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Abstract: The goal of this paper is to introduce two new concepts ∗-fuzzy premeasure and outer
∗-fuzzy measure, and to further prove some properties, such as Caratheodory’s Theorem, as well as
the unique extension of ∗-fuzzy premeasure. This theorem is remarkable for it allows one to construct
a ∗-fuzzy measure by first defining it on a small algebra of sets, where its ∗-additivity could be easy
to verify, and then this theorem guarantees its extension to a sigma-algebra.
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1. Introduction

The notion of ∗-fuzzy measure (∗-FM) and its properties were defined and investigated
in [1]; this version of fuzzy measure has a dynamic situation and can model new events,
such as the COVID-19 disease, explained in [2]. Further, some results of ∗-FM are discussed
in [3]. In fact, ∗-FM is a dynamic generalization of the classical measure theory. This
generalization is obtained by replacing the non-negative real range and the additivity
of classical measures with fuzzy sets and triangular norms. Our development of the
fuzzy measure theory has been motivated by defining a new additivity property using
triangular norms. Here, the classical additivity of measures based on the addition of real
additivity is replaced by triangular norms-based aggregation. Our approach is related to
the idea of fuzzy metric spaces [4–6]. Though our paper is purely theoretical, we expect
several applications of our results in domains considering the development in time, e.g., in
quantum physics or in color image filtering. Based on the obtained work, we are going to
define two new notions ∗-fuzzy premeasure and outer ∗-fuzzy measure, and study their
properties and the relationship between them.

2. ∗-Fuzzy Measure

We begin by giving some background and related results from ∗-fuzzy measure theory
that we will use in this article. Let X 6= ∅ andM be a σ-algebra of subsets of X. Further,
we use I = [0, 1] and J = [0,+∞).

Definition 1 ([7,8]). A topological monoid

∗ : I2 −→ I,

such that
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(i) ℘ ∗ ℘′ = ℘′ ∗ ℘, for all ℘,℘′ ∈ I,

(ii) ℘ ∗ (℘′ ∗ ℘q) = (℘ ∗ ℘′) ∗ ℘q, for all ℘,℘′,℘q ∈ I,

(iii) ℘ ∗ 1 = ℘, for all ℘ ∈ I,

(iv) If ℘1 ≤ ℘2 and ℘′1 ≤ ℘′2 then ℘1 ∗ ℘′1 ≤ ℘2 ∗ ℘′2, for all ℘1℘2,℘′1,℘′2 ∈ I,

is said to be a ct-norm.

Example 1. Now, we consider important ct-norms.
(1) γ ∗P γ′ = γγ′;
(2) γ ∗M γ′ = min{γ, γ′};
(3) γ ∗L γ′ = max{γ + γ′ − 1, 0};
(4)

γ ∗H γ′ =

 0, if γ = γ′ = 0,
1

1
γ +

1
γ′ −1

, otherwise,

(the Hamacher ct-norm).

When a ct-norm possesses an Archimedean property (γ ∗ γ < γ for every γ ∈ I0 =
(0, 1)), we say that ∗ is a cat-norm. For example, ∗H , ∗L, ∗P are cat-norms but ∗M is not (for
more details about the cat-norm we refer to [9]).

Definition 2 ([1–3]). Consider the set X, σ-algebraM ⊆ P(X), and cat-norm ∗. We define a
∗-fuzzy measure (∗-FM) µ fromM× J to I, in which

(1) µ maps (∅, t) to 1, for each t ∈ J;
(2) µ(υ, .) is left-continuous, increasing and µ(υ, t) tends to 1 when t tends to +∞ for every

υ ∈ M;
(3) if υ` ∈ M, in which υ` ∩ υk = ∅ for ` 6= k and `, k = 1, 2, · · · , then

µ

( +∞⋃
`=1

υ`, t
)
= ∗+∞

`=1µ(υ`, t), for every t ∈ J.

It is clear that Item (3) of Definition 2 is a countable ∗-additivity. Further, a ∗-FM is
finitely ∗-additive if

µ

( n⋃
`=1

υ`, t
)
= ∗n

`=1µ(υ`, t), f or every t ∈ J,

whenever υ1, · · · , υn ∈ M and υ` ∩ υk = ∅, ` 6= k.

