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Fusion functions and their most important subclass, aggregation functions, have been suc-
cessfully applied in fuzzy modeling. However, there are practical problems, such as classi-
fication via Convolutional Neural Networks (CNNs), where the data to be aggregated are
not modeling membership degrees in the unit interval. In this scenario, systems could ben-
efit from the application of operators defined in domains different from 0;1½ �, although,
presenting similar behavior of some aggregation functions whose subclasses are currently
defined only in the fuzzy context (e.g., overlap functions and t-norms). So, the main objec-
tive of this paper is to present a general framework to characterize classes of fusion func-
tions with floating domains, called a; bð Þ-fusion functions, defined on any closed real
interval a; b½ �, based on classes of core fusion functions defined on 0;1½ �. The fundamental
aspect of this framework is that the properties of a core fusion function are preserved in
the context of the analogous a; bð Þ-fusion function. Construction methods are presented,
and some properties are studied. We also introduce a framework to define fusion functions
in which the inputs come from an interval a;b½ � but the output is mapped on a possibly dif-
ferent interval c; d½ �. Finally, we present an illustrative example in image classification via
CNNs.

� 2022 Elsevier Inc. All rights reserved.
1. Introduction

Fusion functions are operators defined to combine/fuse several numerical values from the unit interval 0;1½ � into a single
representative one, also from this same interval [37]. The most known and studied class of fusion functions is that of aggre-
gation functions [18], which are increasing fusion functions with some boundary conditions. Aggregation functions, in fact,
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can be defined on any interval a; b½ �, with a; b 2 R and a < b, such as the ordered weighted averaging (OWA) [48] operator and
the Choquet integral [7]. However, most of its subclasses (e.g., that of overlap functions [6], t-norms [27], t-conorms [27] and
uninorms [49]) were defined specifically on 0;1½ �, as they are mostly used to model fuzzy logic operations over membership
degrees or truth-values.

For that reason, aggregation functions and their subclasses have been successfully employed in a plethora of theoretical
and applied fields that involves some sort of fuzzy modeling. For instance, overlap functions and their generalizations (such
as general overlap functions [9]) show good results when applied as a fuzzy conjunction operator in problems where asso-
ciativity of the applied aggregation function is not required, such as in image processing [26], fuzzy rule-based classification
[35], decision making [13] and forest fire detection [16].

Some problems, though, may have imperfect information [50], meaning that there may be uncertainty in the process of
assigning the membership degrees or defining the membership functions to be applied in the fuzzy modeling [36]. Several
works tackled this challenge in different ways accordingly to their perspective on uncertainty [4], by using, for example,
interval-valued fuzzy sets [19] or intuitionistic fuzzy sets. Naturally, aggregation functions (and many of their subclasses)
were extended to be applied in each one of those contexts (e.g., interval-valued aggregation functions [1] and intuitionistic
aggregations [47]). Such generalizations can also be studied through the lens of lattice theory1. Recently, it was observed in
the literature the development of many classes of aggregation functions on lattices, such as t-norms and t-conorms [14], uni-
norms [8], overlap and grouping functions [40]. Although some of those defined functions could operate with inputs that are not
from the unit interval, there has not been an interest in applying such generalizations of aggregation functions in applications
that are not fuzzy in nature.

We point out that the necessity of defining aggregation functions in intervals that are not the unit interval may be
observed in the literature, even in the fuzzy context. For example, the ordinal sums of t-norms (t-conorms) [14] and overlap
(grouping) functions [46] acting on 0;1½ � are defined on the basis of t-norms (t-conorms) and overlap (grouping) functions
acting on a family of non-empty, pairwise disjoint open subintervals x; yð Þ, which, although included in 0;1½ �, are not equal to
0;1½ �.

Still, there are practical problems where the data to be aggregated are not modeling membership degrees, truth values or
some extension of them considering uncertainty modeling, which could benefit from the application of functions with sim-
ilar behaviour of aggregation functions that are currently defined only to operate in the fuzzy context. That is the case, for
example, with the pooling process in Convolutional Neural Networks (CNNs) [30], which are widely applied in image pro-
cessing [39], and with recurrent neural networks [20], such as Long Short-Term Memory [24], which are used in several
machine learning problems with sequential information [21].

