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Using hypergraphs of survival functions, we propose a rather general method for the con-
struction of discrete fuzzy integrals. Our method is based on various rectangle decomposi-
tions of hypergraphs and on rectangle mappings suitably evaluating the rectangles of 
the considered decompositions. By means of appropriate binary aggregation functions 
we define two types of rectangle mappings and four types of discrete fuzzy integral 
constructions, and we also investigate the properties of the introduced integrals and 
the relationships between them. All the introduced methods based on non-overlapping 
rectangles coincide in the case of the product aggregation function, and then the related 
integral is the Choquet integral. Several examples are given.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Discrete fuzzy integrals play an important role in all domains of fuzzy set theory dealing with fuzzy measures. Dis-
crete fuzzy integrals are applied in multicriteria decision support, preference modeling, fuzzy rule-based systems, image 
processing, classification problems, etc. Motivated by universal fuzzy integrals introduced by Klement et al. in [14] and de-
composition integrals proposed by Even and Lehrer [9], we introduce a new approach how to build discrete fuzzy integrals 
based on some appropriate aggregation functions. As a new tool for building such integrals we use rectangle mappings eval-
uating the considered rectangles in various non-standard ways. In addition to that, we exploit rectangle decompositions of 
hypergraphs related to the survival functions hm, f , m being a fuzzy measure and f an integrated function. In some special 
cases, our concept covers some well-known fuzzy integrals as, for example, copula-based integrals leading to the Choquet 
integral (when the product copula � is considered) or to the Sugeno integral (when the comonotonicity copula M = min is 
applied). Another class of integrals covered by our approach is the class of the smallest universal integrals related to semi-
copulas, see [14]. In general, newly proposed integrals need not be monotone. We focus on this problem and characterize 
some types of the introduced integrals which are weakly monotone.

The rest of the paper is organized as follows. In the next section, we give some preliminary notions concerning fuzzy 
integrals and aggregation functions. In Section 3, the graphs of survival functions are discussed and then four types of 
rectangle decompositions of the related hypergraphs are introduced. In Section 4, the notion of rectangle mappings is 
defined and two types of rectangle mappings based on appropriate binary aggregation functions are provided. Section 5 is 
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devoted to introducing rectangles-based discrete fuzzy integrals related to the introduced hypergraph decompositions and 
rectangle mappings, as well as to the study of their properties, in particular their symmetry, idempotency, monotonicity and 
weak monotonicity. In Section 6, some particular discrete fuzzy integrals are discussed. Finally, Section 7 contains several 
concluding remarks.1

2. Preliminaries

We begin by recalling several basic definitions which will be needed throughout the paper. In this paper, we will work 
with a finite universe [n] = {1, . . . , n}, n being any (but fixed) element in N .

Definition 2.1. A fuzzy measure m on [n] is a monotone set function m : 2[n] → [0, 1] such that m(∅) = 0 and m([n]) = 1. 
The set of all fuzzy measures on [n] will be denoted by Mn .

The notion of fuzzy measures on a general measurable space (�, S) was introduced in [22], including some continuity 
properties. In the case where (�, S) = ([n], 2[n]), i.e., for a finite σ -algebra S = 2[n] , these properties are automatically 
satisfied, therefore we do not deal with them. More properties of fuzzy measures can be found, e.g., in [23]. Here, we 
only recall that a fuzzy measure m on [n] is symmetric if for all E, F ⊆ [n], m(E) = m(F ) whenever card(E) = card(F ). 
Equivalently, m is symmetric on [n] if for any E ⊆ [n] and any permutation σ : [n] → [n] we have m(E) = m(σ (E)), where 
σ(E) = {σ(i) | i ∈ E}.

In what follows, we will use the symbol Fn to denote the set of all functions f : [n] → [0, 1]. To avoid any misunder-
standing, we stress that the letter n in symbols Mn and Fn indicates that we work on a universe [n] = {1, . . . , n}, we 
consider functions f : [n] → [0, 1] and fuzzy measures m : 2[n] → [0, 1]. Moreover, we point to the fact that Fn can be seen 
as the set of all fuzzy subsets of [n], and it can be identified with the set of all n-tuples from [0, 1]n . There is a one-to-one 
correspondence between f ∈Fn and x = (x1, . . . , xn) ∈ [0, 1]n , given by f (i) = xi , i = 1, . . . , n. For example, a constant func-
tion f (i) = c for each i ∈ [n] will be denoted by c = (c, . . . , c), in particular 0 = (0, . . . , 0) denotes the function identically 
equal to zero, and similarly 1 = (1, . . . , 1) is a constant function whose value always equals 1.

Making use of this correspondence, the definition of n-ary aggregation functions, which are standardly defined as increas-
ing mappings A : [0, 1]n → [0, 1] satisfying the boundary conditions A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1, see, e.g., [1,3,11], 
can be expressed as follows.

Definition 2.2. An (n-ary) aggregation function is a mapping A : Fn → [0, 1] that is increasing and satisfies the boundary 
conditions A(0) = 0 and A(1) = 1.

Note that the increasingness of A can be characterized by the inequality A( f + g) ≥ A( f ) required for all f , g ∈Fn such 
that also f + g ∈Fn .