Observe that if ∗ is a strict cat (i.e., ∗ is strictly increasing on (0, 1]2), then it is additively
generated by a decreasing bijection f : I → [0,+∞], where ℘ ∗ ℘′ = f−1( f (℘) + f (℘′)).
Then, for any ∗–FM µ, and any t ∈ J, the set function mt : M → J given by f (µ(., t)) is
a sigma-additive measure. Vice-versa, for any decreasing surjection g : J → J, and any
sigma-additive measure m, define µ(ν, t) = f−1(g(t).m(ν)) for ν ∈ M, which implies that
µ is a ∗-FM.
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Example 2. Consider the measure space (X,M, m), and classical σ-additive measure m :M→
[0,+∞]. Put f (℘) = 1−℘

℘ for each ℘ ∈ I and g(t) = 1
t for every t > 0. Then ∗ = ∗H because

f−1(ξ) = 1
1+ξ for every ξ ∈ [0,+∞], and hence

℘ ∗ ℘′ = f−1
(

1− ℘

℘
+

1− ℘′

℘′

)
=

1

1 + 1−℘
℘ + 1−℘′

℘′

=
1

1
℘ + 1

℘′ − 1
= ℘ ∗H ℘′.

Further,

µ(υ, t) = f−1(g(t).m(ν)) = f−1
(

m(ν)

t

)
=

t
t + m(υ)

,

for all t ∈ J, and µ is a ∗-FM.

A ∗-fuzzy measure space (abbreviated to ∗-FMS) is denoted by the tetrad (X,M, µ, ∗).
According to Definition 2, µ(υ, .) is a left-continuous and increasing map (it is a left-
continuous distance function in the sense of Rodabaugh and Klement’s earlier works).
Therefore, µ(υ, .) is a fuzzy number. We claim µ is monotone because µ(υ, .) is a decompos-
able measure with ∗, and ∗-decomposability implies the monotonicity [10]. From [11,12],
we can extend µ : υ× (0,+∞) → I to µ : υ× (−∞,+∞) → I with µ(υ, t) = 0 for every
t ≤ 0. Thus, µ(υ, .) from R to I is a special L-fuzzy number [13–15] or is a distance func-
tion [8]. The fuzzy measure theory was initially introduced by Sugeno et al. in [16,17].
With new approaches, we have further defined ∗-FMS from fuzzy metric spaces and fuzzy
normed spaces [4–6,10,13,18–34]. There are two classical references [35,36] in this area.

Definition 3. Let the quadriple (X,M, µ, ∗) be a ∗-FMS. Positivity of µ(X, t) for positive number

t implies that µ is a bounded ∗–FM. Furthermore, when X =
+∞⋃
`=1

υ`, for υ` ∈ M, ` = 1, 2, . . . and

µ(υ`, t) > 0, we get µ as σ-bounded. If µ is a bounded ∗-FM we say the quadriple (X,M, µ, ∗) is a
bounded ∗-FMS. On the other hand, σ-boundedness ∗-FM, µ shows σ-boundedness of (X,M, µ, ∗).
Let t > 0. If for every υ ∈ M with µ(υ, t) = 0, there exists a set ϑ ∈ M such that ϑ ⊆ υ and
0 < µ(ϑ, t) < 1, we call µ a ∗-fuzzy pseudo bounded measure.

Definition 4. Let the quadriple (X,M, µ, ∗) be a ∗-FMS. If υ ∈ M and µ(υ, t) = 1, for each
t > 0, then we say υ is a ∗-fuzzy null set.

The notion of a ∗-fuzzy null set should not be confused with the empty set as defined
in set theory. Although for the empty set ∅ we have µ(∅, t) = 1, for each t > 0. Consider
Example 2, for any non-empty countable set ν of real numbers, we have

µ(ν, t) =
t

t + m(ν)

=
t

t + 0
= 1,

for each t > 0.

Definition 5. A complete ∗-FMS is a ∗-FMS that contains all subsets of null sets.

