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A new type of decomposition integral is introduced by using a family of decomposition 
integrals based on the collections relating to partitions and maximal chains of sets. This 
new integral extends the Lebesgue integral, and it is different from those well-known 
decomposition integrals, such as the Choquet, concave, pan-, Shilkret integrals and PC-
integral. In the structure of a lattice on the class of decomposition integrals, the introduced 
decomposition integral is between the Choquet integral and the concave integral, and also 
between the pan-integral and the concave integral, and it is a lower bound of PC-integral. 
The coincidences among several well-known integrals and this new integral are also shown.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

The decomposition integral proposed by Even and Lehrer [5] provides a common framework for the concave integral, the 
Choquet integral and the pan-integral, etc. As it is known, a decomposition integral is based on the system of collections 
(also called as decomposition system). In general, two different decomposition systems induce different decomposition 
integrals, but not necessarily. Recall three important decomposition integrals, the Choquet integral, the concave integral and 
the pan-integral, they are based on all (maximal) finite chains of sets, arbitrary finite set systems and all finite partitions, 
respectively. All these integrals extend the Lebesgue integral, i.e., for σ -additive measures, each of them coincides with the 
Lebesgue integral. For a general monotone measure, they are significantly different from each other.

These three integrals and the Shilkret integral form a diamond lattice, see Fig. 1. The concave integral is the top element 
of this lattice and it can be strictly greater than the Choquet and pan-integrals simultaneously. From a lattice viewpoint, it 
is of interest to find a new element locating between these three elements, i.e., find a new decomposition integral which is 
smaller than the concave integral but greater than both the Choquet and pan-integrals.

The first step of this issue has been done by Stupňanová. In [23], she introduced a new type of decomposition inte-
gral, PC-integrals, based on the so-called PC-decomposition system in which the collection includes pairwise disjoint sets 
and chains of sets. The PC-integral locates between the concave integral and the Choquet integral, and also between the 
concave integral and the pan-integral. Since the PC-integral can be strictly greater than the Choquet and pan-integrals 
simultaneously, it is also interesting to find a new element locating between the PC-integral, Choquet integral and pan-
integrals.

* Corresponding author.
E-mail addresses: radko.mesiar@stuba.sk (R. Mesiar), lijun@cuc.edu.cn (J. Li), oyy@zjhu.edu.cn (Y. Ouyang), adam.seliga@stuba.sk (A. Šeliga).
https://doi.org/10.1016/j.ijar.2022.08.004
0888-613X/© 2022 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.ijar.2022.08.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ijar
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijar.2022.08.004&domain=pdf
mailto:radko.mesiar@stuba.sk
mailto:lijun@cuc.edu.cn
mailto:oyy@zjhu.edu.cn
mailto:adam.seliga@stuba.sk
https://doi.org/10.1016/j.ijar.2022.08.004


R. Mesiar, J. Li, Y. Ouyang et al. International Journal of Approximate Reasoning 149 (2022) 192–205
In this paper, we propose a new type of decomposition integral, which is different from the above mentioned decompo-
sition integrals. A brief summarization of the idea for this integral is as follows:

Suppose that X is a finite set and let (X, A, μ) be a monotone measure space. For a given partition ℘ of X , ℘ =
{A1, A2, . . . , Ak} ∈ P̂ (where P̂ is the class of all partitions of X), we take a maximal chain in each Ai, i = 1, 2, . . . , k, 
respectively. The union of these maximal chains constitutes a collection. Consider the set of all these collections, denoted by 
Hc

(℘) , i.e., a decomposition system related to the partition ℘ and maximal chains. These decomposition systems {Hc
(℘)}℘∈P̂

determine a family {IHc
(℘)

(μ, ·)}
℘∈P̂ of decomposition integrals. Then the new type of decomposition integral, denoted by 

IHc
P̂

(μ, ·), is defined as the supremum of the family {IHc
(℘)

(μ, ·)}
℘∈P̂ of decomposition integrals. Such the decomposition 

integrals IHc
P̂

(μ, ·), including the integrals IHc
(℘)

(μ, ·)(℘ ∈ P̂) have some new characteristics. The first, they all extend 

the Lebesgue integral, and for any ℘ ∈ P̂ , Hc
(℘) is a minimal element in the upper semilattice L consisting of Lebesgue 

decomposition systems with the inclusion relation “⊆”. The second, if we consider the structure of a lattice on the class of 
decomposition integrals, then, of all the decomposition integrals, the concave integral is the top and the Shilkret integral is 
the bottom of this lattice (see Fig. 1). The PC-integral is a lower bound of the concave integral and, the newly introduced 
integral IHc

P̂
(μ, ·) is below the PC-integral, and is between the Choquet integral and the concave integral, and also between 

the pan-integral and the concave integral (see Fig. 2).
The framework of this article is as follows: Section 2 collects some known results of decomposition integral, including 

its definition and some basic properties of four specific decomposition integrals (namely, the concave, Choquet, pan- and 
Shilkret integrals). Section 3 is devoted to investigating the Lebesgue decomposition system, including several illustrative 
examples. Section 4, the main part of the paper, begins with a review of the PC-integral and then introduces a new type 
of decomposition integral. Section 5 discusses the coincidences of this new integral and the concave, Choquet, pan- and PC-
integrals. In this discussion, the characteristics of monotone measures, such as subadditivity, supermodularity, (M)-property 
and minimal atoms, play important roles. Finally, Section 6 ends this paper.

