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1. Introduction

In 1974, M. Sugeno introduced fuzzy measures and Sugeno integral for the first time which became an imporant an-
alytical method of uncertain information measuring [14]. Sugeno integral is applied in many fields such as management
decision-making, medical decision-making, control engineering and so on. Many authors such as Ralescu and Adams con-
sidered equivalent definitions of Sugeno integral [11]. Roman-Flores et al. examined level-continuity of Sugeno integral and
H-continuity of fuzzy measures [12,13]. For more details of Sugeno integral, we refer readers to Agahi et al. [1,2], Grabisch
[7], Pap and Functions [8], Pap [9], Pap and Strboja [10].

The study of fuzzy integral is attributed to Roman-Flores et al. Many inequalities such as Markov's, Chebyshev's, Jensen’s,
Minkowski’s, Holder’s and Hardy’s inequalities have been studied by Flores-Franuli¢ and Roman-Flores for Sugeno integral
(see [5,6] and their references). Recently, in Daraby et al. [4], B. Daraby et al. studied some other inequalities for Sugeno
integral.

All these inequalities for Sugeno integral were motivated by the related inequalities known for Riemann or Lebesgue
integral. One of inequalities known for Riemann integral but not yet studied in the framework of Sugeno integral, namely
Thunsdorff’s inequality see [3], is given as follows:
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If f is non-negative and concave on [a, b] and if 0 < r < s, then
1/s 1/r
1+s 0 I
— dx <|— "dx | . 1.1
(b —a /a f “\b-a /a ! (11)
The case r =1, s = 2 is the Frank-Pick inequality.
In this paper, we intend to prove a version of Thunsdorff's and Frank-Pick’s inequality for the Sugeno integral.

This paper is organized as follows: in Section 2, some preliminaries are presented. In Sections 3 and 4 we propose the
Thunsdorff and Frank-Pick’s inequalities for Sugeno integral. Finally, in the last section, we present a short conclusion.

2. Preliminaries
In this section, we will provide some definitions and concepts for the next sections.

Throughout this paper, let X be a non-empty set and ¥ be a o —algebra of subsets of X.

Definition 2.1 (Ralescu and Adams [11]). A set function p : X — [0, +o0] is called a fuzzy measure if the following proper-
ties are satisfied:

1 u@®) =0;
2. AC B = u(A) < u(B) (monotonicity);

3.AcAc. = limud) = M(fj A,v> (continuity from below);
i=1
4. A2 Ay 2...and u(Ay) < oo = limu(A;) = u(ﬁ A,-) (continuity from above).
i=1

When p is a fuzzy measure, the triple (X, X, n) is called a fuzzy measure space.

If f is a non-negative real-valued function on X, we will denote F, = {x € X | f(x) > @} = {f > «}, the «a-level of f, for
o > 0. The set Fy = {x e X | f(x) > 0} = supp(f) is the support of f.
If o is a sigma-algebra of subsets of X, we define the following:

FF=X)={f:X—[0,00)| fiso —measurable}.
Definition 2.2 (Pap [8], Wang and Klir [15]). Let u be a fuzzy measure on (X, X). If f € 3°(X) and A € X, then the Sugeno
integral of f on A is defined by
ffdu =\ (@A uAnk)).
A a=>0
where v and A denotes the operations sup and inf on [0, oo]. If A =X, the fuzzy integral may also be denoted by [~fd .
The following proposition gives the most elementary properties of the Sugeno integral.

Proposition 2.3 (Pap [8], Wang and Klir [15]). Let (X, ¥, u) be a fuzzy measure space, A,Be Y and f, g e F° (X). We have

1 fx fdp < n(A);

2. fzkdp =k A p(A), for any constant k € [0, oo);

3. [z fdu < o < there exists y < o such that (An{f > y}) <a;
4. fz fdu > a & there exists y > o such that (An{f > y}) > a.

5. Let fy fdu = k. Then fg min(f, k)du = fzy max(k, f)du = fx fdu =k

Remark 2.4. Consider the survival function F associated to f on A, that is to say,
Fla) = p(An{f = a}).

Then
F(a) =otzj£fd,u=ot.