Note that a ∗-FMS (X,M, µ, ∗) is complete if and only if v ⊂ u ∈ M and µ(u, t) = 1
for each t > 0 implies that v ∈ M.
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Theorem 1 ([1]). Let the quadriple (X,M, µ, ∗) be a ∗-FMS. Let

Nα = {Nγ ∈ M : µ(Nγ, t) = 1, for every t > 0},

and
M = {υ ∪ ϑ : υ ∈ Mand ϑ ⊂ Nγ for some Nγ ∈ Nα},

such that it is not necessary ϑ ∈ M. Then, it is clear thatM is a σ-algebra and there exists a
unique extension µ of µ.

3. Outer ∗-Fuzzy Measure

Definition 6. Consider X 6= ∅. A fuzzy set µ� : P(X)× (0,+∞)→ I that satisfies the following
for every t > 0,

(i) µ�(∅, t) = 1,
(ii) If υ ⊆ ϑ then µ�(ϑ, t) ≤ µ�(υ, t),

(iii) µ�
(

+∞⋃
`=1

υ`, t
)
≥ ∗+∞

`=1µ�(υ`, t),

is called an outer ∗-FM.

For example, let X = R and define µ� : P(R)× (0,+∞)→ I by

µ�(v, t) =

{
1, if v = ∅,
t

t+1 , if v 6= ∅,

for each t > 0 and let ∗ = ∗H . Then, µ� is an outer ∗-FM.

Definition 7. Let ξ ⊆ P(X), we say ξ is an elementary family of subsets of X, if,

(i) ∅ ∈ ξ;
(ii) If υ, ϑ ∈ ξ then υ ∩ ϑ ∈ ξ;
(iii) If υ ∈ ξ then υc is a finite disjoint union of members of ξ.

Now, we present a fact concerning elementary families [35].

Theorem 2. Let ξ be an elementary family, then

A =

{ n⋃
`=1

υ` : υ` ∩ υk = ∅, ` 6= k, υ` ∈ ξ

}
is an algebra.

We obtain outer ∗-FMs by a family ξ of elementary sets as follows:

Theorem 3. Let ξ ⊆ P(X) such that X, ∅ ∈ ξ, and ρ : ξ × J → I satisfy ρ(∅, t) = 1 for every
t > 0. We define for υ ⊂ X,

µ�(υ, t) = sup
{
∗+∞
`=1 ρ($`, t) : $` ∈ ξ and υ ⊂

+∞⋃
`=1

$`

}
. (1)

Therefore, µ� is an outer ∗-FM.

Proof. For any υ ⊂ X we can find {$`}+∞
1 ⊆ ξ such that υ ⊂

+∞⋃
`=1

$` (take $` = X for all `)

so the definition of µ� makes sense. Now, we show the outer ∗-fuzzy measure properties.

(i) It is clear µ�(∅, t) = 1.
(ii) If υ ⊂ ϑ then µ�(ϑ, t) ≤ µ�(υ, t).
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(iii) To show property (iii) of Definition 6, we apply induction.

Let {υ1, υ2} ⊆ P(X) and 0 < ε < 1. Since

µ�(υ1, t) = sup
{
∗+∞
`=1 ρ($`, t) : $` ∈ ξ , υ1 ⊂

+∞⋃
`=1

$`

}
,

we have
µ�(υ1, t)− ε < ∗+∞

`=1ρ($`, t). (2)

Similarly, we have

µ�(υ2, t) ≤ ∗+∞
k=1ρ($′k, t),

+∞⋃
k=1

$′k ⊆ υ2. (3)

From (2) and (3) we get

µ�(υ1, t) ∗ µ�(υ2, t) ≤ ∗+∞
j=1ρ($

′′
j , t), (4)

where $
′′
j = $` or $′k.

On the other hand, ∪$
′′
j ⊆ υ1 ∪ υ2, $

′′
j ∈ ξ so

µ�(υ1 ∪ υ2, t) ≥ ∗+∞
j=1ρ($

′′
j , t). (5)

From (4) and (5) we can conclude that

µ�(υ1 ∪ υ2, t) ≥ µ�(υ1, t) ∗ µ�(υ2, t),

and the proof is complete.