Let us still recall the notion of aggregation functions with zero annihilator which will play an important role in the next 
parts of the paper. The element α = 0 is the zero annihilator of an aggregation function A : [0, 1]n → [0, 1] if and only if 
for all inputs (x1, . . . , xn) ∈ [0, 1]n such that 0 ∈ {x1, . . . , xn}, we have A(x1, . . . , xn) = 0. Equivalently said, an aggregation 
function A : Fn → [0, 1] has zero annihilator if and only if for each function f ∈ Fn such that f (i) = 0 for some i ∈ [n], we 
have A( f ) = 0.

Recently, several generalizations of aggregation functions have been proposed and successfully applied. We only recall 
the notion of weak aggregation functions [2]. A general notion of weakly monotone functions was originally introduced in 
[25].

Definition 2.3. A weak aggregation function is a mapping B : Fn → [0, 1] that is weakly increasing, i.e., B( f + c) ≥ B( f ) for 
all f and c = (c, . . . , c) in Fn such that f + c ∈Fn , and satisfies the boundary conditions B(0) = 0, B(1) = 1.

Among a huge number of discrete fuzzy integrals we recall the following three well-known integrals:

• the Choquet integral [4] Ch : Mn ×Fn → [0, 1], defined by

Ch(m, f ) =
n∑

i=1

( f (σ (i)) − f (σ (i − 1))) · m ({σ(i), . . . , σ (n)}) ,

where σ : [n] → [n] is an arbitrary permutation such that f (σ (1)) ≤ · · · ≤ f (σ (n)), and f (σ (0)) = 0, by convention;

1 This paper is a significantly extended version of the contribution presented at the Conference ESCIM 2021 in Budapest.
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• the Sugeno integral [22] Su : Mn ×Fn → [0, 1], defined by

Su(m, f ) =
n∨

i=1

( f (σ (i)) ∧ m ({σ(i), . . . , σ (n)})) ;

• the Shilkret integral [21] Sh : Mn ×Fn → [0, 1], defined by

Sh(m, f ) =
n∨

i=1

f (σ (i)) · m({σ(i), . . . , σ (n)}).

All these three integrals are idempotent aggregation functions [11], and they belong to the class of universal fuzzy 
integrals proposed by Klement et al. in [14]. Discrete universal fuzzy integrals have been built with the aid of semicopulas 
[7]. Recall that a semicopula ⊗: [0, 1]2 → [0, 1] is a binary aggregation function with neutral element e = 1, i.e., satisfying 
x ⊗ 1 = 1 ⊗ x = x for each x ∈ [0, 1].

Definition 2.4. A discrete universal fuzzy integral I is a mapping

I :
⋃

k∈N
Mk ×Fk → [0,1],

where, for each k ∈ N , Mk is the set of all fuzzy measures on [k] = {1, . . . , k}, and Fk is the set of all functions f : [k] →
[0, 1], such that

(i) I is increasing in both variables;
(ii) there is a semicopula ⊗: [0, 1]2 → [0, 1] such that

I(m, c · 1E) = c ⊗ m(E)

for each m ∈Mk and E ⊆ [k], k ∈N , and each c ∈ [0, 1];
(iii) for all k1, k2 ∈N , and all (mi, f i) ∈Mki ×Fki , i = 1, 2, such that

m1({ j ∈ {1, . . . ,k1} | f1( j) ≥ t}) = m2({ j ∈ {1, . . . ,k2} | f2( j) ≥ t})
for all t ∈ [0, 1], we have

I(m1, f1) = I(m2, f2).

Note that for a given subset E ⊆ [k], the characteristic function 1E : [k] → [0, 1] is given by 1E(i) = 1 if i ∈ E , and 
otherwise, it equals zero.

An important property of discrete universal fuzzy integrals is expressed by axiom (iii) in Definition 2.4, which can be 
interpreted as follows:

For a fixed m ∈Mn and f ∈Fn , the value I(m, f ) of a discrete universal integral I only depends on the survival function 
hm, f : [0, 1] → [0, 1], given by

hm, f (t) = m({ j ∈ [n] | f ( j) ≥ t}) = m({ j ∈ [n] | x j ≥ t}). (1)

Note that when ([n], 2[n], m) is a probability space and ξ ∈ Fn is a random variable then hm,ξ = 1 − Fm,ξ is the comple-
ment of the distribution function Fm,ξ , and for the expected value Em(ξ) we have

Em(ξ) =
∫

[0,1]
ξ dm =

1∫
0

hm,ξ (t)dt = Ch(m, ξ).

Let us stress an important fact, namely, that the hypergraph

Hm, f = {(t, u) ∈ [0,1]2 | u ≤ hm, f (t)}
is in a one-to-one correspondence with the survival function hm, f , and it consists of at most n non-overlaping non-
compatible rectangles of the type [a, b] ×[c, d], and, possibly, of two segments. Note that two rectangles are non-compatible 
if their union is not a rectangle. Then the Choquet integral evaluates just the area of Hm, f , and is equal to the sum of the 
(standardly evaluated) areas of the related rectangles. This fact motivated our investigation and has given rise to this paper 
in which we will deal with various ways of possible non-standard evaluations of the related rectangles.
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Fig. 1. Illustrations of 3 extremal hypergraphs Hm, f : minimal hypergraph (left); maximal hypergraph (middle); the hypergraph of a survival function given 
by (2) for n = 3 (right).

