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a b s t r a c t

An important problem faced when dealing with imperfect information in fusion processes the uncer-
tainty regarding values of the membership degrees to be employed in fuzzy modeling. In this scenario,
one can apply interval-valued (iv) fuzzy sets, in which the membership degrees are represented by
intervals. A recurrent issue is the situation in which the quality of information carried by the intervals,
expressed by their widths, suffers degradation during the fusion process. So, the main objective of this
paper is to develop a general framework to construct iv-fusion functions whose outputs conserve the
information quality of the operated intervals. To achieve that, first, extend important concepts such
as width-limiting functions and width-limited iv-functions to the n-dimensional context. Then, we
present a characterization for any subclass of increasing fusion function by their set of properties,
followed by the interval extension of such characterization to obtain classes of width-limited
iv-fusion functions. We show that our methodology is general enough to retrieve several classes of
iv-aggregation functions from the literature. Two approaches for constructing width-limited iv-fusion
functions are also presented, which enables the application of different subclasses of width-limited
iv-fusion functions in fusion/aggregation processes with imperfect information. Finally, we present
a case study on a classification problem. Specifically, we use IVTURS, a state-of-the-art iv-fuzzy rule-
based classification system, and a particular subclass of width-limited iv-fusion functions
(n-dimensional width-limited iv-overlap functions), showing that the control of the information quality
through width limitation significantly enhances the accuracy of the classifier.

© 2022 Elsevier B.V. All rights reserved.
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1. Introduction

Fusion functions are useful operators that combine several
umerical values into a single representative one [1]. The most
mportant class of fusion functions is that of aggregation func-
ions [2] (or, more generally, pre-aggregation functions [3]),
hich are especially suitable to model fuzzy logic operations. For
xample, t-norms [4] and overlap functions [5] can be applied

∗ Corresponding author at: Departamento de Estadística, Informática y
atemáticas, EIM, Universidad Publica de Navarra, Pamplona, Spain.

E-mail addresses: tiago.dacruz@unavarra.es, tiagoasmus@furg.br
T. da Cruz Asmus), joseantonio.sanz@unavarra.es (J.A. Sanz),
racaliz.pereira@unavarra.es, gracalizdimuro@furg.br (G.P. Dimuro),
cojavier.fernandez@unavarra.es (J. Fernandez), mesiar@math.sk (R. Mesiar),
ustince@unavarra.es (H. Bustince).
 t

ttps://doi.org/10.1016/j.knosys.2022.109963
950-7051/© 2022 Elsevier B.V. All rights reserved.
as fuzzy conjunction operators, while t-conorms [4] and group-
ing functions [6] can be applied as fuzzy disjunction operators.
For that reason, aggregation functions have been widely used
in several theoretical and applied fields [2,7]. In particular, we
have worked with n-dimensional overlap functions [8], which
onstitute a subclass of aggregation functions that do not require
ssociativity and have been successfully applied in the reasoning
ethod of fuzzy rule-based classification systems (FRBCSs) [9,10].
When facing problems with imperfect information [11,12],

here may be uncertainty regarding the values of the membership
egrees or even in the definition of the membership functions
o be used in a fuzzy modeling [13,14]. Uncertainty can be mod-
led by different means for different purposes, such as through
xtended soft sets [15], fuzzy rough sets [16], Dempster–Shafer
vidence theory and its generalizations [17–20], to name a few.
In particular, a viable and popular solution to model uncer-

ainty is the adoption of interval-valued fuzzy sets (IVFSs) [21,22],
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n which the membership degrees are represented by intervals.
n this context, the width of the assigned intervals are intrinsi-
ally related with the uncertainty/ignorance with respect to the
odeling of the fuzzy sets [23,24]. IVFSs have been successfully
pplied in many different fields, such as image processing [25],
ame theory [26], multicriteria decision making [27], pest con-
rol [28], irrigation systems [29], collaborative clustering [30] and
lassification [31]. We point out that the modeling of linguistic
abels via IVFSs in FRBCSs gave birth to interval-valued rule-
ased classification systems (IV-FRBCSs) [32–34], in which the
ggregation process is a key component for the success of the
lassifier. Both FRBCSs and IV-FRBCSs have the advantageous as-
ect of being based on a set of linguistic rules, which makes them
ighly interpretable classification systems, while still achieving
ccurate results [32,35].
To accomplish aggregation processes with interval data, dif-

erent aggregation functions had to be extended to the interval
ontext [36]. Since then, several classes of iv-aggregation were
ntroduced, such as interval-valued t-norms and t-conorms [24],
v-overlap and grouping functions [37,38] and general iv-overlap
nd grouping functions [39,40]. In most cases, a particular class
f iv-aggregation function is defined by extending the definition
f a given class of aggregation function based on the concept of
est interval representation [23]. That is, the interval output of
he iv-aggregation function is defined by the application of the
riginal aggregation function to the endpoints of the input inter-
als. Besides being intuitive and theoretically sound, extending
ggregation functions to the interval context through the best
nterval representation has other benefits: the computation is
enerally easy, as one only deals with the endpoints of the input
ntervals, and correctness is guaranteed, since the output interval
ontains the exact unknown aggregated value [41].
Nevertheless, there are some drawbacks when applying iv-

ggregation functions defined in this manner in practical prob-
ems. First, monotonicity is usually evaluated with respect to the
roduct order [42], which also considers only the endpoints of
he intervals when comparing them. However, the product order
s not a total order, meaning that one may have intervals that are
ot comparable, a hindrance that has to be avoided in problems
uch as decision making and classification [43]. To tackle this
rawback, Bustince et al. [43] introduced the concept of admis-
ible orders, that is, total orders that refine the product order,
nd that can be constructed by a pair of aggregation functions.
ince then, many works using admissible orders have appeared
n the literature [44–46]. In the context of aggregation of interval
ata, Bustince et al. [47] presented a construction method for
v-aggregation functions that are increasing with respect to a
iven admissible order. In the same context, Asmus et al. [33]
ntroduced the concept of n-dimensional admissibly ordered iv-
overlap functions, which are n-dimensional iv-overlap functions
that are increasing with respect to an admissible order, showing
good results when applied in IV-FRBCSs.

Another drawback in a practical sense is that, due to some
applications constraints concerning the quality of the informa-
tion [48,49] required for the interval result, the interval output of
iv-aggregation functions based on the best interval representation
may be larger than a desirable threshold. In this case, the interval
result is guaranteed to be correct, however, it may carry no
meaningful information about the real value it is approximating.

In an initial study to address this problem, Bustince et al. [47]
introduced the concept of width-preserving functions, that is,
iv-functions that, under some conditions, can provide outputs
with the same width of all the inputs. However, the concept of
width preservation only takes into account the very specific case
where all the interval inputs have the same width. Then, more
2

recently, Asmus et al. [50] introduced the concept of interval
width limitation, where the width of the output of a bivariate
iv-function is limited by a function applied to the widths of its
inputs. Nevertheless, such theoretical approach for conserving
the interval information quality in fusion processes was not con-
sidered in any applied problem, which means that there is a
challenge yet to be addressed in a practical sense.

Motivated by the discussion above, this paper brings a novel
and general methodology to deal with the problem of guarantee-
ing the information quality by controlling the width of interval
outputs that are generated when applying the so called iv-fusion
functions (in particular, iv-aggregation functions). Then, the main
theoretical objective of this paper is to provide a general frame-
work for n-dimensional width-limited interval-valued (w-iv) fu-
sion functions, which enables the definition and construction
methods for different subclasses of w-iv-aggregation functions,
capable of retrieving known definitions of iv-aggregation func-
tions from the literature and suitable to be applied on different
practical problems in which the information quality has to be
controlled. To accomplish this goal, we have the following specific
objectives:

1. To extend the concepts of width-limited w-iv-fusion functions
and width-limiting fusion functions to the n-dimensional
context (Section 3);

. To present a characterization of any class of increasing fusion
function through a set of properties (Section 4);

. To define classes of w-iv-fusion functions based on an in-
creasing fusion function, the interval extension of its set
of properties and a pair of partial orders (Section 4);

. To present two general approaches to provide construction
methods for w-iv-fusion functions, one based on repre-
sentable interval functions and other on admissibly or-
dered interval functions, discussing examples (Section 5).

On the application side, we show the beneficial effects of
this type of information quality control in classification problems
(Section 6). Specifically, we apply the new framework in IVTURS,
which is a state-of-the-art IV-FRBCS. For that, we develop a new
interval-valued fuzzy reasoning method, in which the informa-
tion quality is controlled by w-iv-fusion functions, in particular,
n-dimensional w-iv-overlap functions. We analyze the effect of
the interval width control on the performance of the classifier,
since the construction methods allow one to determine the con-
trol level by means of a hyper-parameter. Finally, we conduct an
experimental study where we compare the results of the orig-
inal IVTURS classifier versus the best performing configurations
of our new approach in order to clearly observe the obtained
improvement, regardless of the chosen construction method to
obtain w-iv-fusion functions.

Additionally, Section 2 presents some necessary preliminary
concepts, and the main conclusions are drawn in Section 7, which
completes the organization of the paper.

2. Preliminaries

In this section, we recall some basic concepts on aggregation
functions, interval mathematics and iv-aggregation functions.
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.1. Aggregation functions

Denote x⃗ = (x1, . . . , xn) ∈ [0, 1]n. Any F : [0, 1]n → [0, 1] is
called a fusion function [1].

Definition 1 ([51]). A function N : [0, 1] → [0, 1] is a fuzzy
egation if, for all x, y ∈ [0, 1]: (N1) N(0) = 1 and N(1) = 0;
N2) If x ≤ y then N(y) ≤ N(x). If (involutive property) (N3)
(N(x)) = x, then N is a strong fuzzy negation.

xample 1. The Zadeh negation given, for all x ∈ [0, 1], by
Z (x) = 1 − x, is a strong fuzzy negation.

efinition 2. Let H be the set of annihilator elements of a fusion
unction F : [0, 1]n → [0, 1]. F is said to be a strict fusion function
is if it is strictly increasing on ([0, 1] − H)n.

Definition 3 ([51]). Given a strong fuzzy negation N : [0, 1] →

[0, 1] and a fusion function F : [0, 1]n → [0, 1], then the fusion
function FN

: [0, 1]n → [0, 1] defined, for all x⃗ ∈ [0, 1]n, by
FN (x⃗) = N(F (N(x1), . . . ,N(xn))), it the N-dual of F .

When it is clear by the context, the NZ -dual function (dual
with respect to the Zadeh negation) of F will be just called dual
of F , and will be denoted by F d.

A particularly important class of fusion function is that of
aggregation functions [2], defined as follows.

Definition 4 ([2]). An aggregation function is any fusion function
A : [0, 1]n → [0, 1] respecting: (A1) A is increasing; (A2)
A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1.

An aggregation function A that is strictly increasing in ([0, 1]−
H)n, with H being the set of annihilator elements of F , is said to
be a strict aggregation function.

Definition 5 ([52]). An aggregation function A : [0, 1]n → [0, 1]
is called ultramodular if, for all x⃗, y⃗, ϵ⃗ ∈ [0, 1]n, such that y⃗+ ϵ⃗ ∈

[0, 1]n and x⃗ ≤ y⃗: A(x⃗ + ϵ⃗) − A(x⃗) ≤ A(y⃗ + ϵ⃗) − A(y⃗).

Here we extend the concept of (a, b)-ultramodular binary
function [50] for the n-dimensional context:

Definition 6. Consider a⃗ ∈ [0, 1]n. An aggregation function
A : [0, 1]n → [0, 1] is called a⃗-ultramodular if, for all x⃗, ϵ⃗ ∈ [0, 1]n
and x⃗ + ϵ⃗, a⃗ − ϵ⃗ ∈ [0, 1]n, it holds that:

A(x⃗ + ϵ⃗) − A(x⃗) ≤ A(a⃗) − A(a⃗ − ϵ⃗). (1)

When a⃗ = (1, . . . , 1), from Eq. (1) and condition (A2) from
Definition 4, we have that A(x⃗ + ϵ⃗) − A(x⃗) ≤ Ad(ϵ⃗), where Ad is
the dual of A. In this case, A is said to be 1⃗-ultramodular.

The next result is an extension to the n-dimensional context
of Prop. 3.1 from the work of Asmus et al. [50]:

Proposition 1. Let A : [0, 1]n → [0, 1] be an ultramodular
aggregation function. Then, A is an (1⃗)-ultramodular aggregation
function, but the converse may not hold.

There are many classes of aggregation functions defined in the
literature. Here we highlight some of them that are going to be
of importance on this work.

Definition 7 ([10]). A fusion function On : [0, 1]n → [0, 1] is
an n-dimensional overlap function if, for all x⃗ ∈ [0, 1]n: (On1)
On is symmetric; (On2) On(x⃗) = 0 ⇔

∏n
i=1 xi = 0; (On3)

On(x⃗) = 1 ⇔
∏n

i=1 xi = 1; (On4) On is increasing; (On5) On

is continuous. f

3

A 2-dimensional overlap function is just called overlap func-
tion [5].

Definition 8 ([8]). A fusion function Gn : [0, 1]n → [0, 1] is said to
be an n-dimensional grouping function if, for all x⃗ ∈ [0, 1]n: (Gn1)
Gn is symmetric; (Gn2) Gn(x⃗) = 0 ⇔ xi = 0 for all i ∈ {1, . . . , n};
(Gn3) Gn(x⃗) = 1 ⇔ there exists i ∈ {1, . . . , n} such that xi = 1;
(Gn4) Gn is increasing; (Gn5) Gn is continuous.

By duality, one can obtain n-dimensional grouping functions
from n-dimensional overlap functions, and vice-versa.

Example 2. (a) The arithmetic mean AM : [0, 1]n → [0, 1],
defined, for all x⃗ ∈ [0, 1]n, by AM(x⃗) =

∑n
i=1 xi
n , is an aggregation

function that is strict (with H = ∅) and 1⃗-ultramodular;

(b) The geometric mean: GM : [0, 1]n → [0, 1], given, for all
x ∈ [0, 1]n, by

GM(x⃗) =

√ n∏
i=1

xi, (2)

is a strict (with H = {0}) n-dimensional overlap function;

(c) OnB : [0, 1]n → [0, 1], given, for all x⃗ ∈ [0, 1]n, by

nB(x⃗) =

√(
n∏

i=1

xi) · (min{x1, . . . , xn}), (3)

is a strict (with H = {0}) n-dimensional overlap function;

(d) OnT : [0, 1]n → [0, 1], given, for all x⃗ ∈ [0, 1]n, by

OnT (x⃗) =

n∏
i=1

(2xi − 1)3 + 1
2

, (4)

is an n-dimensional overlap function that is also an 1⃗-ultra-
odular aggregation function, but it is not an ultramodular ag-
regation function.

e) The functions GnB,GnT : [0, 1]n → [0, 1] such that GnB =

OnBd and GnT = OnT d, are n-dimensional grouping functions.

2.2. Interval mathematics and admissible orders

Denote by L([0, 1]) the set of closed subintervals of the unit
nterval [0, 1] and X⃗ = (X1, . . . , Xn) ∈ L([0, 1])n. For any X =

x1, x2] ∈ L([0, 1]), the left and right projections of X are denoted,
espectively, by X = x1 and X = x2. The width of X is denoted

w(X), which is given by w(X) = X − X .
We call by interval-valued (iv) fusion function any interval-

valued function IF : L([0, 1])n → L([0, 1]) that merges n intervals
from L([0, 1]) into a single interval in L([0, 1]).

efinition 9 ([47]). An iv-fusion function IF : L([0, 1])n →

([0, 1]) is called width-preserving (or w-preserving, for simplic-
ty) if, for any X⃗ ∈ L([0, 1])n such that w(X1) = · · · = w(Xn), it
olds that w(IF (X⃗)) = w(X1).

An iv-fusion function IF : L([0, 1])n → L([0, 1]) is said to
e increasing with respect to a partial order ≤ on L([0, 1]) (or,
imply, ≤-increasing) if, for all X⃗, Y⃗ ∈ L([0, 1])n, the following
ondition holds:

i ≤ Yi for all i ∈ {1, . . . , n} ⇒ IF (X⃗) ≤ IF (Y⃗ ).

efinition 10 ([50]). Let IF : L([0, 1])n → L([0, 1]) be an iv-
usion function and ≤ , ≤ be two partial order relations on
1 2



T. da Cruz Asmus, J.A. Sanz, G.P. Dimuro et al. Knowledge-Based Systems 258 (2022) 109963

L

f
g

P

X

T
≤

T
t

X
X

(

X

(

X

O

n

w

t

d

i

C
O

([0, 1]). Then, IF is said to be (≤1, ≤2)-increasing if the following
condition holds, for all X⃗, Y⃗ ∈ L([0, 1])n:

Xi ≤1 Yi for all i ∈ {1, . . . , n} ⇒ IF (X⃗) ≤2 IF (Y⃗ ).