Thus, from a numerical (or computational) point of view, the Sugeno integral can be calculated by solving the equation
F(a) = « (if the solution exists).

Lemma 2.5 ([4]). Let (X, X, ) be a fuzzy measure space, let Ac ¥ and let f:X — R be a measurable function such that
fz fdp < 1. Then, for any s > 1, we have

[frdn= (fran)
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Lemma 2.6. Let (X, X, i) be a fuzzy measure space, let A€ X and let f : X — R be a measurable function such that fz fdu < 1.
Then

jﬁfau :jﬁ min(1, f)dp.
X X
Proof. The proof follows directly from Proposition 2.3.(5.). O
3. Main results
In this section, we prove Thunsdorff’'s and Frank-Pick’s inequalities for Sugeno integral.
3.1. Thunsdorff’s inequality for Sugeno integral

Firstly, by an example, we show that (1.1) is not valid for Sugeno integral.
Example 3.1. Let f(x) = +/x and let u be the Lebesque measure.

(i) Suppose that f is defined from [0, 1] to [0, 1], r = % and s = % Simple calculations show that

1+r ! v 1\ ! 13 }
(52 room) = ((+3)f 09" an)

= 1.1166,
and
1/s 2
1+s [ 1\ ! 172
(b—a]% f (X)dﬂ) = ((1 +§)‘/€ (\/E) du
= 1.1810.
Therefore,

1471 ! ) 1r 145 (1 . 1/s
1.1166:<b_a]€f(x)du) z(b_ajéf(x)du> — 1.1810.

(ii) If f defined from [1,3] to [1,3], r=1 and s = 2. We have
1
1410, 23 1
<19—¢1J£ f (X)dluv> 5]{ (\/;() du
1.3028.
As the same way

b 1/s 3
(;f; f fS(X)dM> - (; f (ﬁ)%)

=1.5.

172

It follows that
1.3028 # 1.5.
In other words, (1.1) is not valid for Sugeno integral.

Remark 3.2. Thunsdorff’s inequality (1.1) can be rewritten in the following form:

((1 +S)./[a.b] fsd)‘[a‘b]> < ((1 +T)~/[a‘b] frd)\[a,b]) ,

where A, p is the normed Lebesgue measure on Borel subsets of [a, b, i.e.,

AE)  _ AME)
A(la.b]) — (b-a)

Also, defining a real function ¢, p), f :]0, oo[— [0, o[ by

Afap)(E) =

Bran). F(r) = ((1 ey [[ ) ffdx[a,b]) B
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the Thunsdorff inequality is equivalent to the decreasingness of ¢y ), f.
In the sequel, we present and prove a fuzzy version of (1.1) if f:[0,1] — [0, 00] and 1, s € (0, c0).

Theorem 3.3. Let (X, X, ) be a fuzzy measure space with normed fuzzy measure pu, f € 3°(X). Then for any positive real
constants r,s with r < s, it holds

1
s

(1 (5) fran) = (1+(5) fraw)

Proof. Based on Proposition 2.3.(1.), f; fdu < w(X) = 1. Then, due to Lemma 2.6.,
jﬁfau :jﬁ min(1, f)dp.
X X

Similarly one can show
[ £du = min (1. £ydpo) = f-min (1. £))'au
. X X X
J-d = f-min (1, 7dga) = f-min (1, £
As far as r < s, it is evident that (min (1, f))* < (min (1, f))", what ensures

[ = amin 1. pydp < famin 1. pydp = rap

More, 0 <1 < s implies 0 < 1 < 1, and, consequently,

(1) frau < (1) [ rau (32)

Adding 1 to both parts of the last inequality one obtain

1<1 +<%).J£fsdu«s 1+ (%).fxfrdu

and therefore

1 1
(1+ () ram) = (v (7)-fram)
S/ Ux r/ Jx
proving the validity of (3.1). O
Remark 3.4.