Then, the main objective of this paper is to present a framework to characterize extended classes of fusion functions on a
floating domain a; b½ �n, which we call a; bð Þ-fusion functions, based on core classes of fusion functions defined on 0;1½ �n. The
fundamental aspect of this framework is that the properties of the core fusion function, defined in the context of the unit
interval, are preserved in the context of an arbitrary interval a; b½ � when defining an analogous a; bð Þ-fusion function. We
point out that this property preservation is not trivial, since there are a multitude of ways of characterizing properties that
are equivalent in the context of the unit interval, but that can lead to different concepts when defined in another interval
a; b½ �.

Since the motivation comes from an application standpoint, we present some construction methods for these newly
defined a; bð Þ-aggregation functions, based on some core known aggregation functions (e.g., n-dimensional overlap functions
[22], t-norms [27], t-conorms [27] and uninorms [49]), guaranteeing that the constructed function behaves in a; b½ � in a sim-
ilar manner as the core function does in 0;1½ �. Furthermore, the presented construction methods are based on the choice of a
core aggregation function and an increasing bijective function, both able to be defined with parameters that can be manip-
ulated/adapted/learned, accordingly to the application at hand, without sacrificing the main properties of the desired con-
structed function. Then, we proceed to study some interesting properties of aggregation functions, namely, idempotency, a
kind of generalized migrativity (introduced here) and abstract homogeneity [43], and how such properties are preserved
when our construction methods for a; bð Þ-aggregation functions are applied.

Following that, we present the main concepts to develop a similar framework to define fusion functions whose the inputs
come from an interval a; b½ � but the output is mapped on a possibly different interval c; d½ �. We call them a; b; c; dð Þ-fusion
functions. Then, based on this framework, subclasses of a; b; c; dð Þ-fusion functions are defined and construction methods
for them are presented. We show that, under some constraints, when a constructed a; b; c; dð Þ-aggregation function is based
on an a; bð Þ-aggregation function, which, in turn, is based on a core aggregation function defined on 0;1½ �n, then, it is equiv-
alent to the a; b; c; dð Þ-aggregation function obtained directly from the same core aggregation function defined in 0;1½ �.

Finally, to highlight the applicability of the developed theoretical concepts, we present an illustrative example in which
a; bð Þ-fusion functions (in particular, a; bð Þ-aggregation functions) are applied as the pooling operator of a CNN, in a practical
image classification problem.

The paper is organized as follows: in Section 2, important preliminary concepts are presented. Then, in Section 3, we
introduce and discuss the notion of property shifting, which is how we denominate the action of properly transpose a given
property from one domain to another, and develop a general framework for defining classes of a; bð Þ-fusion functions based
1 For more on lattice theory, see [17].
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on classes of fusion functions, showing examples. Section 4 is dedicated to the introduction of construction methods for dif-
ferent classes of a; bð Þ-aggregation functions. The study of some properties of aggregation functions and their counterparts in
the context of a; bð Þ-aggregation functions, with particular interest in the study of a; bð Þ-aggregation functions obtained by
our construction methods, is presented in Section 5. Following that, in Section 6, the main concepts of a; b; c; dð Þ-fusion con-
cepts are developed, focusing on different ways to construct them. An illustrative example in which a; bð Þ-fusion functions
are applied in a CNN to deal with a practical image classification problem is shown in Section 7. Our concluding remarks are
presented in Section 8, where we review the main contributions of the paper and propose some possible future lines of work.

2. Preliminary concepts

In this section, we recall some preliminary concepts that are relevant for the development of the paper.
For the remainder of this work, consider a; b 2 R, such that a < b.

Consider a function F : a; b½ �2 ! a; b½ �. Then, F is said to be symmetric if, for all x; y 2 a; b½ �, it holds that F x; yð Þ ¼ F y; xð Þ,
meaning that the value of the function does not depend on the order of the arguments. Also, F is said to be associative if,
for all x; y; z 2 a; b½ �, it holds that F x; F y; zð Þð Þ ¼ F F x; yð Þ; zð Þ. Moreover, F is said to have a neutral element e if, for all
x 2 a; b½ �, it holds that F x; eð Þ ¼ F e; xð Þ ¼ x. Symmetry, associativity and neutral element properties can be generalized for
n-ary functions as shown in [18] Section 2.2.3, 2.3.1 and 2.5.1.

Let us denote ~x ¼ x1; . . . ; xnð Þ 2 a; b½ �n, where n > 1.
A function F : a; b½ �n ! a; b½ � is said to be increasing if, for any ~x1; ~x2 2 a; b½ �n such that ~x1 6 ~x2, it holds that F ~x1ð Þ 6 F ~x2ð Þ

[18].