3. Hypergraph decompositions

To understand well the geometry of hypergraphs Hm, f , it is necessary to describe the graphs of survival functions hm, f . 
Evidently, each hm, f is a step-wise, left-continuous, decreasing function on [0, 1] such that hm, f (0) = 1. The smallest survival 
function h∗ : [0, 1] → [0, 1] is given by

h∗(t) =
{

1 if t = 0,

0 otherwise,

and hm, f = h∗ if and only if m({ f > 0}) = 0. The greatest survival function h∗ : [0, 1] → [0, 1] is the constant function 
h∗(t) = 1 for each t ∈ [0, 1], and hm, f = h∗ if and only if m({ f = 1}) = 1. The most complex situation occurs when there are 
no ties among the values 0, f (1), . . . , f (n), 1, as well as among the values 1 = m({σ(1), . . . , σ(n)}), . . . , m({σ(n)}), 0. Then, 
putting

ai = f (σ (i)) and bi = m({σ(i), . . . , σ (n)}), i ∈ [n],
we get a0 = 0 < a1 < · · · < an and 1 = b1 > b2 > · · · > bn > 0 = bn+1, and

hm, f (t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

b1 = 1 if t ∈ [0,a1],
b2 if t ∈]a1,a2],
...

bn if t ∈]an−1,an],
bn+1 = 0 if t ∈]an,1].

(2)

The above discussed survival functions h∗, h∗ and hm, f given by (2) if n = 3, lead to hypergraphs depicted in Fig. 1. In 
all other cases when hm, f /∈ {h∗, h∗}, there is a k ∈ {1, . . . , n} and some values a0 = 0 < a1 < · · · < ak ≤ 1 and 1 ≥ b1 > b2 >

· · · > bk > 0 such that

hm, f (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 if t = 0,

b1 if t ∈]0,a1],
b2 if t ∈]a1,a2],
...

bk if t ∈]ak−1,ak],
0 otherwise.

(3)

From the mentioned properties of survival functions hm, f it follows that for each (m, f ) ∈Mn ×Fn the related hypergraph 
Hm, f consists of k pairwise non-compatible non-overlapping neighboring rectangles, k ∈ {0, 1, . . . , n} and r segments, r ∈
{0, 1, 2}.

Now, we introduce some decompositions of hypergraphs Hm, f into rectangles, possibly neglecting some segments con-
tained in Hm, f .

Definition 3.1. Let (m, f ) ∈Mn ×Fn and let the corresponding survival function hm, f be given by (3). Let Hm, f denote the 
hypergraph corresponding to hm, f .

(i) A vertical rectangle decomposition of Hm, f , denoted by Dm, f , is given by

Dm, f = {[ai−1,ai] × [0,bi] | i ∈ {1, . . . ,k}}, k ∈ {1, . . . ,n}. (4)
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(ii) A horizontal rectangle decomposition of Hm, f , denoted by Gm, f , is given by

Gm, f = {[0,ai] × [bi+1,bi] | i ∈ {1, . . . ,k}}, k ∈ {1, . . . ,n}, (5)

and the convention bk+1 = 0.
(iii) Let Km, f denote a decomposition of Hm, f , refining both Dm, f and Gm, f , which is given by

Km, f = {[ai−1,ai] × [b j+1,b j] | i, j ∈ {1, . . . ,k}, i ≤ j}, k ∈ {1, . . . ,n}, (6)

and the convention bk+1 = 0.

The introduced decompositions Dm, f , Gm, f and Km, f consist of non-overlapping rectangles and these ways of decompo-
sition are similar to the Riemann approach to integration based on divisions, which are also non-overlapping but not disjoint 
as it is considered in the case of the Lebesgue integral. Another approach to rectangle decompositions of hypergraphs Hm, f
(cumulative) considered, e.g., in the case of the Sugeno integral, is introduced in the following definition.

Definition 3.2. Let (m, f ) ∈Mn ×Fn and let the corresponding survival function hm, f be given by (3). Let Hm, f denote the 
hypergraph corresponding to hm, f . A cumulative decomposition Pm, f of the hypergraph Hm, f is given by

Pm, f = {[0,ai] × [0,bi] | i ∈ {1, . . . ,k}}. (7)

Finally, for all the four introduced decompositions, if hm, f = h∗ , we put Dm, f = Gm, f = Km, f = Pm, f = ∅.

4. Rectangle mappings based on aggregation functions

To evaluate the information contained in a couple (m, f ) ∈ Mn × Fn , i.e., to evaluate some discrete fuzzy integral of f
with respect to m, we need to evaluate suitably the above considered rectangles.

Definition 4.1. Consider all a, b, c, d ∈ [0, 1], a ≤ b, c ≤ d. Let R be the set of all rectangles R = [a, b] × [c, d], i.e., R = {R =
[a, b] × [c, d] | R ⊆ [0, 1]2}. A mapping S : R → [0, 1] will be called a rectangle mapping if

(i) S is monotone, i.e., S(R1) ≤ S(R2) for any R1, R2 ∈R, R1 ⊆ R2,
(ii) S(R) = 0 whenever R ∈R is a degenerated rectangle,
(iii) S([0, 1]2) = 1.