Note that υ ⊂ X is a µ�-∗-fuzzy measurable set if µ� is an outer ∗-FM on X and

µ�($, t) = µ�($ ∩ υ, t) ∗ µ�($ ∩ υc, t) for all $ ⊂ X.

Clearly, the inequality µ�($, t) ≥ µ�($ ∩ υ, t) ∗ µ�($ ∩ υc, t) holds for any υ and $.
To prove υ is µ�-∗-fuzzy measurable, it suffices to prove the converse of the above inequality.
If µ�($, t) = 0, we claim υ is µ�-∗-fuzzy measurable if and only if

µ�($, t) ≤ µ�($ ∩ υ, t) ∗ µ�($ ∩ υc, t), for all $ ⊂ X such that µ�($, t) > 0.

Theorem 4 (Caratheodory’s Theorem). Consider outer ∗–FM µ� on X, then the family M
consisting of all µ�-∗-fuzzy measurable sets is a σ-algebra, and the restriction of µ∗|M is a complete
∗–FM.

Proof. Clearly,M is closed under the complement operation. Furthermore, if υ, ϑ ∈ M
and $ ⊂ X we get

µ�($, t) = µ�($ ∩ υ, t) ∗ µ�($ ∩ υc, t)

= µ�($ ∩ υ ∩ ϑ, t) ∗ µ�($ ∩ υ ∩ ϑc, t)

∗ µ�($ ∩ υc ∩ ϑ, t) ∗ µ�($ ∩ υc ∩ ϑc, t). (6)

Since (υ ∪ ϑ) = (υ ∩ ϑ) ∪ (υ ∩ ϑc) ∪ (υc ∩ ϑ) and sup-additivity, we derive

µ�($ ∩ ((υ ∩ ϑ) ∪ (υ ∩ ϑc) ∪ (υc ∩ ϑ)), t) ≥ µ�($ ∩ υ ∩ ϑ, t) ∗ µ�($ ∩ υ ∩ ϑc, t) ∗ µ�($ ∩ υc ∩ ϑ, t).
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Using (6) implies that

µ�($, t) ≤ µ�($ ∩ (υ ∪ ϑ), t) ∗ µ�($ ∩ (υ ∪ ϑ)c, t).

It follows that υ ∪ ϑ ∈ M, i.e., M is an algebra. Moreover, when υ, ϑ ∈ M and
υ ∩ ϑ = ∅, we have

µ�(υ ∪ ϑ, t) = µ�((υ ∪ ϑ) ∩ υ, t) ∗ µ�((υ ∪ ϑ) ∩ υc, t) = µ�(υ, t) ∗ µ�(ϑ, t),

which implies that µ� is finitely additive onM.

Consider a sequence of disjoint sets inM i.e., {υ`}+∞
`=1, and ϑn =

n⋃
`=1

υ` and ϑ =
+∞⋃
`=1

υ`.

Then for any $ ⊂ X, we have

µ�($ ∩ ϑn, t) = µ�($ ∩ ϑn ∩ υn, t) ∗ µ�($ ∩ ϑn ∩ υc
n, t)

= µ�($ ∩ υn, t) ∗ µ�($ ∩ ϑn−1, t).

Now, a simple induction shows that µ�($ ∩ ϑn, t) = ∗n
`=1µ�($ ∩ υ`, t). Thus,

µ�($, t) = µ�($ ∩ ϑn, t) ∗ µ�($ ∩ ϑc
n, t)

= ∗n
`=1µ�($ ∩ υ`, t) ∗ µ�($ ∩ ϑc

n, t)

≤ ∗n
`=1µ�($ ∩ υ`, t) ∗ µ�($ ∩ ϑc, t),

and letting n→ +∞ we obtain

µ�($, t) ≤ ∗+∞
`=1µ�($ ∩ υ`, t) ∗ µ�($ ∩ ϑc, t)

≤ µ�
( +∞⋃

`=1

($ ∩ υ`), t
)
∗ µ�($ ∩ ϑc, t)

= µ�($ ∩ ϑ, t) ∗ µ�($ ∩ ϑc, t)

≤ µ�($, t).