2. Preliminaries

Let X be a nonempty set and A a σ -algebra of subsets of X , and μ be a monotone measure on (X, A), i.e., 
μ : A → [0, +∞] satisfies the following conditions: (1) μ(∅) = 0 and μ(X) > 0; (2) μ(Q ) ≤ μ(R) whenever Q ⊆ R and 
Q , R ∈A.

The set of all monotone measures on (X, A) will be denoted by M and the class of all σ -additive measures on (X, A)

will be denoted by Ma . Then Ma ⊂ M. F+ denotes the set of all finite A-measurable functions f : X → [0, +∞[. For 
A ∈A, χA : X → {0, 1} denotes its characteristic function, i.e., χA(x) = 1 if and only if x ∈ A.

Unless stated otherwise all the subsets mentioned are supposed to belong to A and all the considered monotone mea-
sures are supposed to be finite, i.e., for any μ ∈ M, μ(X) < ∞.

From Even and Lehrer [5] (see also Lehrer [9]), and Mesiar and Stupňanová [16], we recall some results related to 
decomposition integrals. Their construction copies the idea of lower integral sums and it is based on a system H of finite 
set systems from A \ {∅} (called collections in [5]).

For a fixed measurable space (X, A), the set of all systems H of finite set systems from A \ {∅} will be denoted by X.
Let H ∈X be fixed. The mapping IH :M ×F+ → [0, +∞] given by

IH(μ, f ) = sup

{∑
i∈ J

aiμ(Ai) : {Ai}i∈ J ∈ H,
∑
i∈ J

aiχAi ≤ f

}
, (2.1)

where all constants ai ≥ 0, is called a decomposition integral.
The 

∑
i∈ J aiχAi in formula (2.1) is called a H-sub-decomposition of f (with respect to collection {Ai}i∈ J ∈H).

Depending on H, several well-known nonlinear integrals can be constructed ([5,7,16]). We will adopt some notations 
used in [7,13,16].

• Let HSh = {{A} : A ∈A \ {∅}}. Then IHSh (μ, f ) is the Shilkret integral ([7,22]), i.e., for any (μ, f ) ∈M ×F+ ,

IHSh (μ, f ) = sup
{

t · μ({ f ≥ t}) : t ∈ [0,∞]}.
• Let Hpan be the set of all finite measurable partitions of X (also denoted by P̂ , i.e., Hpan = P̂). Then IHpan (μ, f ) is the 

(+, ·)-based pan-integral (see also [24]).
• Let HCh = {

C : C is a finite chain in A \ {∅}}. Then IHCh (μ, f ) is the Choquet integral [1,2,21], i.e.,

IHCh (μ, f ) =
∞∫

μ({x : f (x) ≥ t})dt.
0
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• Let Hcav = {
D : D is a finite subset in A \ {∅}}. Then IHcav (μ, f ) is the concave integral introduced by Lehrer [8] (see 

also [10]). Observe that there are also several other decomposition systems yielding the concave integral. For example, 
when A is finite, this is the case of H =A \ {∅}.

The Choquet integral is based on finite chains of sets, the pan-integral is related to finite partitions of X and the concave 
integral to any finite set systems of measurable subsets of X .

For the convenience of discussion, the following symbols from [13] will be adopted: for any (μ, f ) ∈ M × F+ , denote 
Shμ( f ) = IHSh (μ, f ), Chμ( f ) = IHCh (μ, f ), Panμ( f ) = IHpan (μ, f ) and Cavμ( f ) = IHcav (μ, f ).

The basic properties of these types of integrals can be found in [2,5–8,10,14–16,24].

For any Hs, Ht ∈X, it is easy to see that if Hs ⊆Ht , then

IHs (μ, f ) ≤ IHt (μ, f )

for any (μ, f ) ∈M ×F+ .
We have further results. Let Hs, Ht ∈ X. Ht is said to be a refinement of Hs ([16], see also [11]), denoted by Hs � Ht , 

if for any D1 ∈ Hs there is D2 ∈ Ht such that D1 ⊆ D2 Obviously, if Hs ⊆ Ht then Hs � Ht . The converse is not true. Let 
Hs, Ht ∈X, then

Hs � Ht implies IHs (μ, f ) ≤ IHt (μ, f )

for any (μ, f ) ∈M ×F+ ([16]).
Note that

HSh �Hpan �Hcav and HSh �HCh �Hcav ,

then, for any (μ, f ) ∈M ×F+ ,

Shμ( f ) ≤ Panμ( f ) ∧ Chμ( f )

and

Panμ( f ) ∨ Chμ( f ) ≤ Cavμ( f )

and, Panμ( f ) and Chμ( f ) are incomparable.
For any (m, f ) ∈Ma ×F+ ,

Panm( f ) = Chm( f ) = Cavm( f ) = Lebm( f ) (2.2)

where Lebm( f ) denotes the Lebesgue integral of f on X with respect to σ -additive measure m. The Shilkret integral does 
not possess this property.

The following Hasse diagram represents the relationships among four types of decomposition integrals (Fig. 1).