When an iv-fusion function IF : L([0, 1])n → L([0, 1]) is
(≤, ≤)-increasing, we denote it simply as ≤-increasing, for any
partial order relation ≤ on L([0, 1]).

The product order [42], denoted by ≤Pr , is a partial order
relation, defined, for all X, Y ∈ L([0, 1]), by:

X ≤Pr Y ⇔ X ≤ Y ∧ X ≤ Y .

Let f , g : [0, 1]n → [0, 1] be two fusion functions such that
≤ g . Then, the iv-fusion function f̂ , g : L([0, 1])n → L([0, 1]) is
iven by: f̂ , g(X⃗) = [f (X1, . . . , Xn), g(X1, . . . , Xn)].

Definition 11 ([24]). Let IF : L([0, 1])n → L([0, 1]) be a ≤Pr -
increasing iv-fusion function. Then, IF is said to be representable
if there exist increasing fusion functions f , g : [0, 1]n → [0, 1]
such that f ≤ g and IF = f̂ , g .

f and g are called the representatives of IF . When IF = f̂ , f , we
denote simply as f̂ . In this case, IF is said to be the best interval
representation (BIR) of f [24].

The next interval operations, defined for all X, Y ∈ L([0, 1]),
are used in this paper: [42,53]

Sum: X + Y = [X + Y , X + Y ], with X + Y ≤ 1;
roduct: X · Y = [X · Y , X · Y ];

Generalized Hukuhara Division: for Y ̸= 0, X ≤Pr Y :

÷H Y = [min{X/Y , X/Y },max{X/Y , X/Y }]. (5)

Here, we recall the concept of admissible orders.

Definition 12 ([43]). Let (L([0, 1]), ≤AD) be a partially ordered set.
he order ≤AD is an admissible order if, for all X, Y ∈ L([0, 1]): (i)
AD is a total order on (L([0, 1]), ≤AD); (ii) X ≤Pr Y ⇒ X ≤AD Y .

Thus, an order ≤AD on L([0, 1]) is said to be admissible if it
is a total order that refines the product order ≤Pr [43]. Since
every admissible order ≤AD refines ≤Pr , it is immediate that every
≤AD-increasing function is also ≤Pr -increasing.

Example 3. Here are some examples of admissible orders: (i)
he lexicographical orders ≤Lex1 and ≤Lex2, corresponding, respec-
ively, to the first and second coordinates are given by:

≤Lex1 Y ⇔ X < Y ∨ (X = Y ∧ X ≤ Y );
≤Lex2 Y ⇔ X < Y ∨ (X = Y ∧ X ≤ Y ).

ii) The order of Xu and Yager ≤XY [54], given by:

≤XY Y ⇔ X + X < Y + Y or
(X + X = Y + Y and X − X ≤ Y − Y ).

iii) The order ≤IQ [33], given by:

≤IQ Y ⇔ X + X < Y + Y or (6)
(X + X = Y + Y and Y − Y ≤ X − X).

bserve that the order ≤IQ is based on the order of Xu and Yager,
but takes into consideration the information quality [48] when
comparing the intervals.

Next, we recall the definition of the admissible order ≤α,β :

Definition 13 ([43]). For α, β ∈ [0, 1] such that α ̸= β , the
relation ≤α,β is defined, for all X, Y ∈ L([0, 1]), by

X ≤ Y ⇔ K (X, X) < K (Y , Y ) or
α,β α α

4

(Kα(X, X) = Kα(Y , Y ) and Kβ (X, X) ≤ Kβ (Y , Y )),

where Kα, Kβ : [0, 1]2 → [0, 1] are aggregation functions defined,
for all x, y ∈ [0, 1], respectively, by

Kα(x, y) = x + α · (y − x); Kβ (x, y) = x + β · (y − x). (7)

Remark 1. The order ≤α,β can recover other known admissible
orders, by an appropriate choice of α and β . For example, (i) The
lexicographical orders ≤Lex1 and ≤Lex2 are recovered, respectively,
by ≤0,1 and ≤1,0; (ii) The orders ≤XY and ≤IQ are recovered,
respectively, by ≤0.5,1 and ≤0.5,0.

Whenever we apply the mapping Kα on the endpoints of an
interval X ∈ [0, 1], we denote Kα(X, X) simply as Kα(X).

Lemma 1 ([43]). For any α, β ∈ [0, 1], α ̸= β , it holds that: (i)
β > α ⇒≤α,β=≤α,1; (ii) β < α ⇒≤α,β=≤α,0.

2.3. Interval-valued fusion functions

Definition 14 ([55]). IN : L([0, 1]) → L([0, 1]) is called an iv-fuzzy
egation if it is ≤Pr -decreasing, (IN1) IN([1, 1]) = [0, 0] and (IN2)

IN([0, 0]) = [1, 1]. If IN(IN(X)) = X , for all X ∈ L([0, 1]), then IN
is said to be involutive.

Definition 15 ([56]). IR : L([0, 1])2 → L([0, 1]) is an iv-restricted
equivalence function (IV-REF) with respect to an iv-fuzzy nega-
tion IN , if, for all X, Y , Z ∈ L([0, 1]): (IR1) IR is commutative; (IR2)
IR(X, Y ) = [1, 1] ⇔ X = Y ; (IR3) IR(X, Y ) = [0, 0] ⇔ X = [0, 0]
and Y = [1, 1], or X = [1, 1] and Y = [0, 0]; (IR4) IR(X, Y ) =

IR(IN(X), IN(Y )); (IR5) X ≤Pr Y ≤Pr Z ⇒ IR(X, Y ) ≥Pr IR(X, Z),
IR(Y , Z) ≥Pr IR(X, Z).

Definition 16 ([39]). An iv-fusion function IA : L([0, 1])n →

L([0, 1]) is called an iv-aggregation function if: (IA1) IA is ≤Pr -
increasing; (IA2) IA([0, 0], . . . , [0, 0]) = [0, 0] and IA([1, 1], . . . ,
[1, 1]) = [1, 1].

Definition 17 ([47]). Consider c ∈ [0, 1] and α ∈ [0, 1]. Then, the
maximal possible width of an interval Z ∈ L([0, 1]) is denoted by
dα(c), such that Kα(Z) = c. Also, define, for any X ∈ L([0, 1]),

λα(X) =
w(X)

dα(Kα(X))
, (8)

here we set 0
0 = 1.

Proposition 2 ([47]). For all α ∈ [0, 1] and X ∈ L([0, 1]), one has
hat

α(Kα(X)) = min
{
Kα(X)

α
,
1 − Kα(X)
1 − α

}
, (9)

where we set r
0 = 1, for all r ∈ [0, 1].

Theorem 1 ([47]). Let α, β ∈ [0, 1] be such that α ̸= β . Let
A1, A2 : [0, 1]n → [0, 1] be two aggregation functions where A1
is strictly increasing. Then IFα

: L([0, 1])n → L([0, 1]) defined, for
all X⃗ ∈ L([0, 1])n, by:

IFα
A1,A2(X⃗) = R

where
{

Kα(R) = A1(Kα(X1), . . . , Kα(Xn)),
λα(R) = A2(λα(X1), . . . , λα(Xn)),

s an ≤α,β-increasing iv-aggregation function.

orollary 1 ([50]). Let α ∈ (0, 1], β ∈ [0, 1] be such that α ̸= β . Let
n : [0, 1]n → [0, 1] be a strict n-dimensional overlap function and
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be an aggregation function. Then IFα
On,A : L([0, 1])n → L([0, 1])

efined, for all X⃗ ∈ L([0, 1])n, by:

Fα
On,A(X⃗) = R

where
{

Kα(R) = On(Kα(X1), . . . , Kα(Xn)),
λα(R) = A(λα(X1), . . . , λα(Xn)),

is an ≤α,β-increasing iv-aggregation function.

Definition 18 ([39]). An iv-fusion function IOn : L([0, 1])n →

([0, 1]) is called an n-dimensional iv-overlap function if, for all
⃗ ∈ L([0, 1])n: (IOn1) IOn is symmetric; (IOn2) IOn(X⃗) = [0, 0] ⇔∏n

i=1 Xi = [0, 0]; (IOn3) IOn(X⃗) = [1, 1] ⇔
∏n

i=1 Xi = [1, 1];
(IOn4) IOn is ≤Pr -increasing; (IOn5) IOn is Moore continuous [42].

For n = 2, IOn is just called iv-overlap function [37,38].

Definition 19 ([33]). An iv-fusion function AOn : L([0, 1])n →

([0, 1]) is called an n-dimensional admissibly ordered iv-overlap
function for an admissible order ≤AD (≤AD-overlap function) if it
espects the conditions (IOn1), (IOn2) and (IOn3) of Definition 18,
nd (AOn4) AOn is ≤AD-increasing.

Although the construction method presented in Corollary 1
s based on an n-dimensional overlap function, the constructed
unction is not necessarily an ≤α,β-overlap function. It is not
rivial to obtain such type of function, so we present here a new
esult, which is an adaptation of Corollary 1 with that purpose,
s ≤α,β-overlap functions are featured throughout our theoretical
nd practical developments:

heorem 2. Consider a strict n-dimensional overlap function On :

0, 1]n → [0, 1], an increasing and symmetric fusion function B :

[0, 1]n → [0, 1] and α ∈ (0, 1), β ∈ [0, 1], such that, α ̸= β .
Onα

B : L([0, 1])n → L([0, 1]) defined by:

Onα
B (X⃗) = R

where
{

Kα(R) = On(Kα(X1), . . . , Kα(Xn)),
λα(R) = B(λα(X1), . . . , λα(Xn)),

or all X⃗ ∈ L([0, 1])n, is an ≤α,β-overlap function.

roof. See Appendix A. □

The following result is immediate from Definition 17 and
heorem 2.

orollary 2. Let α ∈ (0, 1), β ∈ [0, 1] be such that, α ̸= β . Let
n : [0, 1]n → [0, 1] be a strict n-dimensional overlap function,
: [0, 1]n → [0, 1] be an increasing and symmetric fusion function

and AOnα
B : L([0, 1])n → L([0, 1]) be an iv-aggregation function

constructed as in Theorem 2. Then, for all X⃗ ∈ L([0, 1])n, we have
that

w(AOnα
B (X⃗)) = (10)

B(λα(X1), . . . , λα(Xn)) · dα(Kα(AOnα
B (X⃗))).

3. Width-limited iv-fusion functions

Here, we extend for the n-dimensional context the main re-
sults on width-limitation presented by Asmus et al. [50], as these
concepts are going to be thoroughly featured on our present
theoretical developments and are also required in the practical
application presented in Section 6.

Definition 20 ([50]). Consider an iv-fusion function IF : L([0, 1])n
→ L([0, 1]) and B : [0, 1]n → [0, 1]. IF is said to be width-limited
by B if w(IF (X⃗)) ≤ B(w(X1), . . . , w(Xn)), for all X⃗ ∈ L([0, 1])n. B is
called a width-limiting function of IF .
5

Denote F={F :[0, 1]n → [0, 1]|F is a fusion function} and
IF={IF :L([0, 1])n→L([0, 1])|IF is an iv-fusion function}. Next
theorem shows how to obtain the least width-limiting function
for a given iv-fusion function:

Theorem 3 ([50]). The mapping L : IF → F defined, for all
IF ∈ IF and ϵ⃗ ∈ [0, 1]n, by

L(IF )(ϵ⃗)= sup
u1∈[0, 1 − ϵ1]

. . .

un∈[0, 1 − ϵn]

{w(IF ([u1, u1 + ϵ1], . . ., [un, un + ϵn]))}

provides the least width-limiting function L(IF ) : [0, 1]n → [0, 1]
for IF .

Denote A={A:[0, 1]n→[0, 1]|A is an aggregation function},

IA = {IA : L([0, 1])n → L([0, 1]) | IA is the best interval
representation of an aggregation function A ∈ A}.

Then, an approach similar to that one considered in Theorem 3
can be used to obtain the least width-liming aggregation function
for a given representable iv-aggregation function.

Theorem 4 ([50]). The mapping L : IA → F defined, for all
IA ∈ IA and ϵ⃗ ∈ [0, 1]n, by

L(IA)(ϵ⃗)= (11)
sup

u1 ∈ [0, 1 − ϵ1]

. . .

un ∈ [0, 1 − ϵn]

{w(IA([u1, u1 + ϵ1], . . ., [un, un + ϵn]))}

provides the least width-limiting function L(IA) : [0, 1]n → [0, 1]
for IA. Moreover, L(IA) is an aggregation function.

Now, let us present a characterization for the least width-
limiting function of the best interval representation (BIR) of an
1⃗-ultramodular aggregation function, or the BIR of its dual:

Theorem 5 ([50]). Let A : [0, 1]n → [0, 1] be an aggregation
function, Ad

: [0, 1]n → [0, 1] be the dual of A, L(̂A),L(Âd) :

[0, 1]n → [0, 1] be the least width-limiting functions for Â and
Âd, respectively. Then, L(̂A) = L(Âd) = Ad if and only if A is an
1⃗-ultramodular aggregation function.

In the context of Theorem 5, as Â and Âd are representable iv-
aggregation functions, then their least width-limiting function Ad

is an aggregation function, as stated by Theorem 4. Observe that
the function A does not need to be ultramodular.

Example 4. (a) Every iv-fusion function IF : L([0, 1])n → L([0, 1])
is width-limited by the function B : [0, 1]n → [0, 1] given by
B(x⃗) = 1, for all x⃗ ∈ [0, 1]n.

(b) The n-dimensional iv-overlap function IOnP , defined, for all
X⃗ ∈ L([0, 1])n, by IOnP(X⃗) =

∏n
i=1 Xi, is width-limited by

the probabilistic sum, given by B(x⃗) = 1 −
∏n

i=1 1 − xi, for
all x⃗ ∈ [0, 1]n. This holds because the IOnp is the BIR of the
product, which is an ultramodular aggregation function, and the
probabilistic sum is the dual of the product.

(c)Similar to the last case, the BIR of the n-dimensional over-
lap function OnT , defined in Eq. (4), denoted by ÔnT , is width-
limited by B = OnT d, since OnT is an 1⃗-ultramodular aggregation
function.

Remark 2. Observe that a width-limited function (Definition 20)
differs from a width-preserving function (Definition 9), since one
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an only guarantee the uncertainty control in width-preserving
unctions when all the inputs have the same width. On the
ther hand, some width-limited functions can guarantee the un-
ertainty control accordingly to some width-limiting function B
nd still not be considered width-preserving as by Definition 9.
o, width-limitation is a more suitable (and flexible) concept
o indicate the potential uncertainty on the outputs of a given
nterval-valued function than width-preservation.

. A framework for width-limited iv-fusion functions

The goal of this section is to present a way to obtain different
lasses of aggregation functions that have their outputs’ widths
imited by some arbitrary width-limiting function. In the work
y Asmus et al. [50], for instance, width-limited interval-valued
verlap functions were introduced based on such notion. Here,
e recall their definition:

efinition 21 ([50]). Let B : [0, 1]2 → [0, 1] be a commutative
and increasing function and ≤1, ≤2 be two partial order relations
on L([0, 1]). Then, the mapping IOw : L([0, 1])2 → L([0, 1]) is
said to be a width-limited interval-valued overlap function (w-
iv-overlap function) with respect to the tuple (≤1, ≤2, B), if the
following conditions hold for all X, Y ∈ L([0, 1]): (IOw1) IOw
is commutative; (IOw2) IOw(X, Y ) = [0, 0] ⇔ X · Y = [0, 0];
(IOw3) IOw(X, Y ) = [1, 1] ⇔ X · Y = [1, 1]; (IOw4) IOw is
(≤1, ≤2)-increasing; (IOw5) IOw is width-limited by B.

Notice that Definition 21 is quite similar to Definition 18 for
n = 2. In fact, conditions (IOn1), (IOn2) and (IOn3), for n = 2,
are the same as (IOw1), (IOw2) and (IOw3). That is, both classes
of iv-fusion functions share the same properties except for (i)
monotonicity, (ii) continuity and (iii) width-limitation. Further-
more, it is easy to observe that those properties that they share,
commutativity and boundaries conditions, are interval counter-
parts of properties (On1), (On2) and (On3) of n-dimensional
overlap functions (Definition 7). In a sense, one can say that n-
dimensional overlap functions are the core functions in which
both Definitions 18 and 21 derive from. So, one could obtain
analogous definitions for width-limited interval-valued aggrega-
tion functions based on other core aggregation functions, if the
properties of those core functions can be extended to the interval
context.