Definition 2.1. [27] A function N : 0;1½ � ! 0;1½ � is a fuzzy negation if the following conditions hold:

(N1) N 0ð Þ ¼ 1 and N 1ð Þ ¼ 0;
(N2) If x 6 y then N yð Þ 6 N xð Þ, for all x; y 2 0;1½ �.

If N also satisfies the involutive property,

(N3) N N xð Þð Þ ¼ x, for all x 2 0;1½ �,

then it is said to be a strong fuzzy negation.
Example 2.1. The Zadeh negation given, for all x 2 0;1½ �, by

NZ xð Þ ¼ 1� x;
is a strong fuzzy negation.
The concept of fusion function [37] was originally defined in the context of the unit interval as an arbitrary function

F : 0;1½ �n ! 0;1½ �.

Definition 2.2. [27] Given a strong fuzzy negation N : 0;1½ � ! 0;1½ � and a fusion function F : 0;1½ �n ! 0;1½ �, then the fusion
function FN : 0;1½ �n ! 0;1½ � defined, for all ~x 2 0;1½ �n, by
FN ~xð Þ ¼ N F N x1ð Þ; . . . ;N xnð Þð Þð Þ; ð1Þ

is the N-dual of F.

When it is clear by the context, the NZ-dual function (dual with respect to the Zadeh negation) of F is just called dual of F,

and is denoted by Fd. Observe that FN
� �N

¼ F, since N is a strong negation.

Here we recall the representation, introduced by Asmus et al. [2], of a class of fusion functions through its set of sufficient
and necessary properties, which we denominate as constitutive properties. Let F be a subclass of fusion functions
F : 0;1½ �n ! 0;1½ � and PF be a set of constitutive properties of the functions from F, such that it includes: (i) boundary con-
ditions for any F 2 F, (ii) some kind of monotonicity and (iii) possibly other constraints not related to neither (i) nor (ii).
Such subclass of functions is given by:
F ¼ F : 0;1½ �n ! 0;1½ �j F satisfies all the properties in PF

� �
: ð2Þ
We present the same style of representation for the definition of aggregation functions, which is the most important sub-
class of fusion functions, as follows:

Definition 2.3. [18] An aggregation function is any function A 2 A, where:
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A ¼ A : 0;1½ �n ! 0;1½ �j A satisfies all the properties in PA

� �

with
PA ¼ A1ð Þ; A2ð Þf g;

and

(A1)A is increasing;
(A2)A 0; . . . ;0ð Þ ¼ 0 and A 1; . . . ;1ð Þ ¼ 1.
Example 2.2.

i)The function AM : 0;1½ �n ! 0;1½ � (arithmetic mean), given, for all ~x 2 0;1½ �n, by
AM ~xð Þ ¼

Xn
i¼1

xi

n
; ð3Þ
is an aggregation function.
ii)The function AW : 0;1½ �n ! 0;1½ � (weighted arithmetic mean), given, for all ~x; ~w 2 0;1½ �n, by
AW ~xð Þ ¼
Xn

i¼1

xi �wi; ð4Þ
such that
Pn

i¼1wi ¼ 1, is an aggregation function.

There are many subclasses of aggregation functions defined in the literature. Here we highlight some of them that are
going to be of importance on this work.

Definition 2.4. [22] An n-dimensional overlap function is any fusion function O 2 O, such that:
O ¼ O : 0;1½ �n ! 0;1½ �j O satisfies all the properties in PO

� �

where
PO ¼ O1ð Þ; O2ð Þ; O3ð Þ; O4ð Þ; O5ð Þf g;

and

(O1) O is symmetric;
(O2) O ~xð Þ ¼ 0 () Qn

i¼1xi ¼ 0;
(O3) O ~xð Þ ¼ 1 () Qn

i¼1xi ¼ 1;
(O4) O is increasing;
(O5) O is continuous.

A 2-dimensional overlap function is just called overlap function [6].

Remark 2.1. Taking into consideration Definitions 2.3 and 2.4, one can observe that conditions (A1) and (O4) are the same
one (increasingness). However, we decide to label them differently so that each condition is associated with one respective
class of functions, to aid the readability of the mathematical proofs in this paper.
Example 2.3.

i)The function OP : 0;1½ �n ! 0;1½ � (product overlap), given, for all ~x 2 0;1½ �n, by
GM ~xð Þ ¼
Yn
i¼1

xi; ð5Þ
is an n-dimensional overlap function.
ii)The function GM : 0;1½ �n ! 0;1½ � (geometric mean), given, for all ~x 2 0;1½ �n, by
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GM ~xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiYn
i¼1

xi
n

vuut ; ð6Þ
is an n-dimensional overlap function.
Theorem 2.1. [22] Consider a continuous aggregation function A : 0;1½ �m ! 0;1½ �, such that