Note that R is a degenerated rectangle if it is either a segment or a single point.
Observe that rectangle mappings can be seen as fuzzy measures on R.
For a fixed rectangle mapping S , we can introduce several integrals on Mn ×Fn . In what follows, for any S , we define 

four types of integrals corresponding to the above mentioned four decompositions of hypergraphs. Moreover, we propose 
two approaches how to define rectangle mappings with the aid of aggregation functions.

The first approach to the construction of rectangle mappings is independent of the location of the considered rectangles 
R = [a, b] × [c, d] ⊆ [0, 1]2, it only depends on their size, i.e., on the values b − a and d − c. Let A : [0, 1]2 → [0, 1] be a 
binary aggregation function. We define a mapping S A : R → [0, 1] by

S A(R) = A(b − a,d − c). (8)

Obviously, for an arbitrary A, S A is a monotone increasing mapping and S A([0, 1]2) = 1. For proving that S A is a rectangle 
mapping, it is necessary to ensure that S A(R) = 0 for any degenerated rectangle R . There are two possibilities how to guar-
antee this requirement: either it can be covered by a convention, i.e., item (8) can be modified by imposing the condition 
S A(R) = 0 whenever R is a degenerated rectangle, or one can require A to satisfy the properties A(0, d −c) = A(b −a, 0) = 0
for any a, b, c, d ∈ [0, 1], a ≤ b and c ≤ d, which is satisfied whenever A has zero annihilator.

Theorem 4.1. Let A : [0, 1]2 → [0, 1] be a binary aggregation function. Then the mapping S A : R → [0, 1] given by

S A([a,b] × [c,d]) =
{

0 if a = b or c = d,

A(b − a,d − c) otherwise,
(9)

is a rectangle mapping.

Proof. The proof of the claim has already been done in the previous discussion. �
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Evidently, if A is the product aggregation function, S A(R) is equal to the standard area of a rectangle R .
Another approach to the construction of rectangle mappings is based on A-volumes of rectangles generated by a binary 

aggregation function A : [0, 1]2 → [0, 1]. For a rectangle R = [a, b] × [c, d] ⊆ [0, 1]2, its A-volume V A(R) is given by

V A(R) = A(b,d) + A(a, c) − A(a,d) − A(b, c). (10)

It is not difficult to check that for any two non-overlapping rectangles R1, R2 ∈R whose union R = R1 ∪ R2 also belongs 
to R, we have

V A(R) = V A(R1) + V A(R2). (11)

Now, for any binary aggregation function A, let us introduce a mapping S A : R →] − ∞, ∞[, defined as

S A(R) = V A(R). (12)

Due to (10), S A(R) = A(b, d) + A(a, c) − A(a, d) − A(b, c).
Obviously, a necessary condition for S A : R →] − ∞, ∞[ to be a rectangle mapping is the requirement S A(R) ≥ 0 for 

each R ∈ R. It will be satisfied if the A-volume V A(R) of each rectangle R ∈ R is non-negative. Thus we restrict our 
considerations to 2-increasing aggregation functions A which are just characterized by the property

V A(R) = A(b,d) + A(a, c) − A(a,d) − A(b, c) ≥ 0

for each rectangle R , see, e.g., [8,11,20]. Finally, applying (12) and (10), we obtain

S A([a,a] × [c,d]) = A(a,d) + A(a, c) − A(a,d) − A(a, c) = 0,

and also

S A([a,b] × [c, c]) = A(b, c) + A(a, c) − A(a, c) − A(b, c) = 0,

i.e., the values of S A for degenerated rectangles are vanishing. These facts lead to the following result.

Theorem 4.2. Let A : [0, 1]2 → [0, 1] be a 2-increasing aggregation function with zero annihilator. Then the mapping S A : R →
] − ∞, ∞[ given by (12) is a rectangle mapping.

Proof. For proving the claim it is only needed to show that S A is an increasing mapping, and that for any R ∈ R, S A(R) ∈
[0, 1]. Obviously, as zero is an annihilator of A,

S A([0,1]2) = A(1,1) + A(0,0) − A(0,1) − A(1,0) = 1.

Now, suppose that R1, R2 ∈R, Ri = [ai, bi] ×[ci, di], i = 1, 2, and R1 ⊆ R2. These assumptions yield a1 ≥ a2, b1 ≤ b2, c1 ≥ c2

and d1 ≤ d2. Then R2 can be written as

R2 = R1 ∪ [a2,b2] × [c2, c1] ∪ [a2,b2] × [d1,d2] ∪ [a2,a1] × [c1,d1]
∪ [b1,b2] × [c1,d1],

i.e., R2 is a union of 5 non-overlapping rectangles. Due to (12), (11) and the 2-increasing property of A, we obtain