For that, inspired by the approach of directional increasing
fusion functions developed by Bustince et al. [57], first we present
a characterization of any subclass F of increasing n-dimensional
fusion functions through a set of properties PF such that: (i)
includes boundary conditions for any F ∈ F and (ii) possibly
includes some other constraints not related to the monotonicity.
Such subclass of fusion functions is given by:

F = {F : [0, 1]n → [0, 1]| F is increasing (12)
and satisfies all the properties in PF }.

Remark 3. In this paper, we work with the usual definition of
monotonicity, however, our characterization is not restricted by
this specific definition, meaning that other kinds of monotonicity
could be considered, such as weak monotonicity [58], directional
monotonicity [59], ordered directionally monotonicity [60] or
strengthened ordered directionally monotonicity [61].

Example 5. Based on Eq. (12), the class of aggregation functions
A is given by A = {A : [0, 1]n → [0, 1]| A is increasing
and satisfies all the properties in PA}, where PA={A(0, . . ., 0)=
0, A(1, . . . , 1) = 1}. Analogously, any subclass of aggregation
functions can be denoted in this manner. For example, the class
of n-dimensional overlap functions On can be defined by: On =

On : [0, 1]n → [0, 1]|On is increasing and satisfies all the
roperties in P }, where P = {(On1), (On2), (On3), (On5)}.
On On

6

Now, given the set PF of properties of a fusion function F ∈ F ,
denote by IPF the set of interval extensions of the properties
in PF . Usually, there are more than one way to extend a given
property of a function to the interval context, so IPF varies
accordingly to how one extends such properties.

Finally, consider the function B ∈ B, where a B is a subclass of
increasing fusion functions (with its corresponding set of proper-
ties PB) and let ≤1, ≤2 be partial orders on L([0, 1]). Then, denote
the class of width-limited interval-valued fusion functions (w-iv-
fusion functions) for the tuple (≤1, ≤2, B) by IFWB

≤1,≤2
, which is

then given by:

IFwB
≤1,≤2

= (13)
{IF : L([0, 1])n → L([0, 1])|IF is (≤1, ≤2)-increasing,
width-limited by B and satisfies the properties in IPF }.

Example 6. Consider the class of aggregation functions A, with
its respective set of properties PA (as shown in Example 5). Also,
consider an increasing fusion function B : [0, 1]n → [0, 1]
and let ≤1, ≤2 be partial orders on L([0, 1]). Then, based on
Eq. (13), IAwB

≤1,≤2
is the class of width-limited interval-valued

aggregation functions (w-iv-aggregation functions) for the tuple
(≤1, ≤2, B), given by:

IAwB
≤1,≤2

= (14)
{IA : L([0, 1])n → L([0, 1])|IA is (≤1, ≤2)-increasing,
width-limited by B and satisfies the properties in IPA}

where IPA is an interval extension of PA, given by IPA =

{IA([0, 0], . . . , [0, 0]) = [0, 0], IA([1, 1], . . . , [1, 1]) = [1, 1]}.
Observe that if ≤1=≤2=≤Pr and B(x⃗) = 1, for all x⃗ ∈ [0, 1]n,
then IAwB

≤1,≤2
is the class of iv-aggregation functions defined

in Definition 16. Similarly, other subclasses of iv-aggregation
functions can be retrieved by Eq. (13), depending on the set of
properties IPF . For example, take IPF = IPOn, where IPOn is
the interval extension of the set POn (see Example 5): IPOn =

{(IOn1), (IOn2), (IOn3), (IOn5)}, and B(x⃗) = 1, for all x⃗ ∈ [0, 1]n.
Then, IOnwB

≤Pr
, given by

IOnwB
≤Pr

= (15)
{IOn : L([0, 1])n → L([0, 1])|IOn is ≤Pr -increasing,
width-limited by B and satisfies the properties in IPOn},

is the class of n-dimensional iv-overlap functions (Definition 18).

Remark 4. The representation of w-iv-fusion functions by
Eq. (13) is general enough so that different iv-aggregation func-
tions defined in the literature may be retrieved, such as interval-
valued t-norms and t-conorms [24], general interval-valued
overlap functions [39], general interval-valued grouping functions
[40], among others, by restricting to the case where ≤1=≤2=≤Pr
and B(x⃗) = 1, for all x⃗ ∈ [0, 1]n. However, those functions
clearly have no limitation regarding their output widths and may
not be applicable in problems where admissible orders must be
considered.

Example 7. Consider a function B ∈ B, where B is the subclass of
increasing fusion functions, such that PB = {simmetry}, and two
partial orders ≤1, ≤2 on L([0, 1]). Then, IOnwB

≤1,≤2
is the class

of width-limited n-dimensional interval-valued overlap functions
(w-iv-overlap functions) for the tuple (≤1, ≤2, B), given by:

IOnwB
≤1,≤2

= {IOnw : L([0, 1])n → L([0, 1])| (16)
IOnw is (≤1, ≤2)-increasing, width-limited by B
and satisfies the properties in IPOn′},

where IP ′ = {(IOn1), (IOn2), (IOn3)}.
On



T. da Cruz Asmus, J.A. Sanz, G.P. Dimuro et al. Knowledge-Based Systems 258 (2022) 109963

d
a

n

R
e
N
d
c
c
f
i
t
c
f
a

Observe that when n = 2, IOnwB
≤1,≤2

is the class of w-iv-
overlap functions as shown in Definition 21. In other case, when
≤1=≤2=≤α,β , with α, β ∈ [0, 1], such that α ̸= β , and B(x⃗) = 1,
for all x⃗ ∈ [0, 1]n, then, also by Eq. (16), IOnwB

≤α,β
is the class of n-

imensional admissibly ordered interval-valued overlap function
s presented in Definition 19.
Then, one can see that classes of iv-fusion functions that may

ot be ≤Pr -increasing can also be retrieved by Eq. (13).

emark 5. It is noteworthy that the continuity (On5) was not
xtended to the interval context, so was not considered in IP ′

On.
either Definition 19 nor Definition 21 has continuity as a con-
ition, as its interval extension it is not fully developed in the
ontext of admissible orders. This is not a drawback, since the
ontinuity requirement was added to the definition of overlap
unctions just because it was introduced firstly to be applied in
mage processing [5]. Actually, it is well known that the con-
inuity can be disregarded in several applications, which is the
ase, for example, when overlap functions are applied in classi-
ication problems [33,39,62,63]. Nevertheless, if one is defining
class of width-limited ≤Pr -increasing fusion functions, than

the continuity can be extended to the interval-context by the
Moore-continuity [42], as in Example 6, when defining the class
of n-dimensional iv-overlap functions.

Remark 6. The associativity property was proved to be difficult
to maintain in iv-fusion functions that have controlled width-
limitation (see the construction methods in Section 5), so we
do not include it when defining a set IPF . We point out that
this is not a drawback of our approach, in the sense that we
explain below. Observe that, for several applications (e.g., clas-
sification), it is necessary to consider n-dimensional inputs for
the aggregation process. That is why the associativity property
has been considered an important requirement for extending bi-
variate aggregation functions to the n-dimensional context in a
very direct way, which is the case, for example, of t-norms and
t-conorms [51]. However, it is well known that possibly non-
associative bi-variate functions (e.g., overlap/grouping functions)
can be extended to the n-dimensional context in many ways
(e.g., n-dimensional overlap/grouping functions and general over-
lap/grouping functions). Also, one can find in the literature sev-
eral possibly non-associative aggregation functions which can be
used as alternatives to t-norms/t-conorms, such as t-seminorms
or semi-copulas [64], weak t-norms [65], pseudo-t-norms [66],
semi-uninorms [67], MICA operators [68], and micanorms [69].

Remark 7. In general, there are no restrictions regarding the
width-limiting function B, or its set of properties PB , when defin-
ing a class IFWB

≤1,≤2
by Eq. (13). But, to construct some examples

of w-iv-fusion functions of the class IFWB
≤1,≤2

respecting the
properties of IPF , it may be necessary that PB shares some prop-
erties with PF . That is the reason for which we required that
B to be symmetric in Example 7, a shared property with On.
This relation between the core function F and the width-limiting
function B becomes clear in the construction methods presented
in Section 5.

5. Construction methods

With the concepts of width-limited functions and least width-
limiting functions, by Theorem 3, one can expect the maximum
amount of uncertainty on the outputs of a given iv-fusion func-
tion. However, in order to control such uncertainty to an arbitrary
degree (given by a chosen width-limiting function B), one can

apply the developed theory to obtain some construction methods

7

for width-limited iv-fusion functions. This is the main goal of this
section.

In the following, we present a key concept to be applied in the
construction methods for w-iv-fusion functions:

Definition 22. Consider a fusion function B : [0, 1]n → [0, 1] and
let IF : L([0, 1])n → L([0, 1]) be an iv-fusion function. Then, the
function mIF ,B : L([0, 1])n → [0, 1], defined for all X⃗ ∈ L([0, 1])n
by:

mIF ,B(X⃗) = min{w(IF (X⃗)), B(w(X1), . . . , w(Xn))},

is called the maximal width threshold for the pair (IF , B).

5.1. Construction method based on representable iv-fusion functions
(CMR)

The main idea of the Construction Method based on Repre-
sentable iv-fusion functions (CMR) is to reduce the output’s width
of a representable iv-fusion function when it surpasses the limit
imposed by a width-limiting fusion function B. The outputs of the
constructed function are given by the maximal threshold for the
pair (̂F , B), where F̂ is the best interval representation (BIR) of
a strict fusion function F . The reduction of the output occurs in
the direction of a point of the interval, accordingly to a chosen
value of α ∈ [0, 1]. For example, if α = 0.5, then the output is
‘‘narrowed’’ towards the medium point of the interval obtained
through the BIR.

The formalization of this concept is presented in the following
three theorems, each one with some specificity regarding the
chosen strict fusion function F and its respective restriction on
the choice of admissible order that is suitable for the construction
method.

Theorem 6. Consider an increasing fusion function B : [0, 1]n →

[0, 1], a strict fusion function F : [0, 1]n → [0, 1] with h = 0 as its
annihilator element, α ∈ (0, 1] and β ∈ [0, α). Then, the iv-fusion
function IFwα

B : L([0, 1])n → L([0, 1]) defined, for all X⃗ ∈ L([0, 1])n,
by

IFwα
B (X⃗) = [Kα (̂F (X⃗)) − α · mF̂ ,B(X⃗), (17)

Kα (̂F (X⃗)) + (1 − α) · mF̂ ,B(X⃗)],

is a width-limited fusion function for the tuple (≤Pr , ≤α,β , B).

Proof. See Appendix B. □

Theorem 7. Consider an increasing fusion function B : [0, 1]n →

[0, 1], a strict fusion function F : [0, 1]n → [0, 1] with h = 1 as its
annihilator element α ∈ [0, 1) and β ∈ (α, 1]. Then, the iv-fusion
function IFwα

B : L([0, 1])n → L([0, 1]) defined, for all X⃗ ∈ L([0, 1])n,
by

IFwα
B (X⃗) = [Kα (̂F (X⃗)) − α · mF̂ ,B(X⃗),

Kα (̂F (X⃗)) + (1 − α) · mF̂ ,B(X⃗)],

is a width-limited fusion function for the tuple (≤Pr , ≤α,β , B).

Proof. Analogous to the proof of Theorem 6. □

The following theorem follows from Theorems 6 and 7.

Theorem 8. Consider an increasing fusion function B : [0, 1]n →

[0, 1], a strictly increasing fusion function F : [0, 1]n → [0, 1] and
α, β ∈ [0, 1] with α ̸= β . Then, the iv-fusion function IFwα

B :

L([0, 1])n → L([0, 1]) defined, for all X⃗ ∈ L([0, 1])n, by
α ⃗ ˆ ⃗ ⃗
IFwB (X) = [Kα(F (X)) − α · mF̂ ,B(X),
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Kα (̂F (X⃗)) + (1 − α) · mF̂ ,B(X⃗)],

is a width-limited fusion function for the tuple (≤Pr , ≤α,β , B).

One can impose certain conditions on the functions B and F ,
reflected on the sets PB and PF , respectively, in order to obtain
specific subclasses of fusion functions. In the following, con-
sider the class of w-iv-aggregation functions IAwB

≤Pr ,≤α,β
given

by Eq. (14), in Example 6.

Theorem 9. Consider an increasing function B : [0, 1]n → [0, 1],
a strict aggregation function A : [0, 1]n → [0, 1] with h = 0 as its
annihilator element, α ∈ (0, 1] and β ∈ [0, α). Then, the iv-fusion
function IAwα

B : L([0, 1])n → L([0, 1]) defined, for all X⃗ ∈ L([0, 1])n,
by

IAwα
B (X⃗) = [Kα (̂A(X⃗)) − α · mÂ,B(X⃗),

Kα (̂A(X⃗)) + (1 − α) · mÂ,B(X⃗)],

is a width-limited aggregation function for (≤Pr , ≤α,β , B).

Proof. From the proof of Theorem 6, IAwα
B is well defined, (≤Pr

, ≤α,β )-increasing and width-limited by B. We prove that: (i)
IAwα

B ([0, 0], . . ., [0, 0])=[0, 0], (ii) IAwα
B ([1, 1], . . ., [1, 1])=[1, 1].

(i) From (A2), one has that Â([0, 0], . . . , [0, 0]) = [0, 0]. Then:
w(̂A([0, 0], . . . , [0, 0])) = 0 = mÂ,B([0, 0], . . . , [0, 0]).

So, IAwα
B ([0, 0], . . . , [0, 0]) = Â([0, 0], . . . , [0, 0]) = [0, 0].

(ii) Also, from (A2), one has that Â([1, 1], . . . , [1, 1]) = [1, 1].
Then: w(̂A([1, 1], . . . , [1, 1])) = 0 = mÂ,B([1, 1], . . . , [1, 1]). So,
IAwα

B ([1, 1], . . ., [1, 1])=Â([1, 1], . . ., [1, 1])=[1, 1]. □

Theorem 10. Consider an increasing function B : [0, 1]n → [0, 1],
a strict aggregation function A : [0, 1]n → [0, 1] with h = 1 as its
annihilator element, α ∈ [0, 1) and β ∈ (α, 1]. Then, the iv-fusion
function IAwα

B : L([0, 1])n → L([0, 1]) defined, for all X⃗ ∈ L([0, 1])n,
by

IAwα
B (X⃗) = [Kα (̂A(X⃗)) − α · mÂ,B(X⃗),

Kα (̂A(X⃗)) + (1 − α) · mÂ,B(X⃗)],

is a width-limited aggregation function for (≤Pr , ≤α,β , B).

Proof. Analogous to the proof of Theorem 9. □

The next theorem follows from Theorems 9 and 10:

Theorem 11. Consider an increasing function B : [0, 1]n →

[0, 1], an aggregation function A : [0, 1]n → [0, 1] that is strictly
increasing on [0, 1]n, and α, β ∈ [0, 1] with α ̸= β . Then, the
iv-fusion function IAwα

B : L([0, 1])n → L([0, 1]) defined, for all
X⃗ ∈ L([0, 1])n, by

IAwα
B (X⃗) = [Kα (̂A(X⃗)) − α · mÂ,B(X⃗),

Kα (̂A(X⃗)) + (1 − α) · mÂ,B(X⃗)],

is a w-iv-aggregation function for the tuple (≤Pr , ≤α,β , B).

Example 8. Consider B = min, A = AM (arithmetic mean), α =

0.5 and β = 0 (admissible order ≤IQ ). Then, the iv-fusion function
IAMwα

min : L([0, 1])n → L([0, 1]) defined, for all X⃗ ∈ L([0, 1])n, by

IAMwα
min(X⃗) = [Kα(ÂM(X⃗)) − α · mÂM,min(X⃗),

Kα(ÂM(X⃗)) + (1 − α) · mÂM,min(X⃗)],

is a w-iv-aggregation function for the tuple (≤ , ≤ ,min).
Pr IQ

8

Remark 8. It is noteworthy that, by Theorem 5, ÂM (BIR of
the arithmetic mean) is width-limited by AM , as AM is an 1⃗-
ultramodular aggregation function and AM = AMd. However, if
one must control the output’s width by a width-limiting function
B such that B ≤ AM (which is the case for B = min), then the
construction method shown in Theorem 11 may be employed,
with the result presented in Example 8.

Analogously, one can construct w-iv-fusion functions that
are interval extensions of specific types of aggregation func-
tions. For instance, consider the class of w-iv-overlap functions
IOnwB

≤Pr ,≤α,β
given by Eq. (15), in Example 7.