(PA) A ~xð Þ ¼ 0 if and only if xi ¼ 0, for some i 2 1; . . . ;mf g;
(PB) A ~xð Þ ¼ 1 if and only if xi ¼ 1, for all i 2 1; . . . ;mf g;

and a tuple of n-dimensional overlap functions O
!¼ O1; . . . ;Omð Þ. Then, the mapping A

O
! : 0;1½ �n ! 0;1½ �, defined, for all~x 2 0;1½ �n,

by
A
O
! ~xð Þ ¼ A O1 ~xð Þ; . . . ;Om ~xð Þð Þ; ð7Þ
is an n-dimensional overlap function.
Corollary 2.1. [22] Consider an m-dimensional overlap function OC : 0;1½ �m ! 0;1½ � and a tuple of n-dimensional overlap func-

tions O
!¼ O1; . . . ;Omð Þ . Then, the mapping OC

O
! : 0;1½ �n ! 0;1½ �, defined for all~x 2 0;1½ �n, by
OC
O
! ~xð Þ ¼ OC O1 ~xð Þ; . . . ;Om ~xð Þð Þ; ð8Þ
is an n-dimensional overlap function.
By Corollary 2.1, one can observe that the class of n-dimensional overlap functions is self closed with respect to the gen-

eralized composition.

Definition 2.5. [27] A t-norm is any bivariate fusion function T 2 T, such that:
T ¼ T : 0;1½ �2 ! 0;1½ �j T satisfies all the properties in PT

n o

where
PT ¼ T1ð Þ; T2ð Þ; T3ð Þ; T4ð Þf g;

and

(T1) T is symmetric;
(T2) T is associative;
(T3) T has 1 as its neutral element;
(T4) T is increasing.
Example 2.4.

i)The function TL : 0;1½ �2 ! 0;1½ � (Łukasiewicz t-norm), given, for all x; y 2 0;1½ �, by

TL x; yð Þ ¼ max xþ y� 1; 0f g; ð9Þ
is a t-norm.

ii)The function TH : 0;1½ �2 ! 0;1½ � (Hamacher product), given, for all x; y 2 0;1½ �, by
TH x; yð Þ ¼ 0 if x ¼ y ¼ 0;
xy

xþy�xy otherwise;

(
ð10Þ
is a t-norm.
Definition 2.6. [27] A t-conorm is any bivariate fusion function S 2 S, such that:
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S ¼ S : 0;1½ �2 ! 0;1½ �j S satisfies all the properties in PS

n o

where
PS ¼ S1ð Þ; S2ð Þ; S3ð Þ; S4ð Þf g;

and

(S1) S is symmetric;
(S2) S is associative;
(S3) S has 0 as its neutral element;
(S4) S is increasing.
Example 2.5. The function Sp : 0;1½ �2 ! 0;1½ � (probabilistic sum), given, for all x; y 2 0;1½ �, by

Sp x; yð Þ ¼ xþ y� xy; ð11Þ
is a t-conorm.
Definition 2.7. [49] An uninorm is any bivariate fusion function U 2 U, such that:
U ¼ U : 0;1½ �2 ! 0;1½ �j U satisfies all the properties in PU

n o

where
PU ¼ U1ð Þ; U2ð Þ; U3ð Þ; U4ð Þf g;

and

(U1) U is symmetric;
(U2) U is associative;
(U3) U has a neutral element;
(U4) U is increasing.
Example 2.6.

i)Consider e 2 0;1½ �. Then, the function UC : 0;1½ �2 ! 0;1½ �, given, for all x; y 2 0;1½ �, by
UC x; yð Þ ¼ max x; yf g if x; yð Þ 2 e;1½ �2;
min x; yf g otherwise;

(
ð12Þ
is an uninorm with e as its neutral element;

ii)The function UP : 0;1½ �2 ! 0;1½ �, given, for all x; y 2 0;1½ �, by
UP x; yð Þ ¼ 0 if x; yð Þ 2 1;0ð Þ; 0;1ð Þf g;
xy

1�xð Þ 1�yð Þþxy otherwise;

(
ð13Þ
is an uninorm with 1
2 as its neutral element.

3. F -shifted a;bð Þ-fusion functions

The main goal of this section is to introduce a general framework to define new classes of functions with similar beha-
viour as some known subclasses of fusion/aggregation functions, but that are not limited to the unit interval. The idea is to
define those new classes of functions (acting on an interval a; b½ �) through a sets of properties that mirrors the ones from the
known functions (acting on 0;1½ �).