IHcav (Cavμ)

IHCh (Chμ)

IHSh (Shμ)

IHpan (Panμ)

Fig. 1. Hasse diagram of four types of decomposition integrals.
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3. Lebesgue decomposition systems

In the rest of sections, we shall confine our discussion to finite spaces. If not stating explicitly, the set X is fixed to 
{1, 2, . . . , n} and the algebra A = 2X . In this case, X = 222X \{∅}\{∅} \ {∅}.

Consider the system L ⊂X given by

L �
{
H ∈X : ∀ m ∈ Ma, IH(m, ·) is a Lebesgue integral on X

}
,

where IH(·, ·) is decomposition integral as defined in the formula (2.1).
A system H will be called a Lebesgue decomposition system if H ∈L.
For any additive measure m : 2X → [0, +∞[,

Lebm( f ) =
∑
i∈X

f (i) · m({i}) =
∑
j∈ J

a j · m(E j)

for any a j ≥ 0, E j, j ∈ J such that 
∑

j∈ J a jχE j = f .
In this paper, only Lebesgue integral acting on non-negative measurable functions is considered, as for real-valued func-

tions, it is then enough to consider their positive parts and the negative parts, respectively. This approach allows us to 
define decomposition integrals on real functions, as it was considered, e.g., in [3,4].

From the equation (2.2), it can be seen that Hpan, HCh, Hcav ∈L. However, HSh /∈L. Some more results on the extension 
of the Lebesgue integral were presented in [11].

Example 3.1. (i) Let H =
{{{1}, {2}, . . . , {n}}} ∈X. Then for any (μ, f ) ∈M ×F+ ,

IH(μ, f ) =
∑
i∈X

f (i) · μ({i})

and hence if m is an additive measure on 2X , then for any f ∈F+ ,

IH(m, f ) =
∑
i∈X

f (i) · m({i}) = Lebm( f ).

Thus, H =
{{{1}, {2}, . . . , {n}}} ∈L.

(ii) Let H = {{A1, A2, . . . , Ak}
}

with {A1, A2, . . . , Ak} ∈ P̂ . Then for any (μ, f ) ∈M ×F+ ,

IH(μ, f ) =
∑
i∈X

(
inf

x∈Ai

f (x)
) · μ({Ai}).

For k < n, i.e., 
{

A j
}k

j=1 �= {{i}}n
i=1, H = {{A1, A2, . . . , Ak}

}
/∈L. If k = n, then 

{
A j

}k
j=1 = {{i}}n

i=1, it goes back to the case 

(i), H =
{{{1}, {2}, . . . , {n}}} ∈L.

(iii) Let H =
{{{1}}, {{2}}, . . . , {{n}}} ∈X (n ≥ 2). Then for any (μ, f ) ∈M ×F+ ,

IH(μ, f ) = max
i∈X

{
f (i) · μ({i})}.

For such a system H ∈ X, IH(m, f ) = Lebm( f ) only if m is a positive multiple of some Dirac measure on X . For other 
m ∈Ma , IH(m, f ) �= Lebm( f ), therefore H =

{{{1}}, {{2}}, . . . , {{n}}} /∈L.

Now we discuss the maximal element of (L, ⊆).
The following result has been shown in [11], we provide here an alternative proof.

Proposition 3.2. Let H ∈ X. If there exists Hs ∈ L such that Hs � H, then H ∈ L, and hence if Hs ∈ L and Ht ∈ X, then Hs ∪
Ht ∈L.

Proof. Let f ∈ F+ . For any collection D = {E j} j∈ J ∈ H, if m ∈ Ma , i.e., m is additive measure on 2X and 
∑

j∈ J a jχE j ≤
f , then 

∑
j∈ J a jm(E j) ≤ Lebm( f ). Therefore for f ∈ F+ , IH(m, f ) ≤ Lebm( f ). On the other hand, Hs � H and Hs ∈ L, 

therefore

IH(m, f ) ≥ IHs (m, f ) = Lebm( f ).

Consequently, for any f ∈F+ , IH(m, f ) = Lebm( f ), i.e., H ∈L. �
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Example 3.3. Consider Hpan , i.e., the set of all finite measurable partitions of X . Let H = {{{1}, {2}, . . . , {n}}}, then H ∈ L
and Hpan ⊇ H. From Proposition 3.2, we have Hpan ∈ L. Then for additive measure m, it holds Panm( f ) = IHpan (m, f ) =
Lebm( f ).

Since H ⊆Hcav holds for any H ∈X, the following result is a consequence of Proposition 3.2.

Proposition 3.4. The (L, ⊆) is an upper semilattice with maximal element

H∗ =
{
D : D is a finite subset in 2X \ {∅}

}
,

that is, H∗ =Hcav .

Consequently, the concave integral IHcav (μ, f ) introduced by Lehrer [8] is the greatest decomposition integral defined 
on M ×F+ .

Now we discuss the minimal Lebesgue decomposition systems in (L, ⊆).
Let ℘ = {A1, A2, . . . , Ak} ∈ P̂ be given, where P̂ is the class of all (finite measurable) partitions of X . Define

Hc
(℘) =

{ k⋃
i=1

Ci : Ci is a maximal chain in 2Ai \ {∅}, i = 1,2, . . . ,k

}
. (3.1)

Note: In the formula (3.1), each Ci is required to be a maximal chain in 2Ai \ {∅} just for the convenience of discussion. 
In fact, if we consider arbitrary chains in each Ai , then the results are the same.