Theorem 12. Consider a symmetric and increasing function B :

[0, 1]n → [0, 1], a strict n-dimensional overlap function On :

[0, 1]n → [0, 1], α ∈ (0, 1) and β ∈ [0, α). Then, the iv-
fusion function IOnwα

B : L([0, 1])n → L([0, 1]) defined, for all
X⃗ ∈ L([0, 1])n, by

IOnwα
B (X⃗) = [Kα(Ôn(X⃗)) − α · mÔn,B(X⃗), (18)

Kα(Ôn(X⃗)) + (1 − α) · mÔn,B(X⃗)],

is a width-limited overlap function for (≤Pr , ≤α,β , B).

Proof. From the proof of Theorem 6, it is immediate that IOnwα
B

is well defined, (≤Pr , ≤α,β )-increasing and width-limited by B. It
remains to be proven that IOnwα

B has the properties of the set
IPOn′ = {(IOn1), (IOn2) and (IOn3)}:

(IOn1) It is immediate, since On and B are both symmetric.

(IOn2) (⇒) Take X⃗ ∈ L([0, 1])n, such that IOnwα
B (X⃗) = [0, 0].

Then, we have the following cases:

(1) mÔn,B(X⃗) = w(Ôn(X⃗)):
From Eqs. (7) and (18), it follows that:

[Kα(Ôn(X⃗)) − αw(Ôn(X⃗)),
Kα(Ôn(X⃗)) + (1 − α)w(Ôn(X⃗))] = [0, 0]

⇒ [On(X1, . . . , Xn) + αw(Ôn(X⃗)) − αw(Ôn(X⃗)),

On(X1, . . . , Xn) + αw(Ôn(X⃗)) + w(Ôn(X⃗)) −

αw(Ôn(X⃗))] = [0, 0]
⇒ [On(X1, . . . , Xn),

On(X1, . . . , Xn) + w(Ôn(X⃗))] = [0, 0]

⇒ [On(X1, . . . , Xn),On(X1, . . . , Xn)] = [0, 0]

⇒ Ôn(X⃗) = [0, 0] ⇔

n∏
i=1

Xi = [0, 0], by (On2).

(2) mÔn,B(X⃗) = B(w(X1), . . . , w(Xn)):
From Eqs. (7) and (18), it holds that:

[Kα(Ôn(X⃗)) − αB(w(X1), . . ., w(Xn)), (19)
Kα(Ôn(X⃗)) + (1 − α)B(w(X1), . . ., w(Xn))]=[0, 0]
−αB(w(X1), . . . , w(Xn)) =

(1 − α)B(w(X1), . . . , w(Xn))
B(w(X1), . . . , w(Xn)) = 0
[Kα(Ôn(X⃗)), Kα(Ôn(X⃗))] = [0, 0], by Eq. (19)
Kα(Ôn(X⃗)) = 0
Ôn(X⃗) = [0, 0], since α ̸= 0
n∏

Xi = [0, 0], by (On2).

i=1
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(⇐) Consider X⃗ ∈ L([0, 1])n, such that
∏n

i=1 Xi = [0, 0].
Then, it is immediate that Ôn(X⃗) = [0, 0] and mÔn,B(X⃗) = 0.
Furthermore, from Eq. (18):

IOnwα
B (X⃗) = [Kα([0, 0]) − α · 0, Kα([0, 0]) + (1 − α) · 0] = [0, 0].

(IOn3) (⇒) Take X⃗ ∈ L([0, 1])n, such that IOnwα
B (X, Y ) = [1, 1].

We have the following cases:

(1) mÔn,B(X⃗) = w(Ôn(X⃗))
From Eqs. (7) and (18), it follows that:

[Kα(Ôn(X⃗)) − αw(Ôn(X⃗)),
Kα(Ôn(X⃗)) + (1 − α)tw(Ôn(X⃗))] = [1, 1]

⇒ [On(X1, . . . , Xn) + αw(Ôn(X⃗)) − αw(Ôn(X⃗)),

O(X, Y ) + αw(̂O(X, Y )) + w(̂O(X, Y ))
−αw(Ôn(X⃗))] = [1, 1]

[On(X1, . . ., Xn),On(X1, . . ., Xn)+w(Ôn(X⃗))]=[1, 1]

[On(X1, . . . , Xn),On(X1, . . . , Xn)] = [1, 1]

Ôn(X⃗) = [1, 1] ⇔

n∏
i=1

Xi = [1, 1], by (On3).

2) mÔn,B(X⃗) = B(w(X1), . . . , w(Xn))
From Eqs. (7) and (18), it holds that:

Kα(Ôn(X⃗)) − αB(w(X1), . . ., w(Xn)), Kα(Ôn(X⃗)) (20)
+ (1 − α)B(w(X1), . . ., w(Xn))]=[1, 1]

⇒ −αB(w(X1), . . . , w(Xn)) =

(1 − α)B(w(X1), . . . , w(Xn))
⇒ B(w(X1), . . . , w(Xn)) = 0 (21)
⇒ [Kα(Ôn(X⃗)), Kα(Ôn(X⃗))] = [1, 1], by Eq. (20)
⇒ Kα(Ôn(X⃗)) = 1
⇒ Ôn(X⃗) = [1, 1], since α ̸= 1

⇔

n∏
i=1

Xi = [1, 1], by (On3).

(⇐) Consider X⃗ ∈ L([0, 1])n such that
∏n

i=1 Xi = [1, 1]. Then, it
is immediate that Ôn(X⃗) = [1, 1] and mÔn,B(X⃗) = 0. Furthermore,
rom Eq. (18): IOnwα

B (X⃗) = [Kα([1, 1])−α·0, Kα([1, 1])(1−α)·0] =

1, 1]. □

emark 9. In Theorem 12, we have that α ̸= 1, which is not
ecessary in Theorems 6 and 9. This is to ensure that IOnwα

B
espects condition (IOn3). Furthermore, B must be symmetric for
IOnwα

B to respect condition (IOn1). These restrictions on B and
may vary accordingly to the class of aggregation function on
hich the construction method is based.

Here, we present an example of applying CMR based on the
-dimensional overlap function OnB, given in Eq. (3), which is a
unction that produces good results when applied in classification
roblems, as shown in Section 6.

xample 9. Consider B = max, On = OnB, given in Eq. (3),
= 0.5 and β = 0 (admissible order ≤IQ ). Then, by Theorem 12,

he iv-fusion function IOnwα
OnB,max : L([0, 1])n → L([0, 1]) defined,

or all X⃗ ∈ L([0, 1])n, by

Onwα=0.5
OnB,max(X⃗) = (22)ˆ ⃗ ⃗
[Kα=0.5(OnB(X)) − 0.5 · mÔnB,max(X),

9

Kα=0.5(ÔnB(X⃗)) + 0.5 · mÔnB,max(X⃗)],

is a w-iv-overlap function for the tuple (≤Pr , ≤IQ ,max).

(a) Let n = 2, X1 = [0.2, 0.8] and X2 = [0.5, 1]. So, we have that
w(X1) = 0.6, w(X2) = 0.5 and max{w(X1), w(X2)} = 0.6. Also, it
holds that:

ÔnB(X⃗) = [OnB(0.2, 0.5),OnB(0.8, 1)] = [0.1414, 0.8].

Observe that

w(ÔnB(X⃗)) = 0.6586 > 0.6 = max{w(X1), w(X2)},

meaning that ÔnB is not width-limited by max.
However, from Eq. (22), one has that:

IOnwα=0.5
OnB,max(X⃗)

= [Kα=0.5(ÔnB(X⃗)) − 0.5 · mÔnB,max(X⃗),

Kα=0.5(ÔnB(X⃗)) + 0.5 · mÔnB,max(X⃗)]

= [Kα=0.5([0.1414, 0.8]) − 0.5 · min{w(ÔnB(X⃗)),
max{w(X1), w(X2)}}, Kα=0.5([0.1414, 0.8])
+0.5 · min{w(ÔnB(X⃗)),max{w(X1), w(X2)}}]

= [0.4707 − 0.5 · min{0.6586, 0.6}, 0.4707
+0.5 · min{0.6586, 0.6}] = [0.1707, 0.7707].

So, w(IOnwα=0.5
OnB,max(X⃗)) = 0.6 ≤ max{w(X1), w(X2)}, which is

expected from a function that is width-limited by max.
One can visualize the way that the method works by taking

the interval [0.1414, 0.8] (output of the BIR) and ‘‘narrowing’’ it
in the direction of its Kα point. In this case, as α = 0.5, its the
midpoint (0.4707). This can be verified, since:

Kα=0.5(ÔnB(X⃗)) = Kα=0.5([0.1414, 0.8]) = 0.4707
=Kα=0.5([0.1707, 0.7707])=Kα=0.5(IOnwα=0.5

OnB,max(X⃗)).

If we consider α = 0.99, then the narrowing of the interval
[0.1414, 0.8] would occur towards the value 0.7934, near its right
endpoint. In this case, IOnwα=0.99

OnB,max(X⃗) = [0.1994, 0.7994].

(b) Take X1 = [0.6, 0.9] and X2 = [0.8, 0.8], then, w(X1) = 0.3,
w(X2) = 0 and max{w(X1), w(X2)} = 0.3. In this case,

ÔnB(X⃗) = [OnB(0.6, 0.8),OnB(0.9, 0.8)] = [0.5367, 0.759].

So, w(ÔnB(X⃗)) = 0.2223 < 0.3 = max{w(X1), w(X2)}. Also, from
Eq. (22):

IOnwα=0.5
OnB,max(X⃗)

= [Kα=0.5(ÔnB(X⃗)) − 0.5 · mÔnB,max(X⃗),

Kα=0.5(ÔnB(X⃗)) + 0.5 · mÔnB,max(X⃗)]

= [Kα=0.5([0.5367, 0.759]) − 0.5 · min{w(ÔnB),
max{w(X1), w(X2)}}, Kα=0.5([0.5367, 0.759])
+0.5 · min{w(ÔnB),max{w(X1), w(X2)}}]

= [0.6479 − 0.5 · 0.2223, 0.6479 + 0.5 · 0.2223]
= [0.5367, 0.759].

Observe that, although ÔnB is not width-limited by max, in this
case, the width of the output does not exceed the limit imposed
by the chosen width-limiting function (max). That is why, by
applying the construction method as by Eq. (22), it follows that
IOnwα=0.5

OnB,max(X⃗) = [0.5367, 0.759] = ÔnB(X⃗).

In Table 1, we show the results obtained for IOnwα
OnB,B(X⃗),

given in Example 9, by different choices of α and width-limiting
function B. In this table, it is possible to compare the results

obtained by CMR with the ones given by the BIR. Also, one can
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Table 1
Ex. of CMR, comparing with the BIR.

CMR Best interval representation

X1 = [0.2, 0.8]
X2 = [0.5, 1] IOnw0.5

OnB,max(X⃗) = [0.1707, 0.7707] ÔnB(X⃗) = [0.1414, 0.8]
B = max
α = 0.5

X1 = [0.2, 0.8]
X2 = [0.5, 1] IOnwp0.99OnB,max(X⃗) = [0.1994, 0.7994] ÔnB(X⃗) = [0.1414, 0.8]
B = max
α = 0.99

X1 = [0.2, 0.8]
X2 = [0.5, 1] IOnw0.5

OnB,min(X⃗) = [0.2207, 0.7207] ÔnB(X⃗) = [0.1414, 0.8]
B = min
α = 0.5

X1 = [0.2, 0.8]
X2 = [0.5, 1] IOnwp0.99OnB,min(X⃗) = [0.2984, 0.7984] ÔnB(X⃗) = [0.1414, 0.8]
B = min
α = 0.99
observe that, in every case shown in Table 1, IOnwα
OnB,B(X⃗) ⊆

n̂B(X⃗).
By extending n-dimensional grouping functions to the

nterval context in a similar manner as done in Example 7 with
-dimensional overlap functions, one can obtain the class
f n-dimensional w-iv-grouping functions, denoted by
GnwB

≤Pr ,≤α,β
. As n-dimensional grouping functions are the dual

f n-dimensional overlap functions, the following result is imme-
iate from Theorems 10 and 12.

heorem 13. Consider a symmetric and increasing function B :

0, 1]n → [0, 1], a strict n-dimensional grouping function Gn :

[0, 1]n → [0, 1], α ∈ (0, 1) and β ∈ (α, 1]. Then, the iv-
fusion function IOnwα

B : L([0, 1])n → L([0, 1]) defined, for all
X⃗ ∈ L([0, 1])n, by

IOnwα
B (X⃗) = [Kα(Ôn(X⃗)) − α · mÔn,B(X⃗), (23)

Kα(Ôn(X⃗)) + (1 − α) · mÔn,B(X⃗)],

is n-dimensional w-iv-grouping function for (≤Pr , ≤α,β , B).

Example 10. Consider B = AM (arithmetic mean), Gn = Gnp

(probabilistic sum), α = 0.5 and β = 1 (admissible order ≤XY ).
Then, the iv-fusion function IGPwα

min : L([0, 1])n → L([0, 1])
defined, for all X⃗ ∈ L([0, 1])n, by

GPwα
AM (X⃗) = [Kα(Ĝnp(X⃗)) − αmĜnp,AM (X⃗),

Kα(Ĝnp(X⃗)) + (1 − α)mĜnp,AM (X⃗)], (24)

s a w-iv-grouping function for the tuple (≤Pr , ≤XY , AM).

Regardless of the core fusion function F employed on CMR, the
ollowing result holds:

roposition 3. Let IFwα
B : L([0, 1])n → L([0, 1]) be a w-iv-fusion

unction for the tuple (≤Pr , ≤α,β , B) obtained through Theorem 6,
heorem 7 or Theorem 8, with the respective choices of α, β ∈ [0, 1]

such that α ̸= β . Then, for any X⃗ ∈ L([0, 1])n one has that
Fwα

B (X⃗) ⊆ F̂ (X⃗).

Remark 10. Proposition 3 ensures that any w-iv-fusion function
obtained through the CMR never generates outputs outside of the
interval output of the BIR of the base fusion function F .
10
5.2. A construction method based on admissibly ordered iv-fusion
functions (CMA)

This method follows a similar approach as CMR, by applying
the maximal threshold to limit the outputs’ widths of the con-
structed function around a Kα point. The main difference is that,
instead of being based on representable iv-fusion functions, it is
based on ≤α,β-increasing fusion functions.

Theorem 14. Consider an increasing fusion function B : [0, 1]n →

[0, 1], a strict fusion function F : [0, 1]n → [0, 1] with h = 0 as
its annihilator element, α ∈ (0, 1], β ∈ [0, 1] such that α ̸= β , and
an ≤α,β-increasing iv-fusion function IFα

: L([0, 1])n → L([0, 1]),
such that Kα(IFα)(X⃗) = F (Kα(X1), . . . , Kα(Xn)), for all X⃗ ∈ L([0, 1])n.
Then, the iv- fusion function IFwα

B : L([0, 1])n → L([0, 1]) defined,
for all X⃗ ∈ L([0, 1])n, by

IFwα
B (X⃗) = [Kα(IFα(X⃗)) − α · mIFα ,B(X⃗),

Kα(IFα(X⃗)) + (1 − α) · mIFα ,B(X⃗)],

is a width-limited fusion function for (≤α,β , ≤α,β , B).

Proof. See Appendix C. □

Theorem 15. Consider an increasing fusion function B : [0, 1]n →

[0, 1], a strict fusion function F : [0, 1]n → [0, 1] with h = 1 as
its annihilator element, α ∈ [0, 1), β ∈ [0, 1] such that α ̸= β , and
an ≤α,β-increasing iv-fusion function IFα

: L([0, 1])n → L([0, 1]),
such that Kα(IFα)(X⃗) = F (Kα(X1), . . . , Kα(Xn)), for all X⃗ ∈ L([0, 1])n.
Then, the iv- fusion function IFwα

B : L([0, 1])n → L([0, 1]) defined,
for all X⃗ ∈ L([0, 1])n, by

IFwα
B (X⃗) = [Kα(IFα(X⃗)) − α · mIFα ,B(X⃗),

Kα(IFα(X⃗)) + (1 − α) · mIFα ,B(X⃗)],

is a width-limited fusion function for (≤α,β , ≤α,β , B).

Proof. Analogous to the proof of Theorem 14. □

The next theorem follows from Theorems 14 and 15.

Theorem 16. Consider an increasing fusion function B : [0, 1]n →

[0, 1], a strictly increasing fusion function F : [0, 1]n → [0, 1],
α, β ∈ [0, 1] such that α ̸= β , and an ≤α,β-increasing iv-fusion
function IFα

: L([0, 1])n → L([0, 1]), such that Kα(IFα)(X⃗) =

F (K (X ), . . . , K (X )), for all X⃗ ∈ L([0, 1])n. Then, the iv- fusion
α 1 α n
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unction IFwα
B : L([0, 1])n → L([0, 1]) defined, for all X⃗ ∈ L([0, 1])n,

by

IFwα
B (X⃗) = [Kα(IFα(X⃗)) − α · mIFα ,B(X⃗),

Kα(IFα(X⃗)) + (1 − α) · mIFα ,B(X⃗)],

is a width-limited fusion function for (≤α,β , ≤α,β , B).