Definition 3.1. An a; bð Þ-fusion function is an arbitrary function Fa;b : a; b½ �n ! a; b½ �.
It is clear that every fusion function is an a; bð Þ-fusion function for a ¼ 0 and b ¼ 1. Then, henceforward, every 0;1ð Þ-fusion

function is called here just as fusion function.
We denote by Fa;b a subclass of a; bð Þ-fusion functions determined by a set of constitutive properties PFa;b .
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The action of shifting a property (P1) of a function F1 : a1; b1½ �n ! a1; b1½ � from a1; b1½ � to a2; b2½ � is to ‘‘rewrite” (P1) so that it
conveys the same concept in the context of a2; b2½ �, resulting in a property (P2) of a function F2 : a2; b2½ �n ! a2; b2½ �. In other
words, (P2) is the counterpart in a2; b2½ � for the property (P1) (see Example 3.1). Some properties can be shifted without any
rewriting (e.g., monotonicity, continuity, associativity and idempotency). However, boundary conditions, in general, have to
be rewritten when shifted.

Example 3.1. Suppose that we intend to define a property (A20) that conveys the boundary conditions of a function
F : �10;10½ �n ! �10;10½ � by shifting the property (A2) of aggregation functions (Definition 2.3). It is clear that (A2) is written
taking into consideration the boundaries of 0;1½ �, since aggregation functions are defined on the unit interval. So, a natural
way to shift (A2) from 0;1½ � to �10;10½ � is to rewrite it by changing the lower and upper boundaries accordingly, resulting in
(A20) as follows:

(A20) A �10; . . . ;�10ð Þ ¼ �10 and A 10; . . . ;10ð Þ ¼ 10.
Remark 3.1. A given property in the context of the interval 0;1½ � can be defined for a general interval a; b½ � in different ways,
so that it coincides with the original definition when a ¼ 0 and b ¼ 1. This is the case of the 1-Lipschitz property [18]. A

bivariate fusion function F : 0;1½ �2 ! 0;1½ � has this property if, for all x1; x2; y1; y2 2 0;1½ �, one has that:
jF x1; y1ð Þ � F x2; y2ð Þj 6 jx1 � x2j þ jy1 � y2j: ð14Þ

Observe that this property, expressed by Inequality (14), can be defined without modifications for a; bð Þ-fusion functions.

Now, consider the following expression for a property of a bivariate a; bð Þ-fusion function Fa;b : a; b½ �2 ! a; b½ �:
jFa;b x1; y1ð Þ � Fa;b x2; y2ð Þj 6 jx1 � x2j þ jy1 � y2j
b� að Þk

; k 2 0;þ1½ Þ; ð15Þ
for all x1; x2; y1; y2 2 a; b½ �. The property expressed by Eq. (15) coincides with the 1-Lipschitz property in the particular case
when k ¼ 0, or when b� a ¼ 1. However, it is clear that the properties expressed by Eqs. (14) and (15) are not equivalent,
that is, they do not convey the same concept. That is why, when shifting the 1-Lipschitz property from 0;1½ � to a; b½ �, one
should express it by Eq. (14), without rewriting it, in order to avoid introducing a different concept. The above example
shows that not all properties of fusion functions on 0;1½ � and those on a; b½ � can be related by an isomorphism. In general,
an isomorphism between 0;1½ � and a; b½ � preserves algebraic properties, such as symmetry, associativity and idempotency,
but not analytical properties.
Definition 3.2. Let F be the subclass of fusion functions F : 0;1½ �n ! 0;1½ � determined by the set of constitutive properties
PF, defined in Eq. (2). Then, a set of constitutive properties PFa;b of a class of a; bð Þ-fusion functions Fa;b is said to be F-
shiftable if PF coincides with the set composed of all the properties obtained by shifting each property of PFa;b from a; b½ �
to 0;1½ �.
Definition 3.3. Let PF be the set of constitutive properties of a class of fusion functions F. Then, Fa;b, given by
Fa;b ¼ Fa;b : a; b½ �n ! a; b½ �j Fa;b satisfies all the properties in Pa;b
F

n o
; ð16Þ
is said to be F-shifted if Pa;b
F is F-shiftable.

A F-shifted class of a; bð Þ-fusion functions Fa;b is a counterpart (in a; b½ �) of a class of fusion function F (in 0;1½ �).