The following presents some properties of the decomposition systems Hc
(℘) (℘ ∈ P̂) and the corresponding decomposi-

tion integrals IHc
(℘)

(μ, ·).

• |Hc
(℘) | =

k∏
i=1

( | Ai |!), where | · | stands for the cardinality of a set.

• Let ℘n = {{1}, {2}, . . . , {n}}, then Hc
(℘n) =

{{{1}, {2}, . . . , {n}}}, and hence

IHc
(℘n)

(μ, f ) =
n∑

i=1

f (i) · μ({i}). (3.2)

As shown in Example 3.1, if μ is an additive measure on 2X , then IHc
(℘n)

(μ, ·) is a Lebesgue integral on X . Therefore 
Hc

(℘n) ∈L.
Note that for such Hc

(℘n) and any given μ ∈ M (not necessarily additive), the decomposition integral IHc
(℘n)

(μ, ·)
determines a positive homogeneous and linear functional on F+ , i.e., for any f , g ∈F+ , α ≥ 0,

IHc
(℘n)

(μ, f + g) = IHc
(℘n)

(μ, f ) + IHc
(℘n)

(μ, g),

and

IHc
(℘n)

(μ,α f ) = α IHc
(℘n)

(μ, f ).

• If ℘ = {
X
}

, then Hc
(℘) is the family of all maximal chains in 2X \ {∅}. It is easy to see that | Hc

({X}) | = n! and Hc
({X}) ⊆

HCh . But,

IHc
({X}) (μ, f ) = IHCh (μ, f ) = Chμ( f ),

and hence Hc
({X}) ∈L.

Given ℘ = {A1, A2, . . . , Ak} ∈ P̂ , then it is easy to see that for any (m, f ) ∈Ma ×F+ ,

IHc
(℘)

(m, f ) =
n∑

i=1

f (i) · m
({i}) = Lebm( f ).

Proposition 3.5. For any ℘ ∈ P̂ , Hc is a Lebesgue decomposition system, i.e., Hc ∈L.
(℘) (℘)
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The following is a direct result from Propositions 3.2 and 3.5.

Proposition 3.6. Let H ∈X. If there exists some ℘ ∈ P̂ such that H ⊇Hc
(℘) , then H ∈L.

The converse of Proposition 3.6 is not true, i.e., for a Lebesgue decomposition system H ∈ L, it may not contain any 
Hc

(℘)
(℘ ∈ P̂). This is illustrated by the following example.

Example 3.7. Let X = {1, 2, 3} and

H =
{{{1}, {2}, {1,2,3}},{{1}, {3}, {1,2,3}},{{2}, {3}, {1,2,3}}}.

Then H ∈L. In fact, for any (m, f ) ∈Ma ×F+ , if f (1) = min1≤i≤3{ f (i)} then

f (1)χ{1,2,3} + ( f (2) − f (1))χ{2} + ( f (3) − f (1))χ{3} = f

and

f (1) · m({1,2,3}) + ( f (2) − f (1)) · m({2}) + ( f (3) − f (1)) · m({3}) =
3∑

i=1

f (i) · m({i}) = Leb(m, f ),

i.e., IH(m, f ) = Leb(m, f ). Other cases can be treated similarly. Therefore, H ∈ L. However, there is no ℘ ∈ P̂ such that 
H ⊇Hc

(℘) .

Let H ∈L. It is said to be a minimal Lebesgue decomposition system (in L), if there is no Lebesgue decomposition system 
H′ such that H′ �H, i.e., H ∈L and for any D ∈H, H \ {D} /∈L.

From the above discussions on Hc
(℘n) , we can see that

Hc
(℘n) =

{{{1}, {2}, . . . , {n}}}
is a minimal Lebesgue decomposition system. In general the following result holds.

Proposition 3.8. For every ℘ ∈ P̂ , Hc
(℘) is a minimal Lebesgue decomposition system in L.

Proof. Let ℘ = {A1, A2, . . . , Ak} ∈ P̂ . It suffices to show that if we take an arbitrary element ∪k
i=1Ci from H(℘) , where for 

each 1 ≤ i ≤ k, Ci is a maximal chain in 2Ai \ {∅}, then there will be the case that

IHc
(℘)

\{∪k
i=1Ci}(m, f ) �= Lebm( f )

for some (m, f ) ∈Ma ×F+ .
For simplicity, suppose that A1 = {1, 2, . . . , l} and

C1 =
{
{1}, {1,2}, . . . , {1,2, . . . , l}

}
.

C1 is a maximal chain in 2A1 \ {∅}.
Define f ∈F+ as

f (i) =
{

l − i + 1 if 1 ≤ i ≤ l,

0 otherwise.

Then for any m ∈Ma with m({i}) > 0 for all 1 ≤ i ≤ l, we have IHc
(℘)

\{∪k
i=1Ci}(m, f ) < Lebm( f ). In fact, for any maximal chain

C′
1 = {E ′

1, E ′
2, . . . , E ′

l}
in 2A1 \ {∅} which differs from C1 and any nonnegative number λ1, λ2, . . . , λl such that 

∑l
i=1 λiχE ′

i
≤ f it must be that ∑l

i=1 λiχE ′
i
< f . So, the finiteness of X implies that IHc

(℘)
\{∪k

i=1Ci}(m, f ) < Lebm( f ). �
In particular, by Propositions 3.5 and 3.6, for ℘n = {{1}, {2}, . . . , {n}} and ℘ = {

X
}

, the related systems Hc
(℘n) and Hc

({X})
are all minimal Lebesgue decomposition system in L.
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Note 3.9. The system H defined as in Example 3.7 is also a minimal Lebesgue decomposition system in L. But, for any 
℘ ∈ P̂ , H �=Hc

(℘) .