S A(R2) = V A(R2) = V A(R1) + V A([a2,b2] × [c2, c1]) + · · ·
+ V A([b1,b2] × [c1,d1]) ≥ V A(R1) = S A(R1),

which proves the increasing monotonicity of S A . Also, for any R ∈R, we have R ⊆ [0, 1]2 and thus,

0 ≤ S A(R) ≤ S A([0,1]2) = 1,

which completes the proof. �
Note that the requirement of the zero annihilator of an aggregation function A in Theorem 4.2 cannot be omit-

ted, because it is equivalent to the fulfilling of the conditions A(1, 0) = A(0, 1) = 0 as well as the boundary condition 
S A([0, 1]2) = 1. We also recall that in the framework of binary aggregation functions, the 2-increasing property of an aggre-
gation function A : [0, 1]2 → [0, 1] is equivalent to the supermodularity of A, i.e., the property

A((x1, y1) ∨ (x2, y2)) + A((x1, y1) ∧ (x2, x2)) ≥ A(x1, y1) + A(x2, y2)

valid for all couples (x1, y1), (x2, y2) ∈ [0, 1]2, see [8,11]. Thus, Theorem 4.2 can be modified considering supermodular 
aggregation functions with zero annihilator.
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5. Discrete fuzzy integrals based on aggregation functions

In this section, we first define discrete fuzzy integrals related to the introduced decompositions Dm, f , Gm, f , Km, f and 
Pm, f and an arbitrary rectangle mapping S .

Definition 5.1. Let S : R → [0, 1] be a rectangle mapping. We define four mappings D S, G S, K S, P S : Mn ×Fn → [0, ∞[ as 
follows:

(i) if hm, f = h∗ then D S(m, f ) = G S(m, f ) = K S(m, f ) = P S(m, f ) = 0,
(ii) if hm, f is given by (3) then

D S(m, f ) =
∑

R∈Dm, f

S(R) =
k∑

i=1

S([ai−1,ai] × [0,bi]), (13)

G S(m, f ) =
∑

R∈Gm, f

S(R) =
k∑

i=1

S([0,ai] × [bi+1,bi]), (14)

K S(m, f ) =
∑

R∈Km, f

S(R) =
k∑

i=1

k∑
j=i

S([ai−1,ai] × [b j+1,b j]), (15)

P S(m, f ) =
∨

R∈Pm, f

S(R) =
k∨

i=1

S([0,ai] × [0,bi]), (16)

Dm, f , Gm, f , Km, f , Pm, f , being rectangle decompositions described in (4), (5), (6) and (7), respectively.

Formally, based on the above considerations, one can introduce eight types of discrete fuzzy integrals. Four of them, 
namely D S A, G S A, K S A and P S A can be built by (13) - (16) and rectangle mappings of the type S = S A , and the other four 
integrals, denoted by D S A, G S A, D S A and P S A , can be defined in the case when S = S A for an appropriate A. However, in 
general, some of these functionals coincide.

Theorem 5.1. Let A : [0, 1]2 → [0, 1] be a 2-increasing binary aggregation function with zero annihilator. Then for each (m, f ) ∈
Mn ×Fn we have D S A(m, f ) = G S A(m, f ) = K S A(m, f ), i.e., the integrals D S A, G S A and K S A coincide.

Proof. For a given A, consider S = S A . Then, using (13) and (12), for any (m, f ) ∈Mn ×Fn we get

D S A(m, f ) =
k∑

i=1

V A ([ai−1,ai] × [0,bi]) =
k∑

i=1

(A(ai,bi) + A(ai−1,0)

− A(ai−1,bi) − A(ai,0)) =
k∑

i=1

(A(ai,bi) − A(ai−1,bi)) .

Similarly, by (14) and (12), it can be shown that, for each (m, f ) ∈Mn ×Fn ,

G S A(m, f ) =
k∑

i=1

(A(ai,bi) − A(ai,bi+1)) ,

which, by means of the convention bk+1 = 0 and the fact that zero is an annihilator of A, can be rewritten as follows:

G S A(m, f ) =
k∑

i=1

A(ai,bi) −
k−1∑
i=1

A(ai,bi+1)

=
k∑

i=1

A(ai,bi) −
k∑

i=2

A(ai−1,bi) =
k∑

i=1

(A(ai,bi) − A(ai−1,bi)) .

As regards K S A , whenever hm, f �= h∗ , we have
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K S A(m, f ) =
k∑

i=1

k∑
j=i

V A([ai−1,ai] × [b j+1,b j]) =
k∑

i=1

V A([ai−1,ai] × [0,bi])

= D S A(m, f ),

where the second equality follows from the additivity of volumes,

V A([ai−1,ai] × [0,bi]) =
k∑

j=i

V A([ai−1,ai] × [b j+1,b j]).

Thus G S A(m, f ) = D S A(m, f ) = K S A(m, f ) for each (m, f ) ∈Mn ×Fn , hence G S A = D S A = K S A . �
Now, for any fixed fuzzy measure m, we define the function D S A

m : Fn → [0, 1],

D S A
m( f ) = D S A(m, f ),

and similarly, for any f ∈ Fn , let G S A
m( f ) = G S A(m, f ) and K S A

m( f ) = K S A(m, f ). Evidently, due to Theorem 5.1, for each 
f ∈Fn , we have D S A

m( f ) = G S A
m( f ) = K S A

m( f ).