Example 3.2.

i) Consider a subclass of �10;10ð Þ-fusion functions FA�10;10, with its set of constitutive properties PFA�10;10 given by:
PFA�10;10 ¼ A10� �
; A20� �� �

;

where, for all FA�10;10 2 FA�10;10, it holds that:
(A1’)

FA�10;10 is increasing;
(A2’)

FA�10;10 �10; . . . ;�10ð Þ ¼ �10 and FA�10;10 10; . . . ;10ð Þ ¼ 10.
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Then, PFA�10;10 isA-shiftable, since we obtain (A1) and (A2) (Definition 2.3), which are the defining properties ofA, by shift-
ing (A1’) and (A2’) from �10;10½ � to 0;1½ �. Thus, FA�10;10 is an A-shifted class of a; bð Þ-fusion functions.

ii) Consider the class of n-dimensional overlap functions O and a subclass of a; bð Þ-fusion functions Ha;b with its set of
constitutive properties PHa;b , given by:
PHa;b ¼ H1ð Þ; H2ð Þf g;
where, for all Ha;b 2 Ha;b, it holds that:
(H1)

Ha;b is symmetric;
(H2)

Ha;b is associative.

Clearly, PHa;b is not O-shiftable, since we cannot transpose their properties to the context of the unit interval so that they

coincide with the properties from PO (Definition 2.4). Thus, Ha;b is not an O-shifted class of a; bð Þ-fusion functions. However,
if we consider the class H of symmetric and associative fusion functions, then it is immediate that Ha;b is H-shifted.

In [18], aggregation functions were already defined in the context of a domain a; b½ �n. But here, to avoid confusion, we call
them aggregation functions only when a ¼ 0 and b ¼ 1 (Definition 2.3). Otherwise, we call them a; bð Þ-aggregation functions,
just to standardize the notation. The definition of the class of a; bð Þ-aggregation functions is given as follows:

Definition 3.4. [18] An a; bð Þ-aggregation function is any function Aa;b 2 Aa;b, such that:
Aa;b ¼ Aa;b : a; b½ �n ! a; b½ �j Aa;b satisfies all the properties in Pa;b
A

n o

where
Pa;b
A ¼ A1�ð Þ; A2�ð Þf g;
and

(A1*)Aa;b is increasing;

(A2*)Aa;b a; . . . ; að Þ ¼ a and Aa;b b; . . . ; bð Þ ¼ b.
Example 3.3.

i) The arithmetic mean AM : a; b½ �n ! a; b½ �, given by Eq. (3), is an a; bð Þ-aggregation function for any arbitrary a; b 2 R,
such that a < b;

ii) The product operation is a 0; bð Þ-fusion function with b 6 1 and an a; bð Þ-fusion function when a < 0; b 6 1 and a2 6 b
(e.g., �1;1½ �). It is only considered an a; bð Þ-aggregation function in the particular case where a ¼ 0 and b ¼ 1. How-
ever, in Section 4 we present a construction method in which one can obtain an a; bð Þ-aggregation function based
on the product (or any other aggregation function, for that matter) for any arbitrary a; b 2 R, such that a < b.

The following results are immediate:

Proposition 3.1. Consider the class of aggregation functionsA and its set of constitutive properties PA (from Definition 2.3). Then

the set of properties Pa;b
A (from Definition 3.4) is A-shiftable.
Corollary 3.1. The class Aa;b of a; bð Þ-aggregation functions (Definition 3.4) is A-shifted.
Here we study some A-shifted subclasses of a; bð Þ-aggregation functions.
Analogous to Definition 3.3 of F-shifted subclasses of a; bð Þ-fusion functions, one can define A-shifted subclasses of

a; bð Þ-aggregation functions, as follows:

Definition 3.5. Let PA0 be the set of constitutive properties of a subclass of aggregation functions A0. Then, A0a;b, given by
A0a;b ¼ A0a;b : a; b½ �n ! a; b½ �j A0a;b satisfies all the properties in Pa;b
A0

n o
; ð17Þ
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is said to be A0-shifted if Pa;b
A0 is A0-shiftable.

Observe that anyA-shifted subclass of a; bð Þ-aggregation functions is also anA-shifted subclass of a; bð Þ-fusion functions.

Now, let us define differentA0-shifted subclasses of a; bð Þ-aggregation functionsA0a;b #Aa;b, based on a subclass of aggre-

gation functions A0 #A. First, for a given subclass A0a;b, one must define its set of constitutive properties Pa;b
A0 in a way for it

to be A0-shiftable.