Similarly as done with CMR, one can obtain w-iv-aggregation
functions as follows:

Theorem 17. Consider an increasing fusion function B : [0, 1]n →

[0, 1], a strict aggregation function A : [0, 1]n → [0, 1] with h = 0
as its annihilator element, α ∈ (0, 1], β ∈ [0, 1] such that α ̸= β ,
and an ≤α,β-increasing iv-aggregation function IAα

: L([0, 1])n →

L([0, 1]), such that Kα(IA)(X⃗) = A(Kα(X1), . . . , Kα(Xn)), for all X⃗ ∈

L([0, 1])n. Then, the iv-fusion function IAwα
B : L([0, 1])n → L([0, 1])

defined, for all X⃗ ∈ L([0, 1])n, by

IAwα
B (X⃗) = [Kα(IAα(X⃗)) − α · mIAα ,B(X⃗),

Kα(IAα(X⃗)) + (1 − α) · mIA,B(X⃗)],

is a w-iv-aggregation function for the tuple (≤α,β , ≤α,β , B).

Proof. From the proof of Theorem 16, it is immediate that IAwα
B is

well defined, ≤α,β-increasing and width-limited by B. It remains
to be proven that: (i) IAwα

B ([0, 0], . . . , [0, 0]) = [0, 0] and (ii)
Awα

B ([1, 1], . . . , [1, 1]) = [1, 1].

i) By (IA2), one has that IA([0, 0], . . . , [0, 0]) = [0, 0]. Then
(IA([0, 0], . . . , [0, 0])) = 0 = mIAα ,B([0, 0], . . . , [0, 0]). So,

Awα
B ([0, 0], . . . , [0, 0]) = IAα([0, 0], . . . , [0, 0]) = [0, 0].

ii) By (IA2), IAα([1, 1], . . . , [1, 1]) = [1, 1]. So, we have that
(IAα([1, 1], . . . , [1, 1])) = 0 = mIAα ,B([1, 1], . . . , [1, 1]), and

Awα
B ([1, 1], . . . , [1, 1])=IAα([1, 1], . . . , [1, 1]) = [1, 1]. □

heorem 18. Consider an increasing fusion function B : [0, 1]n →

0, 1], a strict aggregation function A : [0, 1]n → [0, 1] with h = 1
s its annihilator element, α ∈ [0, 1), β ∈ [0, 1] such that α ̸= β ,
nd an ≤α,β-increasing iv-aggregation function IAα

: L([0, 1])n →

([0, 1]), such that

α(IAα)(X⃗) = A(Kα(X1), . . . , Kα(Xn)),

or all X⃗ ∈ L([0, 1])n. Then, the iv-fusion function IAwα
B : L([0, 1])n

L([0, 1]) defined, for all X⃗ ∈ L([0, 1])n, by

Awα
B (X⃗) = [Kα(IAα(X⃗)) − α · mIAα ,B(X⃗),

Kα(IAα(X⃗)) + (1 − α) · mIAα ,B(X⃗)],

s a w-iv-aggregation function for the tuple (≤α,β , ≤α,β , B).

roof. Analogous to the proof of Theorem 17. □

The next theorem follows from Theorems 17 and 18:

heorem 19. Consider an increasing fusion function B : [0, 1]n →

0, 1], a strictly increasing aggregation function A : [0, 1]n →

[0, 1], α, β ∈ [0, 1] such that α ̸= β , and an ≤α,β-increasing
iv-aggregation function IAα

: L([0, 1])n → L([0, 1]), such that
Kα(IAα)(X⃗) = A(Kα(X1), . . . , Kα(Xn)), for all X⃗ ∈ L([0, 1])n. Then,
the iv-fusion function IAwα

B : L([0, 1])n → L([0, 1]) defined, for all
X⃗ ∈ L([0, 1])n, by

IAwα
B (X⃗) = [Kα(IAα(X⃗)) − α · mIAα ,B(X⃗),

Kα(IAα(X⃗)) + (1 − α) · mIAα ,B(X⃗)],

is a w-iv-aggregation function for the tuple (≤ , ≤ , B).
α,β α,β

11
Width-limited functions based on a specific class of aggre-
gation functions can also be constructed. In the following, we
present the construction method for w-iv-overlap functions:

Theorem 20. Consider an increasing and symmetric fusion function
B : [0, 1]n → [0, 1], a strict n-dimensional overlap function On :

[0, 1]n → [0, 1], α ∈ (0, 1), β ∈ [0, 1] with α ̸= β , and an
≤α,β-overlap function IOnα

: L([0, 1])n → L([0, 1]), such that
Kα(IOn)(X⃗) = On(Kα(X1), . . . , Kα(Xn)), for all X⃗ ∈ L([0, 1])n. Then,
the iv-fusion function IOnwα

B : L([0, 1])n → L([0, 1]) defined, for all
X⃗ ∈ L([0, 1])n, by

IOnwα
B (X⃗) = [Kα(IOnα(X⃗)) − α · mIOnα ,B(X⃗),

Kα(IOnα(X⃗)) + (1 − α) · mIOnα ,B(X⃗)],

is a w-iv-overlap function for the tuple (≤α,β , ≤α,β , B).

Proof. From the proof of Theorem 19, it is immediate that IOnwα
B

is well defined, (≤Pr , ≤α,β )-increasing and width-limited by B. It
remains to be proven that IOnwα

B has the properties of the set
IPOn′ = {(IOn1), (IOn2), (IOn3)}:

(IOn1) It is immediate, since On and B are both symmetric.

(IOn2) (⇒) Take X⃗ ∈ L([0, 1])n and suppose that IOnwα
B (X⃗) =

[0, 0]. Then, we have that

Kα(IOnwα
B (X⃗))=Kα([0, 0])=0=On(Kα(X1), . . ., Kα(Xn)),

since α ∈ (0, 1). Thus, by condition (On2), Kα(Xi) = 0 for some
i ∈ {0, . . . , n}, and, therefore,

∏n
i=1 Xi = [0, 0];

(⇐) Consider X⃗ ∈ L([0, 1])n such that
∏n

i=1 Xi = [0, 0]. So,
Kα(Xi) · . . . · Kα(Xn) = 0, since α ∈ (0, 1). Then, by (On2), one has
that

Kα(IOnwα
B (X⃗)) = On(Kα(X1), . . . , Kα(Xn)) = 0,

meaning that IOnwα
B (X⃗) = [0, 0];

(IOn3) (⇒) Take X⃗ ∈ L([0, 1])n such that IOnwα
B (X⃗) = [1, 1]. Then,

one has that

Kα(IOnwα
B (X⃗))=Kα([1, 1])=1=On(Kα(X1), . . ., Kα(Xn)).

By (On3), Kα(X1) · . . . · Kα(Xn) = 1, since α ∈ (0, 1), meaning that∏n
i=1 Xi = [1, 1];
(⇐) Consider X⃗ ∈ L([0, 1])n such that

∏n
i=1 Xi = [1, 1]. So,

Kα(X1) · . . . · Kα(Xn) = 1, since α ∈ (0, 1). Then, by (On3), one has
that

Kα(IOnwα
B (X⃗))=On(Kα(X1), . . ., Kα(Xn))=1,

meaning that IOnwα
B (X⃗) = [1, 1]. □

Example 11. Consider the ≤IQ -overlap function AOnα
OnB,max given

by Theorem 2 for B = max, On = OnB given by Eq. (3), α = 0.5
and β = 0 (admissible order ≤IQ ). Then, the iv-fusion function
IOnwα

OnB,max : L([0, 1])n → L([0, 1]) defined, for all X⃗ ∈ L([0, 1])n,
by

IOnwα
OnB,max(X⃗) = (25)

[Kα(AOnα
OnB,max(X⃗)) − αmAOnα

OnB,max,max(X⃗),

Kα(AOnα
OnB,max(X⃗)) + (1−α)mAOnα

OnB,max,max(X⃗)],

is a w-iv-overlap function for the tuple (≤IQ , ≤IQ ,max).
Let us consider the same cases as in Example 9, but now

applying CMA. So, take n = 2, X1 = [0.2, 0.8] and X2 = [0.5, 1],
meaning that max{w(X ), w(X )} = 0.6. Also, from Theorem 2, it
1 2
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x⃗
i
M
t

olds that:

Onα
OnB,max(X⃗) = R (26)

where
{

Kα(R) = OnB(Kα(X1), Kα(X2)),
λα(R) = max{λα(X1), λα(X2)},

ith λα(X1) and λα(X2) given by Definition 17. So, we have that:

w(AOnα
OnB,max(X⃗))

= λα(AOnα
OnB,max) · min

{
Kα(AOnα

OnB,max)
α

,

1 − Kα(AOnα
OnB,max)

1 − α

}
by Eq. (10)

max{λα([0.2, 0.8]), λα([0.5, 1])} ·

min
{
OnB(Kα([0.2, 0.8]), Kα([0.5, 1]))

0.5
,

1 − OnB(Kα([0.2, 0.8]), Kα([0.5, 1]))
1 − 0.5

}
by Eq. (26)

max
{

w([0.2, 0.8])
dα(Kα([0.2, 0.8]))

,
w([0.5, 1])

dα(Kα([0.5, 1]))

}
·

min
{
OnB(0.5, 0.75)

0.5
,
1 − OnB(0.5, 0.75)

0.5

}
by Eq. (8)

max

{
0.6

min
{ 0.5
0.5 ,

0.5
0.5

} ,
0.5

min
{ 0.75

0.5 , 0.25
0.5

}}
·

min
{
0.433
0.5

,
1 − 0.433

0.5

}
by Eq. (9)

= max
{
0.6
1

,
0.5
0.5

}
· min {0.866, 1.134} = 0.866.

o, it follows that:

(AOnα
OnB,max(X⃗)) = 0.866 > 0.6 = max{w(X1), w(X2)},

eaning that AOnα
OnB,max is not width-limited by max. By applying

MA, from Eq. (25), one has that:

Onwα=0.5
OnB,max(X⃗)

[Kα=0.5(AOnα
OnB,max(X⃗))−0.5 · mAOnα

OnB,max,max(X⃗),

Kα=0.5(AOnα
OnB,max(X⃗))+0.5 · mAOnα

OnB,max,max(X⃗)]

[OnB(0.5, 0.75) − 0.5 · min{0.866, 0.6},
OnB(0.5, 0.75) + 0.5 · min{0.866, 0.6}]

[0.433 − 0.5 · 0.6, 0.433 + 0.5 · 0.6]
[0.133, 0.733].

o, w(IOnwα=0.5
OnB,max(X⃗)) = 0.6 ≤ max{w(X1), w(X2)}, which is

xpected from a function that is width-limited by max.
For a similar reason as observed in Example 9, whenever one

as that w(AOnα
OnB,max(X⃗)) ≤ max{w(X1), w(X2)}, for some X⃗ ∈

([0, 1])n and α ∈ (0, 1], then the output already respects the
idth control dictated by max, and, in this case, IOnwα

OnB,max(X⃗) =

Onα
OnB,max(X⃗).

Some values obtained by both IOnwα
OnB,B(X⃗) and AOnα

OnB,B(X⃗)
from Example 11) can be seen on Table 2, by varying the value of
and the chosen width-limiting function B. One can observe that,

n Table 2, every result obtained by CMA (IOnwα
OnB,B(X⃗)) is con-

ained on the interval given by the corresponding ≤α,β-overlap
unction without width-limitation (AOnα

OnB,B(X⃗)). Also, different
rom the BIR, AOnα

OnB,B varies accordingly to the chosen α. Finally,
t is noteworthy that, in both Example 11 and Table 2, we applied
he same function B for both IOnwα (X⃗) and AOnα (X⃗), but
OnB,B OnB,B

12
his is not a requirement. We decided to keep both iv-functions
ased on the same B for simplicity.
At this point, it is clear that other classes of w-iv-aggregation

unctions can be obtained through CMA, by the appropriate
hoices of a strict aggregation function A, a width-limiting func-
ion B, α, β and an ≤α,β-increasing iv-aggregation function IAα .

.3. Applications to practical problems

When applying either of the construction methods of width-
imited iv-fusion functions in practical problems, the domain
xpert has to make some key choices, as explained bellow:

. The choice of fusion function F : usually, when extending a
usion/aggregation process modeled by a fusion function F to the
nterval context, one can maintain the same fusion function F as
he core of the construction method to be employed. For exam-
le, it was shown by Asmus et al. [33] that the n-dimensional
verlap functions GM and OnB, defined in Eqs. (2) and (3), respec-
ively, are well fitted to be employed in classification problems.
hus, it is natural that those functions are chosen to be the core
f some w-iv-fusion functions to be applied in IV-FRBCSs with
idth-limitation (see Section 6);

. The choice of α: It is entirely determined by the admissible
rder ≤α,β that is indicated for the application. The choice of
he interval order depends on how the intervals are obtained
r interpreted [43,45,47]. To keep the same example, Asmus
t al. [33] showed that the admissible order ≤IQ (α = 0.5, β = 0),
efined in Eq. (6), is a suitable choice for IV-FRBCSs.

. The choice of the width-limiting function B: it depends on how
uch the length of the output interval’s width has to be con-

rolled to conserve the information quality of the interval inputs,
ince the larger the width of the interval output, the lesser is
he information quality carried by it [48]. This level of control
o be determined may not be obvious, but there are ways to
est/compare different configurations of the same construction
ethod by taking into account different width-limiting func-

ions, as we show in the application in a classification problem,
resented in Section 6.

. Application to classification problems

To showcase the applicability of our developments in practical
roblems, in this section we apply interval operators of specific
ubclasses of w-iv-fusion functions in the IVTURS IV-FRBCS. In
he work by Asmus et al. [33], it was shown that n-dimensional
verlap functions (and interval-valued functions based on them)
re recommended to be applied in this type of problem. Fur-
hermore, the best performing methods on that paper are based
n n-dimensional ≤α,β-increasing iv-overlap functions that are
idth-limited by the minimum, that is, the outputs’ widths are

esser or equal than the widths of the inputs. So, the class of
-dimensional w-iv-overlap functions as defined in Example 5
eems a natural choice to provide functions for this application.
In the following, first we recall some key concepts regarding

V-FRBCSs. After that, we present the experimental framework,
ollowed by the analysis of the results.

.1. IV-FRBCSs

A classification problem is composed by P training examples
p⃗ = (xp1, . . . , xpn), p ∈ {1, . . . , P} where xpi is the value of the
th variable of the pth example. Each example belongs to one of

classes in C={C1, . . . , CM}. The goal of the learned classifier is
o identify the class of new testing examples.
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Table 2
CMA, comparing with ≤α,β -overlap functions.

CMA ≤α,β -overlap function

X1 = [0.2, 0.8]
X2 = [0.5, 1] IOnw0.5

OnB,max(X⃗) = [0.13, 0.73] AOn0.5
OnB,max(X⃗) = [0, 0.87]

B = max
α = 0.5

X1 = [0.2, 0.8]
X2 = [0.5, 1] IOnw0.99

OnB,max(X⃗) = [0.19, 0.79] AOn0.99
OnB,max(X⃗) = [0, 0.80]

B = max
α = 0.99

X1 = [0.2, 0.8]
X2 = [0.5, 1] IOnw0.5

OnB,min(X⃗) = [0.18, 0.68] AOn0.5
OnB,min(X⃗) = [0.17, 0.69]

B = min
α = 0.5

X1 = [0.2, 0.8]
X2 = [0.5, 1] IOnwp0.99OnB,min(X⃗) = [0.29, 0.79] AOn0.99

OnB,min(X⃗) = [0.19, 0.80]
B = min
α = 1
b
o
f

(
r
v
c

c

A

One of the most frequently applied techniques to deal with
lassification problems are the FRBCSs. They can achieve accurate
esults by using highly interpretable models, since the fuzzy rules
re expressed by linguistic labels [35]. The structure of the fuzzy
ules is given by:

ule Rj : If x1 is Aj1 and . . . and xn is Ajn (27)
then Class = C ′

j with RWj,

here Rj is the label of the jth rule, x = (x1, . . . , xn) is an n-
imensional example vector, Aji is the fuzzy set modeling the
inguistic term of the jth rule in the ith antecedent, C ′

j ∈ C is a
lass label, and RWj ∈ [0, 1] is the rule weight [70]. In particular,
he rule weight is computed by the fuzzy confidence value (or
ertainty factor), as follows:

Wj =

∑
xp∈C ′

j
Aj(xp)∑P

p=1 Aj(xp)
, (28)

where Aj(xp) is the matching degree of the pattern xp with the
antecedent part of the fuzzy rule Rj, given by

Aj(xp) = c(Aj1(xp1), . . . , Ajn(xpn)), (29)

where c is an n-dimensional conjunction operator and j ∈ {1, . . . ,
L}.