Theorem 5.2. Let A : [0, 1]2 → [0, 1] be a 2-increasing binary aggregation function with zero annihilator. Then for any fixed fuzzy 
measure m ∈Mn, the function D S A

m : Fn → [0, 1] is an n-ary aggregation function satisfying the properties:

(i) D S A
m is symmetric if and only if m is symmetric;

(ii) for any m ∈ Mn, D S A
m is idempotent and gives back the measure m, i.e., D S A

m(1E ) = m(E) for each E ⊆ [n], if and only if A has 
neutral element e = 1.

Proof. For proving that D S A
m is an aggregation function we need to verify its monotonicity and the boundary conditions 

for aggregation functions. As already applied in the proof of Theorem 5.1, due to the additivity of A-volumes, see (11), the 
rectangle mapping S A is also additive. The hypergraph Hm, f can be split into a finite number of non-overlapping rectangles 
and then D S A

m( f ) is just the sum of A-volumes of these rectangles.
Further, observe that for any functions f , g ∈ Fn such that f ≤ g , evidently, for any j ∈ [n] and t ∈ [0, 1], if f ( j) ≥ t then 
also g( j) ≥ t . Thus, for any fuzzy measure m ∈ Mn , due to the monotonicity of m and because of (1), for the survival 
functions we have hm, f ≤ hm,g and consequently, for the related hypergraphs we also get Hm, f ⊆ Hm,g . This fact enables 
us to split the hypergraph Hm,g into non-overlapping rectangles Rλ , for λ ∈ Lg , Lg being an index set, so that for some 
L f ⊆ Lg , Hm, f can be written as

Hm, f =
⋃
λ∈L f

Rλ.

Then we get

D S A
m( f ) =

∑
λ∈L f

S A(Rλ) ≤
∑
λ∈Lg

S A(Rλ) = D S A
m(g),

which proves the monotonicity of D S A
m . It is easy to see that D S A

m(0) = 0 and D S A
m(1) = 1, thus D S A

m is an aggregation 
function.

Further, we prove the stated properties of D S A
m .

(i) Consider a permutation σ : [n] → [n]. For a function f ∈Fn , let fσ (i) = f (σ (i)), and for a set E ⊆ [n], let Eσ = {σ(i) | i ∈
E}. Then the claim (i) follows from the fact that hm, fσ = hm, f holds for any permutation σ and any f ∈Fn if and only if m
is a symmetric fuzzy measure, i.e., a fuzzy measure satisfying the property m(Eσ ) = m(E) for any σ and E ⊆ [n].
(ii) The claim follows from the facts that, for any c ∈ [0, 1], E ⊆ [n] and m ∈Mn , we have

Dm,c = {[0, c] × [0,1]}, and Dm,1E = {[0,1] × [0,m(E)]}.
Then c = D S A

m(c) = A(c, 1) for each c ∈ [0, 1] if and only if 1 is a right neutral element of A, and m(E) = D S A
m(1E) =

A(1, m(E)) for each E ⊆ [n] if and only if 1 is a left neutral element of A. Summarizing, both these properties are satisfied 
if and only if e = 1 is a neutral element of A. �

Observe that due to Theorem 5.1, Theorem 5.2 also holds for G S A
m and K S A

m .
169



R. Mesiar and A. Kolesárová International Journal of Approximate Reasoning 148 (2022) 162–173
Remark 5.1. It is known that a binary aggregation function A is 2-increasing with zero annihilator and neutral element 
e = 1 if and only if A is a copula [20]. In the case of copulas, fuzzy integrals D S A = G S A = K S A were studied in [15], see 
also [16,19].

In general, the integrals D S A , G S A and K S A are not equal. For any fixed m ∈ Mn , (D S A)m , (G S A)m and (K S A)m always 
satisfy the boundary conditions, i.e., (D S A)m(0) = (G S A)m(0) = (K S A)m(0) = 0, (D S A)m(1) = (G S A)m(1) = (K S A)m(1) = 1, 
but they may violate other properties required for aggregation functions. For example, they need not be monotone, and they 
can even attain the values exceeding 1. In general, these integrals are weakly increasing.

Theorem 5.3. Let A : [0, 1]2 → [0, 1] be a binary aggregation function with zero annihilator. Then for each m ∈ Mn, the functions 
(D S A)m, (G S A)m, (K S A)m : Fn → [0, ∞[ given by

(D S A)m( f ) =
k∑

i=1

A(ai − ai−1,bi),

(G S A)m( f ) =
k∑

i=1

A(ai,bi − bi+1),

(K S A)m( f ) =
k∑

i=1

k∑
j=i

A(ai − ai−1,b j − b j+1),

respectively, are weakly increasing.