Example 3.4. Suppose that we intend to define an O-shifted subclass Oa;b of a; bð Þ-aggregation functions as the counterpart
in a; b½ � for the class of n-dimensional overlap functions O (Definition 2.4). For that, we have to define the set of constitutive
properties POa;b in a way for it to be O-shiftable, that is, so that POa;b ¼ PO when shifting the properties of POa;b from a; b½ � to
0;1½ �.

From Definition 2.4, we see that the set PO has three properties that can be shifted without rewriting them: (O1), (O4) and
(O5). So, these three properties can be part of the set POa;b . However, properties (O2) and (O3) are the lower and upper
boundary conditions, respectively, and, thus, they depend on the values of such boundaries (0 and 1). Also, they are defined
by means of the product operation which, in the context of the interval 0;1½ �, has the lower boundary as its annihilator
element and the upper boundary as its neutral element. This characteristic is not carried when defining such boundary
conditions on a different interval a; b½ �.

So, it is clear that we cannot simply exchange 0 for the left endpoint (a) in condition (O2) and 1 for the right endpoint (b)
in condition (O3) to obtain the analogous boundary conditions for POa;b . There is more than one way to define such boundary
conditions so that they are equivalent to (O2) and (O3) when a ¼ 0 and b ¼ 1. Here we present a viable alternative.

Considering an a; bð Þ-fusion function Oa;b : a; b½ �n ! a; b½ �, the following properties complete the set POa;b :

(OAB1)

Oa;b is symmetric;

(OAB2)

Oa;b x1; . . . ; xnð Þ ¼ a if and only if
Qn

i¼1 xi � að Þ ¼ 0;

(OAB3)

Oa;b x1; . . . ; xnð Þ ¼ b if and only if
Qn

i¼1
xi�a
b�a

� � ¼ 1;

(OAB4)

Oa;b is increasing;

(OAB5)

Oa;b is continuous.

One can observe that (OAB2) and (OAB3) are equivalent to (O2) and (O3), respectively, when a ¼ 0 and b ¼ 1, since the
relevant properties of the product operation are respected in 0;1½ �. The other three properties were just relabelled to not mix
the notation. Thus, the set of properties POa;b ¼ OAB1ð Þ; OAB2ð Þ; OAB3ð Þ; OAB4ð Þ; OAB5ð Þf g is O-shiftable.

Based on the set of properties POa;b defined in Example 3.4, one can define the class of n-dimensional a; bð Þ-overlap
functions.

Definition 3.6. The class Oa;b of n-dimensional a; bð Þ-overlap functions Oa;b is given by:
Oa;b ¼ Oa;b : a; b½ �n ! a; b½ �j Oa;b satisfies all the properties in POa;b

n o
ð18Þ
where POa;b ¼ OAB1ð Þ; OAB2ð Þ; OAB3ð Þ; OAB4ð Þ; OAB5ð Þf g.
Proposition 3.2. Consider the class of n-dimensional a; bð Þ-overlap functions Oa;b (Definition 3.6). Then, Oa;b is O-shifted.
Proof. Immediate, since O#A and, as shown in Example 3.4, POa;b is O-shiftable. h
Example 3.5.

i) The function MIN : a; b½ �n ! a; b½ �, given, for all ~x 2 a; b½ �n, by
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MIN ~xð Þ ¼ min x1; . . . ; xnf g; ð19Þ
is an n-dimensional a; bð Þ-overlap function;
ii) The geometric mean, given by Eq. (6), is only an n-dimensional a; bð Þ-overlap function when a ¼ 0 and b > 0. In Sec-

tion 4, we present a construction method to obtain an n-dimensional a; bð Þ-overlap function Oa;b based on a given n-
dimensional overlap function O (e.g., the geometric mean), for any arbitrary a; b 2 R, such that a < b.

Since n-dimensional a; bð Þ-overlap functions are defined by shifting the properties of Definition 2.4 from 0;1½ � to a; b½ �,
then some other properties of n-dimensional overlap functions that are not explicitly stated on their definition can also
be shifted in a similar manner. The next two results exemplify that the properties expressed by Theorem 2.1 and Corollary
2.1 can be shifted from 0;1½ � to a; b½ �:

Theorem 3.1. Consider a continuous a; bð Þ-aggregation function Aa;b : a; b½ �m ! a; b½ �, such that
(PA*) Aa;b ~xð Þ ¼ a if and only if xi ¼ a, for some i 2 1; . . . ;mf g;
(PB*) Aa;b ~xð Þ ¼ b if and only if xi ¼ b, for all i 2 1; . . . ;mf g;

and a tuple Oa;b
		!