A FRBCS becomes an IV-FRBCS when some of the linguistic
labels (or all of them) are modeled using IVFSs. This means that
the fuzzy reasoning method must work with intervals instead of
numbers, being called an iv-fuzzy reasoning method (IV-FRM), to
take into account the interval widths (uncertainty) throughout
the whole inference process [71] (see Section 6.2). As a novelty
for this kind of classifier, we apply width-limited functions to
control the information quality of the interval operations that
occur on the IV-FRM, and analyze if such width control improves
the performance of the system.

6.2. New iv-fuzzy reasoning method

For the following experimentation, we apply our new theoret-
ical concepts in the IVTURS algorithm, which is a state of the art
IV-FRBCS (an in-depth look at each step of the IVTURS algorithm
can be seen in the work by Sanz et al. [72]). Here, we recall the
steps of its learning process:

(1) The building of an IV-FRBCS, by the following procedures:
(a) To generate an initial FRBCS by applying the two first

stages of FARC-HD [73], a technique that is based on the Apriori
13
algorithm [74] to build fuzzy rules (Eq. (28)) in its first learn-
ing stage. In those fuzzy rules, the product t-norm is usually
applied as the conjunction operator c in Eq. (29). However, as
shown by Asmus et at. [33], one can benefit from replacing
the product t-norm by other n-dimensional overlap functions
On, such as the Geometric Mean and the n-dimensional OnB-
overlap, given by Eqs. (2) and (3), respectively. This allows for
the chosen n-dimensional overlap functions to be considered as
the core functions for the construction of the n-dimensional w-
iv-overlap functions to be used in the IV-FRM (described in the
sequence). Thus, the function On impacts the learning process of
the fuzzy rules, which means that if On is not the product, then
the obtained fuzzy rules would not necessarily be the same than
those obtained by the original IVTURS.

(b) To define IVFSs to model the linguistic labels of the learned
FRBCS;

(c) To generate initial IV-REFs for each variable of the problem.

(2) The application of an optimization approach, so that:
(a) It learns the best values of the IV-REFs’ parameters;
(b) It applies a rule selection process to decrease the system’s

complexity.
After creating the interval-valued fuzzy rules that compose the

system, we define the new mechanism for classifying examples,
as follows.

Let x⃗p⃗ = (xp1, . . . , xpn) be a new example to be classified, L
e the number of rules in the rule base and M be the number
f classes of the problem. The new IV-FRM is defined by the
ollowing steps:

1) Interval matching degree: It expresses activation strength the
ules’ antecedents for each xp. The similarity between the inter-
al membership degrees (of each variable of the pattern to the
orresponding IVFS) and the ideal membership degree [1, 1] is
computed by an IV-REF IR and, then, we use an interval-valued
fusion function FO : L([0, 1])n → L([0, 1]), for j ∈ {1, . . . , L} to
ombine their results as follows:

j(xp)=FO
(
IR

(
Aj1(xp1), [1, 1]

)
, . . ., IR

(
Ajn(xpn), [1, 1]

))
,

with FO being an n-dimensional w-iv-overlap function based on
the n-dimensional overlap function On (applied as the conjunc-
tion operator when generating the initial FRBCS) and an in-
creasing and symmetric width-limiting function B, which will
determine how much information quality control we desire on
the IV-FRM.

(2) Interval association degree: For the respective class of each rule,
the interval matching degree is weighted with the corresponding
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j ∈ L([0, 1]), through an iv-fusion function

P : L([0, 1])n → L([0, 1]), as follows:
k
j = FP

(
Aj(xp), IRW k

j

)
, (30)

ith k = 1, . . . ,M , j = 1, . . . , L and FP being an interval-
valued product operation, applied with the same criteria for
width-limitation as the one for FO.

The rule weight is defined by the interval-valued confidence
value [75], given by:

IRWj =

∑
xp∈C ′

j

Aj(xp) ÷H

P∑
p=1

Aj(xp),

with ÷H being defined as in Eq. (5).

(3) Interval pattern classification soundness degree for all classes: All
interval association degrees of each class (obtained in Step (2))
with upper bounds that are greater than 0 are aggregated by an
interval-valued aggregation function IA:

Yk = IA
(
bkj , j = 1, . . . , L and bkj > 0

)
,

with k = 1, . . . ,M .

(4) Classification: A decision function F is applied over the interval
pattern classification soundness degrees for all classes, as follows:

F (Y1, . . . , YM) = arg max
k=1,...,M

(Yk) .

In this final step of the IV-FRM, the system selects the great-
est interval soundness degree, which is done by comparing the
resulting intervals through an admissible order (in order to avoid
a stalemate). As discussed by Asmus et al. [33], the order ≤IQ
(order of Xu-Yager based on the quality of information, or ≤α,β

with α = 0.5 and β = 0) is a suitable option for this type of
classification problem, so we opted for this admissible order in
our experiment.

6.3. Experimental framework

The general goal of our experiment is to analyze the classifica-
tion performance of our new methodology, by testing and com-
paring different configurations of the proposed IV-FRM, some of
which allow controlling the information quality. To that end, we
apply different n-dimensional w-iv-overlap functions obtained
by either the construction method based on representable fu-
sion functions (CMR) or the construction method based on ≤α,β-
increasing fusion functions (CMA).

To conduct our experiment, we have selected 31 real-world
data-sets from the KEEL repository [76], which are publicly avail-
able on the webpage (http://www.keel.es/dataset.php). Table 3
summarizes the properties of the considered data-sets, present-
ing, for each data-set, the numbers of attributes (Atts.), examples
(Ex.), and classes (Class.). To improve the learning process effi-
ciency, the magic, page-blocks, penbased, ring, satimage, shuttle,
nd twonorm data-sets have been stratified sampled at 10%. Also,
issing values from bands, cleaveland and wisconsin data-sets
ave been removed before our experiments.
We apply a 5-fold cross-validation model, by dividing each data-

et in 5 random partitions. Four of them (80%) are combined to
rain the system and the remaining one (20%) is reserved for
esting. This process is executed 5 times, changing the testing
artition in each iteration. The accuracy rate (percentage of well
lassified examples) is used to measure the system’s performance.
We follow the recommendation provided by Sanz et al. [72]

or the set-up of the IVTURS classifier, with the modifications
xplained in Section 6.2. Then, we analyze the classification per-
ormance by comparing different configurations based on the
14
function FO applied on Step (1) of the IV-FRM, which is deter-
mined by both the corresponding On used on the learning process
of the fuzzy rules and the weighting operation (FP ) used in the
Step (2) of the IV-FRM, as shown in Table 4. The selected n-
dimensional overlap functions (On) to be used as the core of FO
were based on the best performing operations for this kind of
classifier [33], namely, GM and OnB (Eqs. (2) and (3), respec-
tively), as well as the product (OnP), since it is the operation used
on the original IVTURS.

From Table 4, it can be seen that there are nine methods to be
tested and compared, belonging to three groups:

(i) REP: FO is obtained by the BIR of On (Ôn);

(ii) CONR: FO is obtained by CMR, via Theorem 12 (IOnwα
On,B);

(iii) CONA: FO is obtained by CMA, via Theorem 20 (AOnwα
On,B).

In each group, we have three methods, and each one of them
is based on one of the three n-dimensional overlap functions that
were selected for this study (OnP , OnB and GM). For instance, in
group REP, we have REP-Prod, REP-GM and REP-OnB. In summary,
from the nine considered methods, the six from groups CONR and
CONA are based on our new developed concepts that allow for
an arbitrary level of width limitation, while the three from group
REP are instances of the new IV-FRM that coincide with methods
that were developed on a previous work [33] and have no width
control.

When FO is given by an n-dimensional w-iv-overlap function
all the approaches derived for the CONR and CONA groups), we
heck the effect of the width-limitation by comparing the results
f the classifier when varying the width-limiting function B, given

by:

Bρ(w(x1), . . . , w(xn)) = min{w(x1), . . . , w(xn)}+ (31)
ρ(max{w(x1), . . . , w(xn)} − min{w(x1), . . . , w(xn)}),

with ρ ∈ [0, 1]. Specifically, we test each configuration with five
possible values for ρ: ρ = 0 (B = min); ρ = 0.25; ρ = 0.5;
ρ = 0.75; ρ = 1 (B = max). In this manner, the parameter
ρ indicates the amount of width control that we are imposing
on the system. When ρ = 0, the output’s width is limited by
the minimum of the inputs’ widths, representing the most strict
width limitation. Conversely, when ρ = 1, the output’s width is
limited by the maximum of the inputs’ widths, representing the
less width control.

To detect if there are statistical differences in performance
among the methods in a selected group, first, we use the aligned
Friedman ranks test [77], reporting the obtained ranks of each
method (the less the rank, the better). The best ranking method
of such group is compared with the others through a Holm’s
post-hoc test [78]. When the goal is to provide a pairwise com-
parison, we apply a Wilcoxon Signed-Ranks test [79]. García
et al. [80] showed that this selection of statistical tests is highly
recommended to be used in machine learning.

6.4. Discussion of the results

In Table 5 we present results in testing (average of the ac-
curacy rate obtained in the 31 datasets) for all the possible
configurations of the new method, one in each row (the same
ones as shown in Table 4). All approaches based on the construc-
tion methods CONR and CONA allow the control of the interval
widths by means of the hyper-parameter ρ, whose results are
shown in columns. On the other hand, approaches belonging
to the REP group do not allow such control and, therefore, we
present their results in a single column as they are not affected
by the hyper-parameter ρ. For each ρ, we highlight in bold face

http://www.keel.es/dataset.php
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Table 3
Summary of the employed datasets.
Source: KEEL, 2011.
id Data-set Atts. Ex. Class.

app appendicitis 7 106 2
bal balance 4 625 3
ban banana 2 5300 2
bds bands 19 365 2
bup bupa 6 345 2
clv cleveland 13 297 5
con contraceptive 9 1473 3
eco ecoli 7 336 8
gla glass 9 214 7
hab haberman 3 306 2
hay hayes-hoth 4 160 3
ion ionosphere 33 351 2
iri iris 4 150 3
led led7digit 7 500 10
mag magic 10 19020 2
new newthyroid 5 215 3
pag pageblocks 10 5472 5
pen penbased 16 10992 10
pho phoneme 5 5404 2
pim pima 8 768 2
rin ring 20 7400 2
sah saheart 9 462 2
sat satimage 36 6435 7
shu shuttle 9 58000 7
spe spectfheart 44 267 2
tit titanic 3 2201 2
two twonorm 20 7400 2
veh vehicle 18 846 4
win wine 13 178 3
wis wisconsin 9 683 2
yea yeast 8 1484 10
Table 4
Configuration schemes for the used classifiers.
Classifier identifier On FO FP
REP-Prod OnP IOnP = ÔnP IOnP = ÔnP

REP-OnB OnB IOnB = ÔnB IOnP = ÔnP

REP-Gm GM IGM = ĜM IOnP = ÔnP

CONR-Prod OnP IOnwα
OnP,B IOnwα

OnP,B

CONR-OnB OnB IOnwα
OnB,B IOnwα

OnP,B

CONR-Gm GM IOnwα
GM,B IOnwα

OnP,B

CONA-Prod OnP AOnwα
OnP,B AOnwα

OnP,B

CONA-OnB OnB AOnwα
OnB,B AOnwα

OnP,B

CONA-Gm GM AOnwα
GM,B AOnwα

OnP,B
Table 5
Results in testing for the different methods.
Method

REP-Prod 79.56
REP-OnB 79.83
REP-Gm 79.75

ρ = 0 ρ = 0.25 ρ = 0.5 ρ = 0.75 ρ = 1

CONR-Prod 79.82 79.62 79.58 79.61 79.20
CONR-OnB 80.11 79.76 79.79 79.87 79.76
CONR-Gm 79.65 79.90 79.71 79.71 79.95
CONA-Prod 79.54 79.48 79.46 79.43 79.60
CONA-OnB 80.06 80.00 80.02 80.09 79.87
CONA-Gm 79.91 79.94 79.94 79.91 80.04
the best result, that is, the configuration of the classifier that
produced the greatest global mean. The detailed results for all the
datasets (in all the partitions), with every possible combination,
can be queried on https://github.com/tiagoasmus/testingResults-
w-iv-overlaps.

By observing Table 5, we see that the methods from group
EP are not able to obtain better averaged behaviors than those
15
highlighted in the second part of the table, that is, the best con-
figurations of the methods that allow one to control de output’s
interval width. Moreover, most of the highlighted results come
from the group CONA, with the exception of one method that
is from group CONR (CONR-OnB with ρ = 0), which is also
the method with the best global mean. Therefore, we can affirm
that methods from groups CONR and CONA produce good results,

https://github.com/tiagoasmus/testingResults-w-iv-overlaps
https://github.com/tiagoasmus/testingResults-w-iv-overlaps
https://github.com/tiagoasmus/testingResults-w-iv-overlaps
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Table 6
Average rankings of the algorithms (Aligned Friedman) – Comparing levels of width control ρ.
Method ρ = 0 ρ = 0.25 ρ = 0.5 ρ = 0.75 ρ = 1

CONR-Prod 60.61 (−) 77.87 (0.390) 72 (0.390) 77.76 (0.390) 101.76 (0.001)*
CONR-OnB 61.31 (−) 84.81 (0.118) 81.40 (0.156) 75.34 (0.218) 87.15 (0.094)*
CONR-GM 86.58 (0.383) 70.47 (0.800) 80.18 (0.539) 85.19 (0.383) 67.58 (−)
CONA-Prod 73.02 (0.583) 80.19 (0.477) 83.97 (0.394) 86.07 (0.362) 66.76 (−)
CONA-OnB 80.16 (1.000) 78.42 (1.000) 76.79 (1.000) 72.24 (−) 82.39 (1.000)
CONA-GM 81.65 (0.529) 78.36 (0.529) 79.69 (0.529) 84.08 (0.469) 66.23 (−)
Table 7
Average rankings of the algorithms (Aligned Friedman) – Comparison by groups.
Method Rank (APV) Method Rank (APV) Method Rank (APV)

REP-Prod 50.61 (0.500) CONR-Prod0 49.44 (0.628) CONA-Prod1 57.31 (0.029*)
REP-OnB 42.73 (−) CONR-OnB0 42.53 (−) CONA-OnB0.75 40.55 (−)
REP-GM 47.66 (0.500) CONR-GM1 49.03 (0.628) CONA-GM1 43.15 (0.705)
t
o
b

possibly due to the control of the interval widths in the interval
operations. In particular, the method CONA-OnB achieves a very
robust performance for every considered level of width limitation.

Next, we study the effect of the level of width control per-
ormed in each method (the different values of ρ). To do it,
e compare the five possible values of ρ for each method, by
pplying the aligned Friedman’s test. The obtained ranks, as well
s the Adjusted P-Values (APVs, presented in brackets) obtained
y the Holm’s post hoc test are shown in Table 6, where we have
ighlighted in bold-face the best rank (the less one) and we have
tressed with an asterisk (*) those cases where there are statistical
ifferences (using α = 0.1) in favor to the ρ associated to the less
ank. Looking at Table 6, one can observe that the benefit from a
ore rigid width control depends on the applied interval-valued

unction:
(a) For the group CONR, two algorithms with a more strict

idth control produced better results (CONR-Prod and CONR-
nB, both with ρ = 0 as the control method). In both cases, there
re significant differences from the control method (ρ = 0, strong
idth-limitation), and the algorithm with ρ = 1 (least considered
idth-limitation);
(b) Considering the group CONA, the method CONA-Prod ap-

ear to perform better with a less aggressive width limitation
control method has ρ = 1). Confirming the previous observation,
ONA-OnB achieved good results for every considered level of
idth control, as indicated by the same APV = 1 obtained for
ach of its configurations when compared to the control method
ρ = 0.75);

(c) Independently of the employed Construction method, the
lgorithms that are based on the geometric mean also seem more
ccurate with less strict width control, as the control methods
ave ρ = 1 for both CONR-GM and CONA-GM.
Next, we apply three Aligned Friedman and Holm’s tests, one

or each group (REP, CONR and CONA), to compare the best
erforming algorithms from each group. In the case of the group
EP, we test the three considered methods as they do not depend
n the values of ρ. For the groups CONR and CONA, we compare
he control methods we obtained from Table 6. We indicate the
alue of ρ of each method as a superindex, when necessary. For
xample, the method CONR-Prod with ρ = 0 is denoted by CON-
ROD0. The results of these tests are shown in Table 7, with
he best ranking method in each group highlighted in bold-face
nd methods that present significant difference from the control
ethod are marked with an asterisk (*).
Observing Table 7, it is clear that the methods based on the

-dimensional overlap function OnB have good performance, as
hey are the control methods in each of the groups (REP, CONR
nd CONA). Next, we statistically compare those three best per-
orming methods in another aligned test, whose obtained results
re presented on Table 8. From Table 8, we see that the method
16
Table 8
Average rankings of the algorithms (Aligned
Friedman) – Comparing construction methods.
Method Rank (APV)

REP-OnB 55.87 (0.069*)
CONR-OnB0 43.77 (0.724)
CONA-OnB0.75 41.36 (−)

Table 9
Pairwise comparisons via Wilcoxon test.
Comparison R+ R− p-value

IVTURS vs REP-OnB 181.5 314.5 0.214
IVTURS vs CONR-OnB0 131.5 364.5 0.024*
IVTURS vs CONA-OnB0.75 125.5 370.5 0.018*

CONA-OnB0.75 is the best option, although CONR-OnB0 also per-
forms well. The method REP-OnB, does not achieve the same
level of performance of the other two compared methods, being
significantly less accurate than the control method. As those three
methods are all based on the same core n-dimensional overlap
function (OnB), which is used throughout all the components of
those algorithms, the main difference between them lies on the
construction of the interval-valued operations that take place in
the IV-FRM, which may or may not control the widths of the
outputs of such operations. Thus, we can conclude that control-
ling the width of the intervals, which implies having intervals
with better information quality, is beneficial for the system’s
performance.