Thus µ�($, t) = µ�($ ∩ ϑ, t) ∗ µ�($ ∩ ϑc, t). From ϑ ∈ M and taking $ = ϑ, we get
µ�(ϑ, t) = ∗+∞

`=1µ�($ ∩ υ`, t); thus µ� is countably additive onM. Finally, if µ�($, t) = 1 for
any $ ⊂ X we have

µ�($, t) ≥ µ�($ ∩ υ, t) ∗ µ�($ ∩ υc, t) = µ�($ ∩ υc, t) ≥ µ�($, t),

because υ ∈ M. Hence µ∗|M is a complete ∗–FM.

Definition 8. Consider the algebra A of P(X); we say µ� : A× J → I is a ∗-fuzzy premeasure
(∗-FPM), when

(i) µ�(∅, t) = 1, and

(ii) if {υ`}+∞
`=1 is a sequence of disjoint sets in A such that

+∞⋃
`=1

υ` ∈ A, then µ�

(
+∞⋃
`=1

υ`, t
)

=

∗+∞
`=1µ�(υ`, t).

In particular, any ∗-FPM is finitely additive because υ` = ∅ for ` ≥ n.
Let µ� be a ∗–FPM on A ⊂ P(X), Theorem 3, implies that

µ�($, t) = sup
{
∗+∞
`=1 µ�(υ`, t) : υ` ∈ A, $ ⊆

+∞⋃
`=1

υ`

}
. (7)
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Let S be the set of intervals (a, b] and ∗ = ∗H . Let A be the collection of sets A ⊂ R
representable as finite unions of disjoint intervals,

A =
k⋃

i=1

(ai, bi],

one may check that A is an algebra. We define

µ�(A, t) =
t

t + ∑k
i=1(bi − ai)

.

It is easy to show that µ� is a ∗-FPM on A.

Theorem 5. Consider ∗-FPM µ� on A then

(i) µ�|A = µ�,
(ii) elements of A are µ�-∗-fuzzy measurable.

Proof.

(i) Suppose $ ∈ A. Let $ ⊂
+∞⋃
`=1

υ` with υ` ∈ A and ϑn = $ ∩
(

υn −
n−1⋃
`=1

υ`

)
. Then the

ϑn’s are disjoint members of A whose
+∞⋃
n=1

ϑn = $, thus

µ�($, t) = µ�

( +∞⋃
n=1

ϑn, t
)

= ∗+∞
n=1µ�(ϑn, t) ≥ ∗+∞

n=1µ�(υn, t),

and so

sup µ�($, t) ≥ sup
{
∗+∞

n=1 µ�(υn, t) : $ ⊆
+∞⋃
n=1

υn

}
,

hence
µ�($, t) ≥ µ�($, t), (8)

also $ ⊆ $, thus
µ�($, t) ≥ µ�($, t). (9)

From (8) and (9) we have
µ�($, t) = µ�($, t).

(ii) If υ ∈ A, $ ⊂ X, and 0 < ε < 1, there is a sequence {ϑ`}+∞
`=1 ⊂ υ with $ ⊂

+∞⋃
`=1

ϑ` and

µ�($, t)− ε < ∗+∞
`=1µ�(ϑ`, t). Since µ� is ∗-additive on A, we have

µ�($, t)− ε < ∗+∞
`=1µ�(ϑ`, t)

= ∗+∞
`=1µ�(ϑ` ∩ (υ ∪ υc), t)

= ∗+∞
`=1µ�((ϑ` ∩ υ) ∪ (ϑ` ∩ υc), t)

= ∗+∞
`=1[µ�(ϑ` ∩ υ, t) ∗ (ϑ` ∩ υc, t)]

= [∗+∞
`=1µ�(ϑ` ∩ υ, t)] ∗ [∗+∞

`=1µ�(ϑ` ∩ υc, t)]

≤ µ�($ ∩ υ, t) ∗ µ�($ ∩ υc, t).

Since 0 < ε < 1 is arbitrary, we come to

µ�($, t) ≤ µ�($ ∩ υ, t) ∗ µ�($ ∩ υc, t).
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Thus υ is µ�-∗-fuzzy measurable.