Proof. The form of the stated functions follows from (13)-(15) a (9). Let M be an arbitrary fuzzy measure in Mn . For 
proving the weak monotonicity of (D S A)m we have to show that the inequality (D S A)m( f ) ≤ (D S A)m( f + c) holds for any 
f and c in Fn such that also f + c ∈ Fn , and analogously for (G S A)m and (K S A)m . There are two possible cases, either 
f ((1)) > 0 or f ((1)) = 0. If f ((1)) > 0 (i.e., min{ f (i) | i ∈ [n]} > 0) and hm, f is given by (3), i.e., it is characterized by some 
values a1, . . . , ak and b1, . . . , bk , then hm, f +c is characterized by the values a1 + c, . . . , ak + c and b1, . . . , bk . Thus

(D S A)m( f + c) = A(a1 + c,b1) +
k∑

i=2

A(ai − ai−1,bi)

= (D S A)m( f ) + A(a1 + c,b1) − A(a1,b1) ≥ (D S A)m( f ).

In the considered case, the inequalities (G S A)m( f ) ≤ (G S A)m( f + c) and (K S A)m( f ) ≤ (K S A)m( f + c) ensuring the weak 
monotonicity of the integrals (G S A)m and (K S A)m can be proved similarly.
In the latter case, i.e., if f ((1)) = 0 (which means that f (i) = 0 for some i ∈ [n]), and hm, f is characterized by some values 
a1, . . . , ak and b1, . . . , bk , then the survival function hm, f +c is characterized either by the values c, a1 + c, . . . , ak + c and 
b1, . . . , bk (when b1 < 1), or by the values a1 + c, . . . , ak + c and b1, . . . , bk (if b1 = 1). In both situations, these observations 
are instrumental in proving the inequalities ensuring the weak monotonicity of all three discussed integrals. �

Observe that despite a function Z : Fn → R is weakly increasing and satisfies the properties Z(0) = 0 and Z(1) = 1, 
there can be an f ∈ Fn such that Z( f ) /∈ [0, 1]. This may also happen to our discrete integrals (D S A)m, (G S A)m, (K S A)m . 
Under the assumptions of Theorem 5.3, they are weakly increasing, and it is obvious that for any f ∈ Fn the values 
(D S A)m( f ), (G S A)m( f ) and (K S A)m( f ) are non-negative. However, to ensure that these integrals are weak aggregation 
functions we have to guarantee that their values do not exceed the value 1.

Theorem 5.4. Let A : [0, 1]2 → [0, 1] be a binary aggregation function with zero annihilator. Then for each m ∈Mn we have:

(i) if A(x, 1) ≤ x for each x ∈ [0, 1] then (D S A)m is a weak aggregation function;
(ii) if A(1, x) ≤ x for each x ∈ [0, 1] then (G S A)m is a weak aggregation function;
(iii) if A(x, y) ≤ xy for each x ∈ [0, 1] then (K S A)m is a weak aggregation function.

Proof. (i) Let A(x, 1) ≤ x for each x ∈ [0, 1]. Then

(D S A)m( f ) =
k∑

i=1

A(ai − ai−1,bi) ≤
k∑

i=1

A(ai − ai−1,1) ≤
k∑

i=1

(ai − ai−1)

= ak − a0 = ak ≤ 1.

The claims (ii) and (iii) can be proved in a similar way. �
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As mentioned above, any semicopula ⊗: [0, 1]2 → [0, 1] is a binary aggregation function with zero annihilator, satis-
fying 1 ⊗ x = x ⊗ 1 = x for each x ∈ [0, 1]. Therefore, due to Theorem 5.4, if A = ⊗ then (D S⊗)m and (G S⊗)m are weak 
aggregation functions for each m ∈ Mn . Similarly to the case described in Theorem 5.2, for an arbitrary semicopula ⊗, the 
discrete fuzzy integrals (D S⊗)m and (G S⊗)m are idempotent and give back the measure m. This claim also holds for the 
integral (K S⊗)m . In general, the symmetry of a fuzzy measure m ∈ Mn ensures the symmetry of all three types of integrals 
(D S A)m, (G S A)m, (K S A)m , independently of the considered aggregation function A (with zero annihilator).

Finally, recall that a conjunctive aggregation function A is characterized by the condition A ≤ min (see [6]) which in the 
binary case is equivalent to the validity of the inequalities A(x, 1) ≤ x and A(1, x) ≤ x for each x ∈ [0, 1]. Hence, if A is a 
conjunctive binary aggregation function then for any m ∈ Mn , the discrete fuzzy integrals (D S A)m and (G S A)m are weak 
aggregation functions.

6. Some discrete fuzzy integrals

It can be shown that the only binary aggregation function A such that D S A = G S A = K S A = D S A = G S A = K S A is the 
product A(x, y) = xy, and the related fuzzy integral is the Choquet integral. The Sugeno integral is related to the greatest 
copula M , M(x, y) = min{x, y}, and then Su = D S M = G S M = K S M . The opposite Sugeno integral op Su introduced by Imaoka 
[12] is related to the smallest copula W , W (x, y) = max{0, x + y − 1}, and op Su = D S W = G S W = K S W . As already stated 
in Theorem 5.2, all these integrals are, for each m ∈ Mn , idempotent aggregation functions giving back the fuzzy measure 
m.