Finally, to further analyze the benefits of the new proposed
methods, we carry out three pairwise comparisons between the
best performing method from each group with the original con-
figuration of the IVTURS algorithm (REP-Prod), through the
Wilcoxon test. These results can be seen on Table 9, with the
results with significant differences marked with an asterisk (*).
Analyzing Table 9, it is clear that the configurations of both CONR-
OnB0 and CONA-OnB0.75 improve significantly the performance
of the IVTURS algorithm, whereas the method REP-OnB does not
improve the accuracy of IVTURS in the same manner.

To illustrate the superiority in performance of CONR-OnB0 and
CONA-OnB0.75 when compared to IVTURS, firstly, Fig. 1 shows
the difference in accuracy between CONR-OnB0 and IVTURS on
each dataset (as denoted on Table 3). The positive values (orange
bars) indicate that CONR-OnB0 was more accurate on a dataset,
while the negative values (blue bars) indicate that IVTURS was
more accurate on a dataset. Analogously, Fig. 2 illustrate the
pairwise comparison between IVTURS and CONA-OnB0.75. Thus,
he superior performance of both CONR-OnB0 and CONA-OnB0.75

ver IVTURS can be visualized by the predominance of orange
ars on Figs. 1 and 2.
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Fig. 1. Difference in accuracies between IVTURS and CONR-OnB0 .

Fig. 2. Difference in accuracies between IVTURS and CONA-OnB0.75 .

Therefore, we can conclude that the exchange from the prod-
ct to the n-dimensional overlap OnB is not the sole reason for the
etter performance of CONR-OnB0 and CONA-OnB0.75, indicating
hat these new methods benefit from a certain amount of width
imitation.

. Conclusion

When aggregating interval data through iv-aggregation func-
ions, usually by means of the BIR, one may face the problem of
ealing with interval outputs with large widths and, thus, low
nformation quality. With the motivation to tackle this sort of
hallenge, in this paper, we presented a general framework to
efine and construct different subclasses of w-iv-fusion functions,
llowing for the control of the interval output widths provided
y interval aggregation operations that occur in practical prob-
ems, such as in IV-FRBCSs. From that, we have the following
ontributions:

. The development of the concept of width-limitation, with the
xtension to the n-dimensional context of width-limited iv-fusion
unctions and width-limiting fusion functions;

. The characterization of increasing fusion functions through a
et of properties, a form of representation that facilitates the
efinition of interval-valued counterparts of such functions;

. The definition of classes of w-iv-fusion functions based on an
ncreasing fusion function, the interval extension of its set of
roperties and a pair of partial orders. This general methodol-
gy is capable of retrieving known definitions of iv-aggregation
unctions from the literature while also providing a flexible way
o obtain iv-fusion functions with a desirable amount of width-
imitation;

. Two approaches to provide construction methods for w-iv-
usion functions, one based on the representable interval func-
ions (CMR) and another based on admissibly ordered interval
unctions (CMA), where the interval outputs are ‘‘narrowed’’ in
he direction of a Kα point and whose widths to not surpass a
iven threshold.
17
One of the key aspects of the developed framework and the
resented construction methods is their flexibility, derived from
he different possible choices of fusion functions, interval or-
ers and width-limiting functions. This flexibility translates into
otential applicability, as one can define a particular class of w-
v-fusion function accordingly to the constraints/requirements of
given practical problem. This aspect was highlighted in our

ase study, where we developed and applied a new IV-FRM
or IV-FRBCSs, in which the information quality is controlled
y n-dimensional w-iv-overlap functions, whose class is defined
hrough our general framework. From our experimentation and
ubsequent statistical analysis, we can draw the following con-
lusions:

. Configurations of the classifier based on n-dimensional w-iv-
verlap functions constructed via either CMR or CMA have good
lassification accuracy, in general;

. Although the amount of width control that benefits the per-
ormance of the system varies for each choice of w-iv-fusion
unction, this information can be retrieved by defining the width-
imiting function through a parameter (ρ). In this manner, we
an compare different values of ρ for each algorithm and pos-
ibly determine how much the widths of the outputs have to be
onstrained;

. Configurations of the classifier based on the n-dimensional
verlap function OnB produce the best results. Among those con-
igurations, the one based on the CMAmethod have a significantly
igher classification accuracy than the one based on the BIR
f OnB. Particularly, CMA-OnB produces good results for every
onsidered level of width limitation, presenting itself as a very
table method;

. The two best performing methods, one based on CMR and
ther based on CMA, significantly enhances the classification
ccuracy of the state-of-the-art IVTURS algorithm, showing that
oth construction method approaches are suitable to provide w-
v-fusion functions to be applied in classification problems, which
an benefit from the width control provided by such methods.
From these conclusions, we can state that the new IV-FRM,

hich is based on w-iv-fusion functions constructed via the pro-
osed framework, is recommended to be considered as a key
art of IV-FRBCSs where the information quality carried by the
perated intervals is taken into account and kept under control
hroughout the inference process.

In future works we intend to apply our general framework
o define and construct w-iv-fusion functions to be employed in
ggregation processes with uncertainty (e.g., sensor data fusion),
s in techniques for multicriteria decision making [27] and image
rocessing [25].
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ppendix A. Proof of Theorem 2

roof. Consider a symmetric aggregation function B : [0, 1]n →

0, 1], a strict n-dimensional overlap function On : [0, 1]n →

0, 1] and let α ∈ (0, 1) and β ∈ [0, 1] such that α ̸= β . Observe
hat AOnα

B is well defined. In fact, considering that AOnα
B (X⃗) = R,

ne has that w(R) = On(λα(X1), . . . , λα(Xn)) · dα(Kα(R)), R =

α(R) − α · w(R) and R = Kα(R) + (1 − α) · w(R). Now, let us
verify if IAOnα

B respects all conditions from Definition 19.

(IOn1) Immediate, since On and B are both symmetric;

(IOn2) (⇒) Take X⃗ ∈ L([0, 1])n and suppose that AOnα
B (X⃗) = R =

0, 0]. Then, we have that

α(R) = Kα([0, 0]) = 0 = On(Kα(X1), . . . , Kα(Xn)),

since α ∈ (0, 1). Thus, by condition (On2), Kα(Xi) = 0 for some
i ∈ {1, . . . , n}, and, therefore,

∏n
i=1 Xi = [0, 0];

(⇐) Consider X⃗i⃗ ∈ L([0, 1])n such that
∏n

i=1 Xi = [0, 0]. So,
Kα(X1) · . . . · Kα(Xn) = 0, since α ∈ (0, 1). Then, by (O2), one
as that Kα(R) = On(Kα(X1), . . . , Kα(Xn)) = 0, meaning that
Onα

B (X⃗) = R = [0, 0];

IOn3) (⇒) Take X⃗ ∈ L([0, 1])n such that AOnα
B (X⃗) = R = [1, 1].

hen, one has that

α(R) = Kα([1, 1]) = 1 = On(Kα(X1), . . . , Kα(Xn)).

By (On3), Kα(X1) · . . . · Kα(Xn) = 1, since α ∈ (0, 1), meaning that∏n
i=1 Xi = [1, 1];

(⇐) Consider X⃗ ∈ L([0, 1])n such that
∏n

i=1 Xi = [1, 1]. So,
Kα(X1) · . . . · Kα(Xn) = 1, since α ∈ (0, 1). Then, by (i) and (O3),
one has that Kα(R) = On(Kα(X1), . . . , Kα(Xn)) = 1, meaning that
AOnα

B (X⃗) = R = [1, 1];

(AOn4) Consider Z ∈ L([0, 1]), X⃗, Y⃗ ∈ L([0, 1])n, such that there
exist k ∈ {1, . . . , n} for which Xk ≤α,β Yk and Xi = Yi = Z
for all i ∈ {1, . . . , n} − {k}. So, it holds that Xi ≤α,β Yi for all
i ∈ {1, . . . , n}. By Lemma 1, one can consider β = 0 or β = 1.
Here, we present the proof for β = 0.

If Kα(Z) = 0, then we have that Kα(AOnα
B (X⃗)) = 0 =

Kα(AOnα
B (Y⃗ )), which means that AOnα

B (X⃗) = [0, 0] = AOnα
B (Y⃗ ),

since α ̸= 0. Then, AOnα
B (X⃗) ≤α,β AOnα

B (Y⃗ ).
If Kα(Z) ̸= 0, then we have the following cases:

(a) Kα(Xk) < Kα(Yk): Since On is strict, one has that Kα(AOnα
B (X⃗)) <

Kα(AOnα
B (Y⃗ )). Therefore,

Kα(AOnα
B (X⃗)) < Kα(AOnα

B (Y⃗ ))

⇒ AOnα
B (X⃗) ≤α,β AOnα

B (Y⃗ ).

(b) Kα(Xk) = Kα(Yk) and Kβ (Xk) < Kβ (Yk): Then, Xk < Yk ≤ Yk <

Xk, meaning that w(Xk) > w(Yk) and, therefore, by Definition 17,
α(Xk) > λα(Yk). So,

Kα(AOnα
B (X⃗)) = On(Kα(Z), . . . , Kα(Xk), . . . , Kα(Z))

= On(Kα(Z), . . . , Kα(Yk), . . . , Kα(Z))
= Kα(AOnα

B (Y⃗ )), and

(AOnα(X⃗))
β=0 B ˆ
18
= Kα(AOnα
B (X⃗)) − αw(AOnα

B (X⃗)) by Definition 13

Kα(AOnα
B (X⃗)) −

αB(λα(Z), . . ., λα(Xk), . . ., λα(Z))dα(Kα(AOnα
B (X⃗)))

≤ Kα(AOnα
B (Y⃗ )) −

αB(λα(Z), . . ., λα(Yk), . . ., λα(Z))dα(Kα(AOnα
B (Y⃗ )))

Kβ=0(AOnα
B (Y⃗ )),

ince B is increasing. Therefore, AOnα
B (X⃗) ≤α,β AOnα

B (Y⃗ ).

c) Kα(Xk) = Kα(Yk) and Kβ (Xk) = Kβ (Yk): In this case, X⃗ = Y⃗ , so, it
s immediate that AOnα

B (X⃗) ≤α,β AOnα
B (Y⃗ ). So, for every scenario

hen β = 0, it holds that if Xi ≤α,β Yi, for all i ∈ {1, . . . , n},
hen AOnα

B (X⃗) ≤α,β AOnα
B (Y⃗ ). The proof for β = 1 is obtained

nalogously. □

ppendix B. Proof of Theorem 6

roof. Consider an increasing fusion function B : [0, 1]n → [0, 1],
strict fusion function F : [0, 1]n → [0, 1] with h = 0 as its
nnihilator element and take α ∈ (0, 1], β ∈ [0, α). Observe that,
or all X⃗ ∈ L([0, 1])n:

i) Kα(IFwα
B (X⃗)) = Kα (̂F (X⃗));

ii) Kβ (IFwα
B (X⃗))=Kα (̂F (X⃗))−αmF̂ ,B(X⃗)+βmF̂ ,B(X⃗);

iii) w(IFwα
B (X⃗)) = mF̂ ,B(X⃗) = min{w(̂F (X⃗)), B(w(X1), . . . , w(Xn))}.

So, it is immediate that IFwα
B is well defined and, by (iii), that is

idth-limited by B. Now, consider Z ∈ L([0, 1]), X⃗, Y⃗ ∈ L([0, 1])n,
uch that there exists k ∈ {1, . . . , n} for which Xk ≤Pr Yk and
i = Yi = Z for all i ∈ {1, . . . , n} − {k}. So, it holds that Xi ≤Pr Yi
or all i ∈ {1, . . . , n}. As β < α, by Lemma 1, one can consider
= 0. Thus:

β=0(IFwα
B (X⃗)) = Kα (̂F (X⃗)) − α · mF̂ ,B(X⃗) (B.1)

Kβ=0(IFwα
B (Y⃗ )) = Kα (̂F (Y⃗ )) − α · mF̂ ,B(Y⃗ ). (B.2)

ow, we have the following possibilities regarding mF̂ ,B(X⃗) and

F̂ ,B(Y⃗ ) that affects the values of IFwα
B (X⃗) and IFwα

B (Y⃗ ), respec-
ively:

1) mF̂ ,B(X⃗) = w(̂F (X⃗)) and mF̂ ,B(Y⃗ ) = w(̂F (Y⃗ )): In this case,
e have IFwα

B (X⃗) = F̂ (X⃗) ≤Pr F̂ (Y⃗ ) = IFwα
B (Y⃗ ), meaning that

Fwα
B (X⃗) ≤α,β IFwα

B (Y⃗ ).

2) mF̂ ,B(X⃗) = B(w(Z), . . . , w(Xk), . . . , w(Z)) and mF̂ ,B(Y⃗ ) =

(w(Z), . . . , w(Yk), . . . , w(Z)): It follows that

Fwα
B (X⃗) = [Kα (̂F (X⃗)) − αB(w(Z), . . . , w(Xk), . . . , w(Z)),

Kα (̂F (X⃗))+(1−α)B(w(Z), . . ., w(Xk), . . ., w(Z))], and

Fwα
B (Y⃗ ) = [Kα (̂F (Y⃗ )) − αB(w(Z), . . . , w(Yk), . . . , w(Z)),

Kα (̂F (Y⃗ )) + (1 − α)B(w(Z), . . . , w(Yk), . . . , w(Z))].

ow, let us verify all the cases in which Xk ≤Pr Yk holds:

a) Xk = Yk and Xk = Yk: We have that Xk = Yk, meaning that
IFwα

B (X⃗) = IFwα
B (Y⃗ ) ⇒ IFwα

B (X⃗) ≤α,β IFwα
B (Y⃗ ).

(b) Xk = Yk and Xk < Yk: When Z ̸= h = 0, it holds that
Kα (̂F (X⃗)) < Kα (̂F (Y⃗ )), since F is strictly increasing on (0, 1]n and
α ∈ (0, 1]. So, it follows that

Kα(IFwα
B (X⃗)) < Kα(IFwα

B (Y⃗ )) ⇒ IFwα
B (X⃗) ≤α,β IFwα

B (Y⃗ ).

If Z = h = 0 and Z ̸= h = 0, one has that

F (X⃗) = [0, F (Z, . . . , Xk, . . . , Z)],

F (Y⃗ ) = [0, F (Z, . . . , Yk, . . . , Z)].
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ince Xk < Yk and F is strict, then

Kα(IFwα
B (X⃗)) = Kα (̂F (X⃗))

< Kα (̂F (Y⃗ ))
= Kα(IFwα

B (Y⃗ ))

⇒ IFwα
B (X⃗) ≤α,β IFwα

B (Y⃗ ).

If Z = h = 0 and Z = h = 0, then

F (X⃗) = IFwα
B (X⃗) = [0, 0] = IFwα

B (Y⃗ ) = F̂ (Y⃗ ).

So, we have that IFwα
B (X⃗) ≤α,β IFwα

B (Y , Z), for all Xk, Yk, Z ∈

L([0, 1]), such that Xk = Yk and Xk < Yk.