Theorem 6. Consider the algebraA of P(X), ∗-FPM µ� onA, and the generated σ-algebraM by
A. Then we can find a ∗–FM µ onM that µ = µ�|M where µ�. Let ν be a different ∗–FM onM
that extends µ�, then ν($, t) ≥ µ($, t) for each t > 0 and $ ∈ M, with equality when µ($, t) > 0.
If µ� is σ-bounded, then µ is the unique extension of µ� to a ∗–FM onM.

Proof. Let $ ∈ M and $ ⊂
+∞⋃
`=1

υ` such that υ` ∈ A, then

ν($, t) ≥ ∗+∞
`=1ν(υ`, t) = ∗+∞

`=1µ�(υ`, t)

and so
sup{ν($, t)} ≥ sup{∗+∞

`=1µ�(υ`, t) : $ ⊆ ∪υ`}

ν($, t) ≥ µ($, t). (10)

Further, if we set υ =
+∞⋃
`=1

υ`, we get

ν(υ, t) = ν

( +∞⋃
`=1

υ`, t
)
= lim

n→+∞
ν

( n⋃
`=1

υ`, t
)

= lim
n→+∞

µ

( n⋃
`=1

υ`, t
)
= µ

( +∞⋃
`=1

υ`, t
)
= µ(υ, t).

If µ($, t) > 0, there are υ`’s such that

µ($, t)− ε < µ(υ, t). (11)

On the other hand

µ(υ, t) = µ($ ∪ (υ \ $), t)

≥ µ($, t) ∗ µ(υ \ $, t)

≥ max{µ($, t) + µ(υ \ $, t)− 1, 0}
= µ($, t) + µ(υ \ $, t)− 1,

so
µ($, t)− µ(υ, t) < 1− µ(υ \ $, t). (12)

From (11) and (12) we conclude that

1− µ(υ \ $, t) > ε,

or
µ(υ \ $, t) < 1− ε.

Thus,

µ($, t) ≥ µ(υ, t) = ν(υ, t)

= ν($ ∪ (υ \ $), t) = ν($, t) ∗ ν(υ \ $, t)

≥ ν($, t) ∗ µ(υ \ $, t) ≥ ν($, t) ∗ (1− ε).

Since 0 < ε < 1 is arbitrary we have

µ($, t) ≥ ν($, t). (13)
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From (10) and (13) we get
µ($, t) = ν($, t).

Finally, suppose X =
+∞⋃
`=1

υ` with µ�(υ`, t) > 0, such that υ` ∩ υk = ∅, ` 6= k, then for

each $ ∈ M, we have

µ($, t) = µ

( +∞⋃
`=1

($ ∩ υ`), t
)
= ∗+∞

`=1µ($ ∩ υ`, t)

= ∗+∞
`=1ν($ ∩ υ`, t) = ν

( +∞⋃
`=1

($ ∩ υ`), t
)
= ν($, t),

which implies
ν = µ.

4. Conclusions

We considered an uncertain measure based on the concept of fuzzy sets and triangular
norms named by ∗-fuzzy measure. Next, we have extended ∗-FPM µ� onA to a ∗–FM µ on
M (the σ-algebra generated by A) such that µ|A = µ� based on Caratheodory’s Theorem.
In addition, we showed that µ is the unique extension of µ� to a ∗-FM onM if the outer
∗-FM generated by (1) satisfying µ�|M = µ and µ� is σ-bounded. We expect applications
of our results in several domains dealing with modeling of time-dependent situations, such
as quantum physics or filtering in image processing.
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20. Nădăban, S.; Bînzar, T.; Pater, F. Some fixed point theorems for ϕ-contractive mappings in fuzzy normed linear spaces. J. Nonlinear

Sci. Appl. 2017, 10, 5668–5676. [CrossRef]
21. Raza, Z.; Saleem, N.; Abbas, M. Optimal coincidence points of proximal quasi-contraction mappings in non-Archimedean fuzzy

metric spaces. J. Nonlinear Sci. Appl. 2016, 9, 3787–3801. [CrossRef]
22. Radu, V. Equicontinuous Iterates of t-Norms and Applications to Random Normed and Fuzzy Menger Spaces; Iteration Theory (ECIT ’02);