The following theorem provides a way to calculate decomposition integral IHc
(℘)

(μ, ·).

Theorem 3.10. For any monotone measure μ : 2X → [0, +∞[ and any ℘ = {A1, A2, . . . , Ak} ∈ P̂ , we have

IHc
(℘)

(μ, f ) =
k∑

i=1

Chμ|Ai

(
f |Ai

)
(3.3)

for all f ∈F+ , where μ |Ai is the restriction of μ to Ai and f |Ai is the restriction of f to Ai .

Proof. For any ℘ = {A1, A2, . . . , Ak} ∈ P̂ ,

Hc
(℘) =

{ k⋃
i=1

Ci : Ci is a maximal chain in 2Ai \ {∅}
}
.

Now let f be given and 
∑

j∈ J a jχE j be an arbitrary sub-decomposition of f , i.e., 
∑

j∈ J a jχE j ≤ f and {E j} j∈ J ∈ Hc
(℘) . 

Then 
∑k

i=1

(∑
E j⊆Ai

a jχE j

) = ∑
j∈ J a jχE j ≤ f . On the other hand,

∑
j∈ J

a jμ(E j) =
k∑

i=1

( ∑
E j⊆Ai

a jμ(E j)
)

and for every i = 1, 2, . . . , k,

Chμ|Ai

(
f |Ai

) = sup

{ ∑
E j⊆Ai

a jμ(E j) : {E j : E j⊆Ai} is a maximal chain in Ai,
∑

E j⊂Ai

a jχE j ≤ f · χAi

}
.

Noting that 
∑

j∈ J a jχE j ≤ f is equivalent to 
∑

E j⊂Ai
a jχE j ≤ f · χAi for every i = 1, 2, . . . , k. Therefore

IHc
(℘)

(μ, f ) = sup

{∑
J∈ J

a jμ(E j) : {E j} j∈ J ∈ Hc
(℘),

∑
j∈ J

a jχE j ≤ f

}

=
k∑

i=1

[
sup

{ ∑
E j⊆Ai

a jμ(E j) : {E j : E j⊆Ai} is a maximal chain in Ai,
∑

E j⊂Ai

a jχE j ≤ f · χAi

}]

=
k∑

i=1

Chμ|Ai

(
f |Ai

)
.

The proof is completed. �
A general version of Theorem 3.10 has been shown in [11]. For the sake of self-containedness, the above proof of 

Theorem 3.10 is not omitted.

Observe that for any given ℘ = {A1, A2, . . . , Ak} ∈ P̂ , the decomposition system Hc
(℘) is related to maximal chains in 

2Ai \ {∅}, i = 1, 2, . . . , k. Similar to the decomposition system Hc
(℘) , consider a family of decomposition systems which are 

related to partitions in Ai, i = 1, 2, . . . , k.
Let ℘ = {A1, A2, . . . , Ak} ∈ P̂ be given. We define

Hp
(℘) =

{ k⋃
i=1

Di : Di is a partition of Ai, i = 1,2, . . . ,k

}
. (3.4)

We present some properties of the decomposition systems Hp
(℘) (℘ ∈ P̂) and the integrals IHp (μ, ·).
(℘)
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• For ℘n = {{1}, {2}, . . . , {n}}, then Hp
(℘n) =

{{{1}, {2}, . . . , {n}}}, and we have

IHp
(℘n)

(μ, f ) = IHc
(℘n)

(μ, f ) =
n∑

i=1

f (i) · μ({i}), (3.5)

and | Hp
(℘n) | = 1. Obviously, if μ is an additive measure on 2X , then IHp

(℘n)
(μ, ·) is a Lebesgue integral on X , and hence 

Hp
(℘n) ∈L.

• Consider ℘ = {
X
}

, then Hp
{X} =Hpan . Thus,

IHp
{X}

(μ, f ) = IHpan(μ, f ) = Panμ( f ),

and hence Hp
({X}) ∈L.

For any ℘ = {A1, A2, . . . , Ak} ∈ P̂ , evidently

Hp
(℘n) ⊆ Hp

(℘) ⊆ Hp
({X}) = Hpan,

i.e., Hp
(℘n) and Hp

({X}) are respectively minimal and maximal elements in family {Hp
(℘)}℘∈P̂ in the sense of standard set 

inclusion. However, for the family {Hc
(℘)}℘∈P̂ , there is no similar property. In fact, Hc

(℘n) �Hp
({X}) (recall that IHc{X}(μ, f ) =

IHCh (μ, f ) = Chμ( f )).

Similar to Proposition 3.5 and 3.6, we have the following results.

Proposition 3.11. (i) For any ℘ ∈ P̂ , Hp
(℘) is a Lebesgue decomposition system, i.e., Hp

(℘) ∈L.

(ii) If for some ℘ ∈ P̂ such that H ⊇Hp
(℘)

, then H ∈L.