(c) Xk < Yk and Xk = Yk: When Z ̸= h = 0 and α ̸= 1, we have
hat Kα (̂F (X⃗)) < Kα (̂F (Y⃗ )). So, it holds that

Kα(IFwα
B (X⃗))<Kα(IFwα

B (Y⃗ ))⇒IFwα
B (X⃗)≤α,β IFwα

B (Y⃗ ).

hen taking Z ̸= h = 0 and α = 1, we have that Kα(IFwα
B (X⃗)) =

α(IFwα
B (Y⃗ )) = K . Moreover, from Eqs. (C.1) and (C.2):

β (IFwα
B (X⃗)) = K − B(w(Z), . . . , w(Xk), . . . , w(Z))

Kβ (IFwα
B (Y⃗ )) = K − B(w(Z), . . . , w(Yk), . . . , w(Z)).

s Xk < Yk and Xk = Yk, we have that w(Yk) < w(Xk), and, since
B is increasing,

B(w(Z), . . . , w(Yk), . . . , w(Z)) ≤ B(w(Z), . . . , w(Xk), . . . , w(Z)).

So:

Kβ (IFwα
B (X⃗)) = K − B(w(Z), . . . , w(Xk), . . . , w(Z))

≤ K − B(w(Z), . . . , w(Yk), . . . , w(Z))
= Kβ (IFwα

B (Y⃗ )). Then:

Kα(IFwα
B (X⃗)) = Kα(Ifwα

B (Y⃗ ))

and Kβ (IFwα
B (X⃗)) ≤ Kβ (IFwα

B (Y⃗ ))

⇒ IFwα
B (X⃗) ≤α,β IFwα

B (Y⃗ ).

If Z = h = 0, one has that

(X⃗) = [0, F (Z, . . . , Xk, . . . , Z)],
F (Y⃗ ) = [0, F (Z, . . . , Yk, . . . , Z)].

ince Xk = Yk, then Kα(IFwα
B (X⃗)) = Kα(IFwα

B (Y⃗ )) and, analogously
o the previous case, when Z ̸= h = 0 and α = 1, we have that

Kα(IFwα
B (X⃗)) = Kα(IFwα

B (Y⃗ ))

and Kβ (IFwα
B (X⃗)) ≤ Kβ (IFwα

B (Y⃗ ))

⇒ IFwα
B (X⃗) ≤α,β IFwα

B (Y⃗ ).

So, we have that IFwα
B (X⃗) ≤α,β IFwα

B (Y⃗ ), for all Xk, Yk, Z ∈

L([0, 1]), such that Xk < Yk and Xk = Yk.

(d) X < Y and X < Y : When Z ̸= h = 0, it holds that
α (̂F (X⃗)) < Kα (̂F (Y⃗ )). So, we have that

α(IFwα
B (X⃗))<Kα(IFwα

B (Y⃗ ))⇒IFwα
B (X⃗)≤α,β IFwα

B (X⃗).

If Z = h = 0 and Z ̸= h = 0, one has that

(X⃗) = [0, F (Z, . . . , Xk, . . . , Z)],
F (X⃗) = [0, F (Z, . . . , Yk, . . . , Z)].

ince Xk < Yk and F is strict, then

Kα(IFwα
B (X⃗)) = Kα (̂F (X⃗))

< Kα (̂F (X⃗))
= K (IFwα(Y⃗ ))
α B
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⇒ IFwα
B (X⃗) ≤α,β IFwα

B (Y⃗ ).

If Z = Z = h = 0, then

F (X⃗) = IFwα
B (X⃗) = [0, 0] = IFwα

B (Y⃗ ) = F̂ (Y⃗ ).

So, we have that IFwα
B (X⃗) ≤α,β IFwα

B (Y⃗ ), for all Xk, Yk, Z ∈

L([0, 1]), such that Xk < Yk and Xk < Yk. Thus, we conclude that,
for all Xk, Yk, Z ∈ L([0, 1]), when

mF̂ ,B(X, Z) = B(w(Z), . . . , w(Xk), . . . , w(Z))
mF̂ ,B(Y , Z) = B(w(Z), . . . , w(Yk), . . . , w(Z)), then

Xi≤PrYi for all i ∈ {1, . . ., n}⇒IOwα
B (X⃗)≤α,β IOwα

B (Y⃗ ).

(3) mF̂ ,B(X⃗) = w(̂F (X⃗)) and mF̂ ,B(X⃗) = B(w(Z), . . . , w(Yk), . . . ,
w(Z)): It follows that

IFwα
B (X⃗) = F̂ (X⃗) and

IFwα
B (Y⃗ )=[Kα (̂F (Y⃗ ))−αB(w(Z), . . ., w(Yk), . . ., w(Z)),

Kα (̂F (Y⃗ )) + (1 − α)B(w(Z), . . . , w(Yk), . . . , w(Z))].

gain, we analyze all the possibilities in which Xk ≤Pr Yk holds.
he results are exactly the same as the ones presented on the
roof when mF̂ ,B(X⃗) = B(w(Z), . . . , w(Xk), . . . , w(Z)) and

F̂ ,B(X⃗) = B(w(Z), . . . , w(Yk), . . . , w(Z)), with the exception of
he particular case when Xk < Yk, Xk = Yk, Z ̸= h = 0 and
= 1. In this case, we have that Kα(IFwα

B (X⃗)) = Kα(IFwα
B (Y⃗ )) = K .

oreover, from Eqs. (C.1) and (C.2): Kβ (IFwα
B (X⃗)) = K − w(̂F (X⃗))

nd Kβ (IFwα
B (Y⃗ )) = K − B(w(Z), . . . , w(Yk), . . . , w(Z)).

As Xk < Yk and Xk = Yk, we have that:

B(w(Z), . . . , w(Yk), . . . , w(Z))
≤ w(̂F (Y⃗ ))
= F (Z, . . . , Yk, . . . , Z) − F (Z, . . . , Yk, . . . , Z)

≤ F (Z, . . . , Xk, . . . , Z) − F (Z, . . . , Xk, . . . , Z)

= w(̂F (X⃗)),

since F is strictly increasing. So,

Kβ (IFwα
B (X⃗))

F (Z, . . . , X, . . . , Z) − w(̂F (X⃗))
≤ F (Z, . . . , Yk, . . . , Z) − B(w(Z), . . . , w(Yk), . . . , w(Z))

Kβ (IFwα
B (Y⃗ )). Then:

α(IFwα
B (X⃗)) = Kα(IFwα

B (Y⃗ ))

nd , Kβ (IFwα
B (X⃗)) ≤ Kβ (IFwα

B (Y⃗ ))

⇒ IFwα
B (X⃗) ≤α,β IOwα

B (Y , Z).

hus, one can conclude that, for all Xk, Yk, Z ∈ L([0, 1]), when
F̂ ,B(X⃗) = w(̂F (X⃗)) and mF̂ ,B(Y⃗ )=B(w(Z), . . ., w(Yk), . . . , w(Z)),
hen

i≤PrYi for all i ∈ {1, . . ., n}⇒IOwα
B (X⃗)≤α,β IOwα

B (Y⃗ ).

4) mF̂ ,B(X⃗) = B(w(Z), . . . , w(Xk), . . . , w(Z)) and mF̂ ,B(Y⃗ ) =

(̂F (Y⃗ )): It follows that

Fwα
B (X⃗)=[Kα (̂F (X⃗))−αB(w(Z), . . . , w(Xk), . . ., w(Z)),

α (̂F (X⃗))+(1−α)B(w(Z), . . ., w(Xk), . . . , w(Z))] and

Fwα
B (Y⃗ ) = F̂ (Y⃗ ).

nce more, by analyzing every possibility in which Xk ≤Pr Yk
olds, one may observe that the results are exactly the same as
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he ones presented previously, with the exception when Xk < Yk,
Xk = Yk, Z ̸= h = 0 and α = 1. In this case, we have that

α(IFwα
B (X⃗)) = Kα(IFwα

B (Y⃗ )). Moreover, from Eqs. (C.1) and (C.2):

β (IFwα
B (X⃗))

F (Z, . . ., Xk, . . ., Z)−B(w(Z), . . ., w(Xk), . . ., w(Z)) and

β (IFwα
B (Y⃗ )) = F (Z, . . . , Yk, . . . , Z) − w(̂F (Y⃗ )).

As Xk < Yk and Xk = Yk, we have that w(Yk) < w(Xk), and, since
B is increasing:

w(̂F (Y⃗ )) ≤ B(w(Z), . . . , w(Yk), . . . , w(Z))
B(w(Z), . . . , w(Xk), . . . , w(Z)), So:

β (IFwα
B (X⃗))

F (Z, . . . , Xk, . . . , Z) − w(̂F (X⃗))
≤ F (Z, . . . , Yk, . . . , Z) − B(w(Z), . . . , w(Yk), . . . , w(Z))

Kβ (IFwα
B (Y⃗ )). Then:

α(IFwα
B (X⃗)) = Kα(IFwα

B (Y⃗ ))

and Kβ (IFwα
B (X⃗)) ≤ Kβ (IFwα

B (Y⃗ ))

⇒ IFwα
B (X⃗) ≤α,β IFwα

B (Y⃗ ).

Then, we have that IFwα
B (X⃗) ≤α,β IFwα

B (Y⃗ ), for all Xk, Yk, Z ∈

L([0, 1]), such that Xk < Yk and Xk = Yk.
Thus, one conclude that, for all Xk, Yk, Z ∈ L([0, 1]), when

mF̂ ,B(X⃗) = B(w(Z), . . . , w(X), . . . , w(Z))

mF̂ ,B(Y⃗ ) = w(̂F (Y⃗ )), then

i∈{1, . . ., n} : Xi≤PrYi⇒IFwα
B (X⃗)≤α,β IFwα

B (Y⃗ ).

s verified for all possible scenarios, it holds that IFwα
B is (≤Pr

≤α,β )-increasing, for all α ∈ (0, 1] and β ∈ [0, α), which
ompletes the proof that IFwα

B is a w-iv-fusion function for the
uple (≤Pr , ≤α,β , B). □

ppendix C. Proof of Theorem 14

roof. Consider an increasing fusion function B : [0, 1]n → [0, 1],
strict fusion function F : [0, 1]n → [0, 1] with h = 0 as its
nnihilator element, α ∈ (0, 1], β ∈ [0, 1] such that α ̸= β , and

an ≤α,β increasing fusion function IFα
: L([0, 1])n → L([0, 1])

such that Kα(IF )(X⃗) = F (Kα(X1), . . . , Kα(Xn)), for all X⃗ ∈ L([0, 1])n.
Observe that, for all X⃗ ∈ L([0, 1])n: (i) Kα(IFwα

B (X⃗)) = Kα(IFα(X⃗));
(ii) Kβ (IFwα

B (X⃗)) = Kα(IFα(X⃗)) − α · mIFα ,B(X⃗) + β · mIFα ,B(X⃗); (iii)
w(IFwα

B (X⃗)) = mIFα ,B(X⃗) = min{w(IFα(X⃗)), B(w(X1), . . . , w(Xn))}.
So, it is immediate that IFwα

B is well defined and, by (iii), that is
width-limited by B.

Now, consider Z ∈ L([0, 1]), X⃗, Y⃗ ∈ L([0, 1])n, such that there
exist k ∈ {1, . . . , n} for which Xk ≤α,β Yk and Xi = Yi = Z
for all i ∈ {1, . . . , n} − {k}. So, it holds that Xi ≤α,β Yi for all
i ∈ {1, . . . , n}. By Lemma 1, one can consider β = 0 or β = 1.
First, we present the proof for β = 0. Thus:

Kβ=0(IFwα
B (X⃗)) = Kα(IFα(X⃗))−αmIFα ,B(X⃗) (C.1)

Kβ=0(IFwα
B (Y⃗ )) = Kα(IFα(Y⃗ ))−αmIFα ,B(Y⃗ ). (C.2)

Next, if Kα(Z) = 0, then Kα(IFwα
B (X⃗)) = Kα(IFα(X⃗)) = 0 =

Kα(IFα(Y⃗ )) = Kα(IFwα
B (Y⃗ )), which means that IFwα

B (X⃗) = IFα(X⃗) =

[0, 0] = IFα(Y⃗ ) = IFwα
B (Y⃗ ), since α ̸= 0. Then, IFwα

B (X⃗) ≤α,β

IFwα
B (Y⃗ ).
If Kα(Z) ̸= 0, then we have the following cases:

(a) Kα(Xk) < Kα(Yk): Since F is strict, one has that:

K (IFwα(X⃗))
α B
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= Kα(IFα(X⃗))<Kα(IFα(Y⃗ ))=Kα(IFwα
B (Y⃗ )). Thus:

α(IFwα
B (X⃗)) < Kα(IFwα

B (Y⃗ ))

⇒ IFwα
B (X⃗) ≤α,β IFwα

B (Y⃗ ).

b) Kα(Xk) = Kα(Yk) and Kβ (Xk) < Kβ (Yk): Since Kα(Xk) = Kα(Yk),
hen Kα(IFwα

B (X⃗)) = Kα(IFα(X⃗)) = Kα(IFα(Y⃗ )) = Kα(IFwα
B (Y⃗ )) = K

nd, since IFα is ≤α,β-increasing, we have that Kβ (IFα(X⃗)) ≤

β (IFα(Y⃗ )). As β = 0, then w(Xk) > w(Yk) and w(IFα(X⃗)) ≥

w(IFα(Y⃗ )). From Eqs (C.1) and (C.2), the values of Kβ (IFwα
B (X⃗))

and Kβ (IFwα
B (Y⃗ )) depend on the values of mIFα ,B(X⃗) and mIFα ,B(Y⃗ ),

respectively. So, let us analyze each possibility regarding those
maximal thresholds.

(1) mIFα ,B(X⃗) = w(IFα(X⃗)) and mIFα ,B(Y⃗ ) = w(IFα(Y⃗ )): In this
case, IFwα

B (X⃗) = IFα(X⃗) = IFα(Y⃗ ) = IFwα
B (Y⃗ ).

(2) mIFα ,B(X⃗) = B(w(Z), . . . , w(Xk), . . . , w(Z)) and mIFα ,B(Y⃗ ) =

B(w(Z), . . . , w(Yk), . . . , w(Z)): From Eqs. (C.1) and (C.2):

Kβ (IFwα
B (X⃗)) = K − B(w(Z), . . . , w(Xk), . . . , w(Z))

≤ K − B(w(Z), . . . , w(Yk), . . . , w(Z))
= Kβ (IFwα

B (Y⃗ )),

since B is increasing and w(Xk) > w(Yk). Thus,

IFwα
B (X⃗) ≤α,β IFwα

B (Y⃗ ).

(3) mIFα ,B(X⃗) = w(IFα(X⃗)) and mIFα ,B(Y⃗ ) = B(w(Z), . . . , w(Yk),
. . . , w(Z)): From Eqs. (C.1) and (C.2):

Kβ (IFwα
B (X⃗)) = K − w(IFα(X⃗))

≤ K − B(w(Z), . . . , w(Yk), . . . , w(Z))
= Kβ (IFwα

B (Y⃗ )),

since B(w(Z), . . . , w(Yk), . . . , w(Z)) ≤ w(IFα(Y⃗ )) ≤ w(IFα(X⃗)).
Thus,

IFwα
B (X⃗) ≤α,β IFwα

B (Y⃗ ).

(4) mIFα ,B(X⃗) = B(w(Z), . . . , w(Xk), . . . , w(Z)) and mIFα ,B(Y⃗ ) =

w(IFα(Y⃗ )): Since w(Yk) ≤ w(Xk), then

w(IFα(Y⃗ )) ≤ B(w(Z), . . . , w(Yk), . . . , w(Z))
≤ B(w(Z), . . . , w(Xk), . . . , w(Z)).

From Eqs. (C.1) and (C.2):

Kβ (IFwα
B (X⃗))

= K − B(w(Z), . . . , w(Xk), . . . , w(Z)) ≤ K − w(IFα(Y⃗ )),

meaning that IFwα
B (X⃗) ≤α,β IFwα

B (Y⃗ ). So, when Kα(Xk) = Kα(Yk)
and Kβ (Xk) < Kβ (Yk), we have that IFwα

B (X⃗) ≤α,β IFwα
B (Y⃗ ).

(c)Kα(Xk) = Kα(Yk) and Kβ (Xk) = Kβ (Yk): In this case, X⃗ = Y⃗ ,
so, it is immediate that IFwα

B (X⃗) ≤α,β IFwα
B (Y⃗ ). So, for every

scenario when β = 0, it holds that, if Xi ≤α,β Yi for all i ∈

{1, . . . , n}, then IFwα
B (X⃗) ≤α,β IFwα

B (Y⃗ ).
The proof for β = 1 is obtained analogously.
Thus, as verified for all possible scenarios, it holds that IFwα

B
is (≤α,β , ≤α,β )-increasing, for all α ∈ (0, 1] and β ∈ [0, 1], which
completes the proof that IFwα

B is a w-iv-fusion function for the
tuple (≤α,β , ≤α,β , B). □
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