, since α �= 0, by
(i) it holds that IOwα

B(X, Z) = IOwα
B(Y, Z) = [0, 0];

2) X <α,0 Y and Kα(Z) > 0. Here, we have the following possibilities:
a) Kα(X) < Kα(Y ). Since O is strict, by (O4), one has that O(Kα(X), Kα(Z)) < O(Kα(Y ), Kα(Z)), and, thus, 

by (i) it follows that IOwα
B(X, Z) <α,0 IOwα

B(Y, Z);
b) Kα(X) = Kα(Y ) and Kβ=0(X) < Kβ=0(Y ). Then, X < Y ≤ Y < X, meaning that w(X) > w(Y). So, by (i),

Kα(IOwα
B(X,Z)) = O(Kα(X),Kα(Z)) = O(Kα(Y ),Kα(Z)) = Kα(IOwα

B(Y,Z)),

and

Kβ=0(IOwα
B(X,Z)) = Kα(IOwα

B(X,Z)) − α · w(IOwα
B(X,Z)) by Equation (8)

= Kα(IOwα
B(X,Z)) − α · B(B(w(X),w(Z)),B(O(Kα(X),Kα(Z)),1 − O(Kα(X),Kα(Z))))

by (ii)

≤ Kα(IOwα
B(Y,Z)) − α · B(B(w(Y ),w(Z)),B(O(Kα(Y ),Kα(Z)),1 − O(Kα(Y ),Kα(Z))))

= Kα(IOwα
B(Y,Z)) − α · w(IOwα

B(Y,Z))

= Kβ=0(IOwα
B(Y,Z)),

as B is increasing. Therefore, IOwα
B(X, Z) ≤α,0 IOwα

B(Y, Z).
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When X = Y , it is immediate that IOwα
B(X, Z) = IOwα

B(Y, Z). Then, for β = 0 it holds that

IOwα
B(X,Z) ≤α,0 IOwα

B(Y,Z).

The proof for β = 1 can be obtained analogously.

(IOw5) By (ii), since B is conjunctive, it holds that

w(IOwα
B(X,Y )) = θ

= B(B(w(Y ),w(Z)),B(O(Kα(Y ),Kα(Z)),1 − O(Kα(Y ) ≤ B(w(X),w(Y )).

Then, it holds that IOwα
B is width-limited by B for all α ∈ (0, 1). �

Appendix C. Proof of Theorem 4.4

Proof. Consider a commutative aggregation function B : [0, 1]2 → [0, 1], a strict overlap function O : [0, 1]2 →
[0, 1] and let α ∈ (0, 1) and β ∈ [0, 1] such that α �= β . Observe that it is immediate that IOwα

B is well defined. In 
fact, considering that IOwα

B(X, Y) = R, one has that w(R) = mIFα
O,B,B(X, Y) which, by Definition 4.3, is uniquely 

defined for the pair (IFα
O,B, B). As Kα(R) = O(Kα(X), Kα(Y )), then, it follows that R = Kα(R) − α · w(R) and 

R = Kα(R) + (1 − α) · w(R).
Now, let us verify if IOwα

B respects conditions (IOw1)-(IOw5) from Definition 4.2.

(IOw1) Observe that, since O and B are commutative, then IFα
O,B is commutative, as well as mIFα

O,B,B . Then, it 
is immediate that IOwα

B is commutative;

(IOw2) (⇒) Take X, Y ∈ L([0, 1]) and suppose that IOwα
B(X, Y) = R = [0, 0]. Then, by (i), we have that

Kα(R) = Kα([0,0]) = 0 = O(Kα(X),Kα(Y )),

since α ∈ (0, 1). Thus, by condition (O2), either Kα(X) = 0 or Kα(Y ) = 0, and, therefore, X · Y = [0, 0];
(⇐) Consider X, Y ∈ L([0, 1]) such that X · Y = [0, 0]. So, Kα(X) · Kα(Y ) = 0, since α ∈ (0, 1). Then, by (i) and

(O2), one has that

Kα(R) = O(Kα(X),Kα(Y )) = 0,

meaning that IOwα
B(X, Y) = R = [0, 0];

(IOw3) (⇒) Take X, Y ∈ L([0, 1]) such that IOwα
B(X, Y) = R = [1, 1]. Then, by (i), one has that

Kα(R) = Kα([1,1]) = 1 = O(Kα(X),Kα(Y )).