The following is a special case of Theorem 2 in [11].

Theorem 3.12. For any monotone measure μ : 2X → [0, +∞[ and any ℘ = {A1, A2, . . . , Ak} ∈ P̂ , we have

IHp
(℘)

(μ, f ) =
k∑

i=1

Panμ|Ai

(
f |Ai

)
(3.6)

for all f ∈F+ .

4. A new type of decomposition integral

4.1. PC-decomposition integrals

In the following we recall a decomposition system H(pc) which was introduced by Stupňanová [23], defined as

H(pc) �
{
D ∈X : ∀ Es, Et ∈ D, such that Es ∩ Et ∈ {∅, Es, Et

}}
.

The system H(pc) is called a PC-collection and the decomposition integral IH(pc) (μ, f ) with respect to H(pc) is called 
PC-integral.

The following relations are obviously true for any ℘ ∈ P̂ :

Hp
(℘) ⊆ H(pc) ⊆ Hcav and Hc

(℘) ⊆ H(pc) ⊆ Hcav .

In particular,

Hp
({X}) = Hpan ⊆ H(pc) and Hc

({X}) ⊆ HCh ⊆ H(pc),

and from Proposition 3.6 (or Proposition 3.11), it is evident that H(pc) ∈L. Therefore, the PC-integral extends the Lebesgue 
integral.

From the above inclusion relations, for any (μ, f ) ∈M ×F+ , it holds that

Panμ( f ) ∨ Chμ( f ) ≤ IH(pc) (μ, f ) ≤ Cavμ( f ).

In Example 1 in [23] it was shown that there is some (μ, f ) ∈M ×F+ such that

Panμ( f ) ∨ Chμ( f ) < IH(pc) (μ, f ) < Cavμ( f ).

For the lattice structure of these integrals, see Fig. 2.
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4.2. The new integral

The following problem has attracted our interest:
Can we introduce an integral such that it is greater than both the Choquet integral and the pan integral, but smaller than PC-

integral?
To answer this question, let us begin by constructing a decomposition system Hc

P̂ via the family {Hc
(℘)}℘∈P̂ of decom-

position systems.

Definition 4.1. Let X be a finite set and P̂ be the class of all partitions of X . The decomposition system Hc
P̂

is defined as 
the union of the family {Hc

(℘)}℘∈P̂ , i.e.,

Hc
P̂ �

⋃
℘∈P̂

Hc
(℘)

=
{
C ∈X : {Ai}n

i=1 ∈ P̂,
{

C ∩ Ai | C ∈ C, C ∩ Ai �= ∅} is a maximal chain in Ai, i = 1,2, . . . ,k
}
. (4.1)

The following is a concrete example of Hc
P̂

Example 4.2. Let X = {1, 2, 3}. Then

Hc
P̂ =

{
{{1}, {2}, {3}}, {{1}, {1,2}, {3}}, {{2}, {1,2}, {3}}, {{1}, {1,3}, {2}},

{{3}, {1,3}, {2}}, {{2}, {2,3}, {1}}, {{3}, {2,3}, {1}},
{{1}, {1,2}, {1,2,3}}, {{1}, {1,3}, {1,2,3}}, {{2}, {1,2}, {1,2,3}},

{{2}, {2,3}, {1,2,3}}, {{3}, {1,3}, {1,2,3}}, {{3}, {2,3}, {1,2,3}}
}
.

Definition 4.3. The decomposition system Hc
P̂ induces a new type of decomposition integral IHc

P̂
(·, ·), which is given by

IHc
P̂

(μ, f ) = sup

{∑
i∈ J

aiμ(Ai) : {Ai}i∈ J ∈ Hc
P̂ ,

∑
i∈ J

aiχAi ≤ f

}
,

where all constants ai ≥ 0.

Since Hpan �Hc
P̂ and Hc

({X}) ⊂Hc
P̂ ⊂H(pc) , the decomposition integral IHc

P̂
(·, ·) has the following desired property

Panμ( f ) ∨ Chμ( f ) ≤ IHc
P̂

(μ, f ) ≤ IH(pc) (μ, f ).

Since for any ℘ ∈ P̂ , Hc
(℘) ⊆ Hc

P̂ , and Hc
(℘) ∈ L, it follows from Proposition 3.6 that Hc

P̂ ∈ L, i.e., Hc
P̂ is a Lebesgue 

decomposition system, that is, the decomposition integral IHc
P̂

(·, ·) extends the Lebesgue integral.

The following theorem provides a way to calculate IHc
P̂

(·, ·).