Karl-Franzens-University Graz: Graz, Austria, 2004; pp. 323–350.
23. Jakhar, J.; Chugh, R.; Jakhar, J. Solution and intuitionistic fuzzy stability of 3-dimensional cubic functional equation: Using two

different methods. J. Math. Comput. Sci. 2022, 25, 103–114. [CrossRef]
24. Saadati, R. A note on some results on the IF-normed spaces. Chaos Solitons Fractals 2009, 41, 206–213. [CrossRef]
25. Ahmed, M.A.; Beg, I.; Khafagy, S.A.; Nafadi, H.A. Fixed points for a sequence of L-fuzzy mappings in non-Archimedean ordered

modified intuitionistic fuzzy metric spaces. J. Nonlinear Sci. Appl. 2021, 14, 97–108. [CrossRef]
26. Bag, T.; Samanta, S.K. Finite dimensional intuitionistic fuzzy normed linear spaces. Ann. Fuzzy Math. Inform. 2014, 8, 245–257.
27. Bass, R. Real Analysis for Graduate Students: Measure and Integration Theory; University of Connecticut: Storrs, CT, USA, 2014,

preprint.
28. Cheng, S.C.; Mordeson, J.N. Fuzzy linear operators and fuzzy normed linear spaces. Bull. Calcutta Math. Soc. 1994, 86, 429–436.
29. Choquet, G. Theory of capacities. Ann. L’Institut Fourier 1954, 5, 131–295. [CrossRef]
30. Bartwal, A.; Dimri, R.C.; Prasad, G. Some fixed point theorems in fuzzy bipolar metric spaces. J. Nonlinear Sci. Appl. 2020, 13,

196–204. [CrossRef]
31. Cho, K. On a convexity in fuzzy normed linear spaces. Ann. Fuzzy Math. Inform. 2021, 22, 325–332.
32. Ciric, L.; Abbas, M.; Damjanovic, B.; Saadati, R. Common fuzzy fixed point theorems in ordered metric spaces. Math. Comput.

Model. 2011, 53, 1737–1741. [CrossRef]
33. Dubois, D.; Prade, H. A class of fuzzy measures based on triangular norms. A general framework for the combination of uncertain

information. Internat. Gen. Syst. 1982, 8, 43–61. [CrossRef]
34. Dubois, D.; Pap, E.; Prade, H. Hybrid probabilistic-possibilistic mixtures and utility functions. In Preferences and Decisions Under

Incomplete Knowledge; Studies in Fuzziness and Soft Computing; Physica-Verlag Heidelberg: Heidelberg, Germany, 2000; Volume
51, pp. 51–73.

35. Folland, G.B. Real analysis. In Modern Techniques and Their Applications, 2nd ed.; Pure and Applied Mathematics (New York). A
Wiley-Interscience Publication; John Wiley & Sons, Inc.: New York, NY, USA, 1999.

36. Rudin, W. Real and Complex Analysis, 3rd ed.; McGraw-Hill Book Co.: New York, NY, USA, 1987.

http://dx.doi.org/10.1016/0022-247X(84)90061-1
http://dx.doi.org/10.1016/0165-0114(78)90029-5
http://dx.doi.org/10.1016/S0165-0114(83)80115-8
http://dx.doi.org/10.1016/0165-0114(82)90028-8
http://dx.doi.org/10.1016/0022-247X(87)90354-4
http://dx.doi.org/10.1016/j.fss.2007.07.006
http://dx.doi.org/10.22436/jmcs.025.04.02
http://dx.doi.org/10.22436/jnsa.010.11.05
http://dx.doi.org/10.22436/jnsa.009.06.28
http://dx.doi.org/10.22436/jmcs.025.02.01
http://dx.doi.org/10.1016/j.chaos.2007.11.027
http://dx.doi.org/10.22436/jnsa.014.02.05
http://dx.doi.org/10.5802/aif.53
http://dx.doi.org/10.22436/jnsa.013.04.04
http://dx.doi.org/10.1016/j.mcm.2010.12.050
http://dx.doi.org/10.1080/03081078208934833

	Introduction
	 -Fuzzy Measure
	Outer  -Fuzzy Measure
	Conclusions
	References