Due to [8], A : [0, 1]2 → [0, 1] is a 2-increasing aggregation function if and only if for all x, y ∈ [0, 1],

A(x, y) = C(ϕ(x),η(y)),

for some copula C : [0, 1]2 → [0, 1] and increasing functions ϕ, η : [0, 1] → [0, 1] satisfying the conditions C(ϕ(0), η(0)) = 0
and ϕ(1) = η(1) = 1. It can be shown that if A also has zero annihilator then necessarily ϕ(0) = η(0) = 0, i.e., ϕ and η are 
unary aggregation functions. Hence, A is a 2-increasing aggregation function with zero annihilator if and only if there is a 
bivariate copula C and increasing functions ϕ, η : [0, 1] → [0, 1] satisfying ϕ(0) = η(0) = 0 and ϕ(1) = η(1) = 1 such that 
A(x, y) = C(ϕ(x), η(y)) for all (x, y) ∈ [0, 1]2.

In that case, for any (m, f ) ∈Mn ×Fn we have

D S A(m, f ) = G S A(m, f ) = K S A(m, f ) = D SC (η ◦ m,ϕ ◦ f ).

Corollary 6.1. Under the assumptions of Theorem 5.1, the discrete fuzzy integral D S A can be seen as a transform of a copula-based 
integral D SC for some copula C , transforming m ∈Mn into η ◦ m ∈Mn, and f ∈Fn into ϕ ◦ f ∈Fn.

Example 6.1. Let A be a binary aggregation function given by A(x, y) = x2 y3.
(i) Then for any (m, f ) ∈Mn ×Fn we have

D S A(m, f ) =
k∑

i=1

(a2
i b3

i − a2
i b3

i+1) = Ch(m3, f 2).

(ii) Consider n = 2. Let m({2}) = 2
3 , f (1) = 1

2 and f (2) = 1. Then

Ch(m, f ) = 1

2
+

(
1 − 1

2

)
· 2

3
= 5

6
,

D S A(m, f ) =
(

1

2

)2

+
(

1 −
(

1

2

)2
)(

2

3

)3

= 17

36
= G S A(m, f ) = K S A(m, f ),

D S A(m, f ) =
(

1

2

)2

+
(

1 − 1

2

)2 (
2

3

)3

= 35

108
,

G S A(m, f ) =
(

2

3

)2

+
(

1

2

)2 (
1 − 2

3

)3

= 33

108
,

K S A(m, f ) = 17

108
,

P S A(m, f ) = 1

4
.

(iii) If we take the aggregation function B(x, y) = √
xy instead of A, and m and f again as stated in (ii), then
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D S B(m, f ) =
√

1

2
+

√
1

12
= 0.996, G S B(m, f ) =

√
2

3
+

√
1

6
= 1.225.

Note that B does not satisfy the constraints of Theorem 5.3, e.g., B(x, 1) = √
x > x for each x ∈]0, 1[, and thus, in general, 

D S B and G S B need not be bounded from above by 1. However, for some particular fuzzy measures they can be bounded, for 
example, considering the bottom element m∗ of Mn , i.e., m∗(E) = 0 for each proper subset of [n], we obtain (D S B)m∗ ( f ) =
min{ f (i) | i ∈ [n]} ≤ 1.

Now, let us turn the attention to the discrete integrals (P S A)m and (P S A)m , m ∈ Mn . If A is a 2-increasing aggregation 
with zero annihilator then evidently (P S A)m = (P S A)m , and therefore, in such a case, it is enough to deal with the integrals 
(P S A)m . We omit simple proofs of their monotonicity and the fact they meet the boundary conditions, we only stress that 
for any m ∈ Mn and any binary 2-increasing aggregation function A with zero annihilator, (P S A)m is an n-ary aggregation 
function. It generalizes the approach of Klement et al. introduced in [14], where semicopulas ⊗ were considered to guaran-
tee the idempotency of the considered integral and its ability to give back the fuzzy measure m. Finally, we note that P Smin
is the well-known Sugeno integral [22], P S prod is the Shilkret integral [21], and P ST , T being a strict t-norm [13], is the 
Weber integral [24].

7. Concluding remarks

Based on representation of hypergraphs Hm, f of survival functions hm, f , we have proposed a general approach to in-
troducing discrete fuzzy integrals, exploiting some rectangle mappings S which evaluate rectangles [a, b] × [c, d] ⊆ [0, 1]2

of the considered hypergraph decompositions in some non-standard ways. Note that for some special choices of S the re-
sulting discrete fuzzy integrals have already been introduced and applied. This is, e.g., the case of copula-based integrals 
D SC = G SC = K SC studied in [15,16,19]. Also, some special cases of discrete fuzzy integrals D S A , G S A and P S A have 
already been proposed and discussed, mostly in the framework of generalizations of the discrete Choquet and Sugeno in-
tegrals, see, e.g., [10]. The main contribution of our paper lies in a common view at several constructions of discrete fuzzy 
integrals, with a large freedom in the choice of rectangle mappings S . For the future research, some alternative views at 
rectangle mappings can be considered. As regards some applications, in the case of new types of fuzzy integrals which 
are monotone, we expect their applications in multicriteria decision support, and in the case of integrals which are weak 
aggregation functions, we expect their applications primarily in any domain where weak aggregation functions have already 
been successfully applied, in particular in image processing and fuzzy rule-based classification systems, see, e.g., [5,16–18].
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