By (O3), Kα(X) · Kα(Y ) = 1, since α ∈ (0, 1), meaning that X · Y = [1, 1];
(⇐) Consider X, Y ∈ L([0, 1]) such that X · Y = [1, 1]. So, Kα(X) · Kα(Y ) = 1, since α ∈ (0, 1). Then, by (i) and

(O3), one has that

Kα(R) = O(Kα(X),Kα(Y )) = 1,

meaning that IOwα
B(X, Y) = R = [1, 1];

(IOw4) Consider X, Y, Z ∈ L([0, 1]) such that X ≤α,β Y with α ∈ (0, 1), β ∈ [0, 1], such that α �= β . By 
Lemma 2.1, it is sufficient to consider the cases β = 0 and β = 1. First, for X <α,β Y and β = 0 we have the following 
possibilities:

1) X <α,0 Y and Kα(Z) = 0. Then, O(Kα(X), Kα(Z)) = 0 = O(Kα(Y ), Kα(Z)), and, therefore, since α �= 0, by
(i) it holds that IOwα (X, Z) = [0, 0] = IOwα (Y, Z);
B B

165



T. da Cruz Asmus, G. Pereira Dimuro, B. Bedregal et al. Fuzzy Sets and Systems 441 (2022) 130–168
2) X <α,0 Y and Kα(Z) > 0. Here, we have the following possibilities:
a) Kα(X) < Kα(Y ). Since O is strict, by (O4), one has that O(Kα(X), Kα(Z)) < O(Kα(Y ), Kα(Z)), and, thus, 

by (i) it follows that IOwα
B(X, Z) <α,0 IOwα

B(Y, Z);
b) Kα(X) = Kα(Y ) and Kβ=0(X) < Kβ=0(Y ). Then, X < Y ≤ Y < X, meaning that w(X) > w(Y) and, there-

fore, by Definition 4.4, λα(X) > λα(Y ). So, by (i),

Kα(IOwα
B(X,Z)) = O(Kα(X),Kα(Z)) = O(Kα(Y ),Kα(Z)) = Kα(IOwα

B(Y,Z)),

and

Kβ=0(IOwα
B(X,Z)) = Kα(IOwα

B(X,Z)) − α · w(IOwα
B(X,Z)) by Equation (8)

= Kα(IOwα
B(X,Z)) − α · mIFα

O,B,B(X,Z) by (ii)

= Kα(IOwα
B(X,Z)) − α · min{B(w(X),w(Z)),B(λα(X),λα(Z)) · dα(Kα(IOwα

B(X,Z)))}
by Definition 4.3

≤ Kα(IOwα
B(Y,Z)) − α · min{B(w(Y ),w(Z)),B(λα(Y ),λα(Z)) · dα(Kα(IOwα

B(Y,Z)))}
= Kα(IOwα

B(Y,Z)) − α · mIFα
O,B,B(Y,Z) by Definition 4.3

= Kβ=0(IOwα
B(Y,Z)),

as B is increasing. Therefore, IOwα
B(X, Z) ≤α,0 IOwα

B(Y, Z).

When X = Y , it is immediate that IOwα
B(X, Z) = IOwα

B(Y, Z). Then, for β = 0 it holds that

IOwα
B(X,Z) ≤α,0 IOwα

B(Y,Z).

The proof for β = 1 can be obtained analogously.

(IOw5) By (ii) and Definition 4.3, it holds that

w(IOwα
B(X,Y )) = mIFα

O,B,B(X,Y )

= min{B(w(X),w(Y )),B(λα(X),λα(Y )) · dα(Kα(R))}
≤ B(w(X),w(Y )).

Then, it holds that IOwα
B is width-limited by B for all α ∈ (0, 1). �
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