Theorem 4.4. For any (μ, f ) ∈M ×F+ , we have

IHc
P̂

(μ, f ) =
∨
℘∈P̂

IHc
(℘)

(μ, f ) (4.2)

= max

{ k∑
i=1

Chμ|Ai

(
f |Ai

) : ℘ = {Ai}k
i=1 ∈ P̂

}
. (4.3)

Proof. Bearing in mind that for any ℘ ∈ P̂ , Hc
(℘)

⊆Hc
P̂

. As a consequence, for any (μ, f ) ∈M ×F+ , it holds

IHc
(℘)

(μ, f ) ≤ IHc
P̂

(μ, f ),

and hence IHc (μ, f ) ≥ ∨
ˆ IHc (μ, f ).
P̂ ℘∈P (℘)
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On the other hand, let (μ, f ) ∈M ×F+ be given. For any Hc
P̂ -sub-decomposition of f , 

∑s
j=1 a jχE j (i.e., 

∑s
j=1 a jχE j ≤

f , a j ≥ 0, {E j}s
j=1 ∈ Hc

P̂ ), there is some ℘0 ∈ P̂ such that {E j}s
j=1 ∈ Hc

(℘0) , thus 
∑s

j=1 a jχE j is also a Hc
(℘0)-sub-

decomposition of f . So

{ s∑
j=1

a jμ(E j) :
s∑

j=1

a jχE j ≤ f , {E j}s
j=1 ∈ Hc

P̂ ,a j ≥ 0
}

⊆
⋃
℘∈P̂

{ t∑
k=1

bkμ(Fk) :
t∑

k=1

bkχFk ≤ f , (Fk)
t
k=1 ∈ Hc

(℘),bk ≥ 0
}
.

Therefore,

IHc
P̂

(μ, f ) = max
{ s∑

j=1

a jμ(E j) :
s∑

j=1

a jχE j ≤ f , {E j}s
j=1 ∈ Hc

P̂ ,a j ≥ 0
}

≤ max
℘∈P̂

IHc
(℘)

(μ, f )

= max

{ k∑
i=1

Chμ|Ai

(
f |Ai

) : ℘ = {Ai}k
i=1 ∈ P̂

}
.

The proof is completed. �
For the fixed partition ℘n = {{1}, {2}, . . . , {n}}, we have

IHp
(℘n)

(μ, f ) = IHc
(℘n)

(μ, f ) =
n∑

i=1

f (i) · μ({i})
(see Eq. (3.5)), and hence

IHc
P̂

(μ, f ) ≥ IHc
(℘n)

(μ, f ) =
n∑

i=1

f (i) · μ({i}).
Being similar to Eq. (4.1), one may want to consider the following decomposition system

Hp

P̂
�

⋃
℘∈P̂

Hp
(℘).

However, this is not a new decomposition system. In fact, for any ℘ ∈ P̂ , Hp
(℘) ⊆Hp

{X} , then

Hp

P̂
= Hp

({X}) = Hpan and IHp

P̂
(μ, f ) = Panμ( f ).

Thus, for any ℘ ∈ P̂ , it holds

IHp
(℘)

(μ, f ) ≤ Panμ( f ) ≤ IH(pc) (μ, f ) ≤ Cavμ( f )

(see Fig. 2).

The following result indicates that the pan-integral Panμ(·) is a lower bound of IHc
P̂

(μ, ·), see Fig. 2.

Proposition 4.5. Let X be finite space and μ ∈M be fixed. Then for all f ∈F+ , we have

Panμ( f ) ≤ IHc
P̂

(μ, f ).

Proof. Given f ∈ F+ . Then there is a partition ℘ = {A1, A2, . . . , Ak} ∈ P̂ and a j ≥ 0, 1 ≤ j ≤ k with 
∑k

j=1 a jχA j ≤ f such 
that

Panμ( f ) =
k∑

a jμ(A j).
j=1
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By the monotonicity of Choquet integral, we have

k∑
j=1

a jμ(A j) =
k∑

j=1

Chμ|A j
(a j) ≤

k∑
j=1

Chμ|A j
( f |A j )

≤ max

⎧⎨
⎩

k∑
j=1

Chμ|A j
( f |A j ) : ℘ = {A1, A2, . . . , Ak} ∈ P̂

⎫⎬
⎭

= IHc
P̂

(μ, f ).

The proof is completed. �
The following example shows that there is some (μ, f ) ∈M ×F+ such that

Panμ( f ) < IHc
P̂

(μ, f ) < IH(pc) (μ, f )

and

Chμ( f ) < IHc
P̂

(μ, f ) < IH(pc) (μ, f ).

Example 4.6. Let X = {1, 2, 3}, A = 2X . Define f (1) = 2, f (2) = 3, f (3) = 4.
(i) Define a monotone measure μ as follows:

μ(A) =

⎧⎪⎪⎨
⎪⎪⎩

3 if |A| ≥ 2,

1 if |A| = 1,

0 A = ∅.

Then

IHc
P̂

(μ, f ) = 2μ({1}) + 3μ({2,3}) + μ({3}) = 12,

Chμ( f ) = 2μ({1,2,3}) + μ({2,3}) + μ({3}) = 10,

Panμ( f ) = 2μ({1}) + 3μ({2,3}) = 11.

This shows that Chμ( f ) < IHc
P̂

(μ, f ) and Panν( f ) < IHc
P̂

(ν, f ).

(ii) Define a monotone measure ν as follows:

ν(A) =

⎧⎪⎪⎨
⎪⎪⎩

4 if A = X,

0 if A = ∅,

1 else.

Then

IH(pc) (ν, f ) = 2ν({1,2,3}) + ν({2}) + 2ν({3}) = 11,

IHc
P̂

(ν, f ) = 2ν({1,2,3}) + ν({2,3}) + ν({3}) = 10,

Panν( f ) = IHp

P̂
(ν, f ) = 2ν({1}) + 3ν({2}) + 4ν({3}) = 9.

Therefore,

Panν( f ) < IHc
P̂

(μ, f ) < IH(pc) (μ, f ).