(i) As a by-product, a new integral inequality (3.2) for Sugeno integral was obtained.
(ii) Define two real functions ty, f, u and ny, f, i :]0, co[— [0, oo by

s fn = (14 (1) foran)’

e o) = (7)-f Fidu

Then our version of Thunsdorff’s inequality (3.1) is equivalent to the decreasingness in r of the function ty, f, ;. Similarly,
integral inequality (3.2) is equivalent to the decreasingness of the function ny, f, u (for all f € §° (X)) and any normed
fuzzy measure p on X.

and

Example 3.5.
(i) Let f:]0,1] — [0, 1] be defined as f(x) = ﬁ r= % and s = % With simple calculations, we have
1 ! 1 VAR
1 - s =(1 —
(1= G o) =+ (1)F () o)
= 6.3001,
and
1y [! v 1\, 1\ )
— T — — -
(1= Q) reoan) = (= (3)F () )
= 41.318.

Therefore, (3.1) (also (3.2)) is valid.
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(ii) Let f(x) =x2,r=1 and s = 2. Then, we get

(@ reose) = (- G)f o)

= 1.0666,

(1 + (%)jg fr(;c)w)”r —1 +/€ 2dy

= 1.382.

1/2

and

The proof of Theorem 3.8 can be applied also in the case when the fuzzy measure u is not normed, only then we have
some constraint on the original Sugeno integral.

Corollary 3.6. Let (X, X, u) be a fuzzy measure space and f e §° (X) be such that f; fdu < 1. Then for any positive real con-
stants r,s,r < s, it holds

(1) = (oo 5 froe)
(3) fram= (). frran

Proof. The proof follows from Proposition 2.3.(5.), using similar argumentation as in the proof of Theorem 3.8. O

and

Also the next result can be shown, considering Proposition 2.3.(5.) and similar reasoning as in Theorem 3.8.

Corollary 3.7. Let (X, X, u) be a fuzzy measure space and f € §° (X) be such that fy fdu > 1. Then

[ fdu <. [ . (33)
X X
Note that if f; fdu = 1, we can consider both Corollaries 3.6 and 3.7, i.e., both inequalities (3.2) and (3.3) should be valid.
This is obviously true, as then f; ff"du =1 for any r e (0, c0), and (3.2) turns into % < % while (3.3) turns into r <,
which are equivalent inequalities.

3.2. Frank-Pick’s inequality for Sugeno integral

In the following, we state and prove a fuzzy version of Frank-Pick’s inequality if f :[0,1] — [0, o] and r,s € (0, c0).

Theorem 3.8. Let (X, X, u) be a fuzzy measure space with normed fuzzy measure w and f € §° (X). Then

1
(1 + (%) ffzdu)Z <1+ fdu (34)
X X
holds.
Proof. Based on Proposition 2.3.(1.), 5 fdu < w(X) = 1. Then, due to Lemma 2.6.,

jgfd“ =j£min(1, fduw.

Similarly one can show

jgfzdu :jg (min (1, f2)dye) :j£ (min (1, f))’dp

and
[ = f-min 1, gy = f-min (1, ).
It is evident that (min (1, f))2 < (min (1, f)), what ensures
2 _ - 2 . _
[P =f-min 1, )y < fomin 1, pyap = f sap.

Consequently,

(3)-frodu < rau (35)
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Adding 1 to both parts of the last inequality one obtain
1<1+ (1)ff2du <14} fdu
27 Jx X
and therefore
1 3
(14 (3) o) = (1+fran)
2/ Jx X
proving the validity of (3.4). O

Now, by an example, we illustrate validity of theorem.

Example 3.9. Let f:[0,1] — [0, 1] be defined as f(x) = % A simple calculation shows that

(G o) = (1 G ECT o)

and similarly,

=1.6.
Finally the relations (3.4) and (3.5) are valid.

4. Conclusion

In this paper, we prove the Thunsdorffs and Frank-Pick’s inequalities for Sugeno integral. By considering the initial
conditions for the Thunsdorff's inequality, we proved this inequality. Indeed, we showed that:
If f:[0,1] > [0,00], 1,5 € (0,00) and r < s then:

(1+(5) fran) =(e () fran)

holds, and if f is defined as f: [0, 1] — [0, 1], then

1

(- () fran) =1 +f

holds. Also, by examples, we show the validity of theorems.
In the future works, we aim to discuss these inequalities for pseudo and Choquet integrals.
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