We illustrate the relationships among the above several types of decomposition integrals by the following Hasse diagram 
(they form a join semilattice, compare with Fig. 1).
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IHcav (Cavμ)

IH(pc)

IHCh (Chμ)

IHSh (Shμ)

IHpan (Panμ)

=IHp
{X}

= IHp
P̂

=IHc{X}

IHc
P̂

IHc
(℘n)

= IHp
(℘n)

IHc
(℘)

(℘ �= ℘n)

Fig. 2. Hasse diagram of decomposition integrals.

5. The coincidences among several kinds of integrals

In this section, we discuss the coincidences among several types of decomposition integrals discussed in the above 
sections.

Lehrer and Teper [10] showed that the Choquet integral coincides with the concave integral if and only if the monotone 
measure μ is supermodular. In [19] we showed that subadditivity of monotone measures is a sufficient condition that the 
concave integrals coincide with the pan-integral. In [20] it is showed that the (M)-property of monotone measures (which 
was proposed by Mesiar [13], as follows: for any P , Q ∈ A with P ⊆ Q , there exists R ∈ A such that R ⊆ P , μ(R) = μ(P )

and μ(Q ) = μ(R) + μ(Q \ R)) is sufficient to the equivalence of the pan-integral and the Choquet integral.
From Proposition 2 in [10], Theorem 4.6 in [18] (see also Theorem 4.1 in [20]), Theorem 4.1 in [17], and Propositions 3.10

and 3.12, the following results are immediate.

Proposition 5.1. Let X be finite space and μ ∈M be fixed. Then

(i) μ is supermodular, i.e., for any P , Q ∈A, μ(P ∪ Q ) + μ(P ∩ Q ) ≥ μ(P ) + μ(Q ), if and only if for all f ∈F+ ,

Chμ( f ) = IHc

P̂
(μ, f ) = IH(pc) (μ, f ) = Cavμ( f );

(ii) μ has (M)-property if and only if for all f ∈F+ ,

Chμ( f ) = IHc
P̂

(μ, f ) = Panμ( f );
(iii) for all f ∈F+ ,

Panμ( f ) = IHp

P̂
(μ, f ) = IH(pc) (μ, f ) = Cavμ( f )

if and only if the conditions (1) and (2) in Theorem 4.1 in [17] are satisfied.

Note: In [17] we introduced the concept of minimal atom of a monotone measure and used its characteristics to present 
a necessary and sufficient condition that the concave integral coincides with the pan-integral (see Theorem 4.1 in [17]).
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From Corollary 4.7 in [17] (see also Theorem 9 in [19], Theorem 2 in [23]), if μ is subadditive, i.e., for any A, B ∈ A, 
μ(A ∪ B) ≤ μ(A) + μ(B), then for all f ∈F+ , it holds

Panμ( f ) = IHc
P̂

(μ, f ) = IH(pc) (μ, f ) = Cavμ( f ).

Given a monotone measure space (X, A, μ). A set A ∈ A is called a minimal atom of monotone measure μ if μ(A) > 0
and for every B ∈ A and B ⊆ A holds either (1) μ(B) = 0, or (2) A = B (see [17]). When X is a finite space, for given 
μ ∈M, X can be expressed as

X = E0 ∪ E1 ∪ E2 ∪ · · · ∪ Ek,

where {Ei}k
i=1 is a family of pairwise disjoint minimal atoms of μ contained in X and μ(E0) = 0. Then ℘a =

{E0, E1, E2, . . . , Ek} ∈ P̂ . Combining Proposition 4.6 in [12], Propositions 3.10 and 3.12, for all f ∈ F+ , the following re-
sult (which is a general version of Eq. (3.5)) holds:

IHc
(℘a)

(μ, f ) = IHp
(℘a)

(μ, f ) =
k∑

i=1

inf
x∈Ei

f (x) · μ(Ei).

This implies IHc
P̂

(μ, f ) ≥ ∑k
i=1 inf

x∈Ei

f (x) · μ(Ei).

From Theorem 5.3 in [18] and Proposition 5.1, we have the following result: for all f ∈F+ ,

Panμ( f ) = Chμ( f ) = IHc

P̂
(μ, f ) = IH(pc) (μ, f ) = Cavμ( f )

if and only if the following two conditions hold:

(1) μ has (M)-property;
(2) μ possesses the minimal atoms disjointness property, i.e., for every pair of minimal atoms T1 and T2 of μ, T1 �= T2 implies 

T1 ∩ T2 = ∅.

6. Conclusion

We have constructed a new type of decomposition integral, IHc
P̂

(μ, ·), by using a family of decomposition integrals 
{IHc

(℘)
(μ, ·)}

℘∈P̂ (Theorem 4.4). As we have seen, this integral is based on the decomposition systems Hc
P̂ related to par-

titions and maximal chains of sets, and it extends the Lebesgue integral. Each of the family of integrals also extends the 
Lebesgue integral, not only that, every Hc

(℘)(℘ ∈ P̂) is a minimal Lebesgue decomposition system in (L, ⊆) (Proposition 3.8). 
In the structure of a lattice on the class of decomposition integrals, the introduced integral IHc

P̂
(μ, ·) is lower bound of the 

PC-integral and is between the concave integral and the Choquet integral, and also between the concave integral and the 
pan-integral (see Fig. 2).
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