¼ Oa;b
1 ; . . . ;Oa;b

m

� �
of n-dimensional a; bð Þ-overlap functions. Then, the mapping Aa;b

Oa;b
		! : a; b½ �n ! a; b½ �, defined for

all~x 2 a; b½ �n, by
Aa;b

Oa;b
		! ~xð Þ ¼ Aa;b Oa;b

1 ~xð Þ; . . . ;Oa;b
m ~xð Þ

� �
; ð20Þ
is an n-dimensional a; bð Þ-overlap function.
Proof. It is immediate that Aa;b

Oa;b
		! is well defined. Then, by (O1), (O4) and (O5), we have that Aa;b

Oa;b
		! respects conditions (OAB1),

(OAB4) and (OAB5). Now, let us prove that Aa;b

Oa;b
		! respects the remaining conditions of Definition 3.6:

(OAB2)

Suppose that Aa;b

Oa;b
		! ~xð Þ ¼ a, for some~x 2 a; b½ �n. Then, by Eq. (20) and (PA*), we have that:
Oa;b
j x

!� �
¼ a for some j 2 1; . . . ;mf g () xi ¼ a for some i 2 1; . . . ;nf g by OAB2ð Þ:

On the other hand, if we take ~x 2 a; b½ �n, such that ~x ¼ x1; . . . ; xi; . . . ; xnð Þ with xi ¼ a for some i 2 1; . . . ;nf g, then, by
(OAB2), (PA*) and Eq. (20), we have that Aa;b

Oa;b
		! ~xð Þ ¼ a.
(OAB3)

Suppose that Aa;b

Oa;b
		! ~xð Þ ¼ b, for all ~x 2 a; b½ �n. Then, by Eq. (20) and (PB*), it follows that:
Oa;b
j x

!� �
¼ b for all j 2 1; . . . ;mf g () x

! ¼ b; . . . ; bð Þ; by OAB3ð Þ:

Conversely, if ~x ¼ b; . . . ; bð Þ, then, by (OAB3), (A2*) and Eq. (20), we have that Aa;b

Oa;b
		! ~xð Þ ¼ b.
h

Corollary 3.2. Consider an m-dimensional a; bð Þ-overlap function OCa;b : a; b½ �m ! a; b½ � and a tuple Oa;b
		!

¼ Oa;b
1 ; . . . ;Oa;b

m

� �
of n-

dimensional a; bð Þ-overlap functions. Then, the mapping OC
Oa;b
		! : a; b½ �n ! a; b½ �, defined for all~x 2 a; b½ �n, by
OC
Oa;b
		! ~xð Þ ¼ OCa;b Oa;b

1 ~xð Þ; . . . ;Oa;b
m ~xð Þ

� �
; ð21Þ
is an n-dimensional a; bð Þ-overlap function.
809



Tiago da Cruz Asmus, Graçaliz Pereira Dimuro, Benjamín Bedregal et al. Information Sciences 610 (2022) 800–829
Proof. Immediate, since OCa;b is a continuous a; bð Þ-aggregation function that respects (PA*) and (PB*). h
Corollary 3.3. Consider the weighted arithmetic mean AWa;b : a; b½ �m ! a; b½ � given, for all~x 2 a; b½ �n, by Eq. (4), with ~w 2 0;1½ �m,
such that

Pm
i¼1wi ¼ 1, and a tuple Oa;b

		!
¼ Oa;b

1 ; . . . ;Oa;b
m

� �
of n-dimensional a; bð Þ-overlap functions. Then, the mapping

AW
Oa;b
		! : a; b½ �n ! a; b½ �, defined, for all~x 2 a; b½ �n, by
AW
Oa;b
		! ~xð Þ ¼AWa;b Oa;b

1 ~xð Þ; . . . ;Oa;b
m

~xð Þ
� �

ð22Þ

¼Oa;b
1 ~xð Þ �w1 þ . . .þ Oa;b

m ~xð Þ �wm;
is an n-dimensional a; bð Þ-overlap function.
Proof. Immediate, since AWa;b is a continuous a; bð Þ-aggregation function that respects (PA*) and (PB*). h
Remark 3.2. Notice that, by Corollary 3.2, one can state that the class of a; bð Þ-overlap functions is self closed with respect to
the generalized composition, and, by Corollary 3.3, one can observe that the convex sum of n-dimensional a; bð Þ-overlap
functions is also an n-dimensional a; bð Þ-overlap function. These properties are especially useful in practical applications,
since one can combine different a; bð Þ-overlap functions to obtain new functions with the same behaviour.
Remark 3.3. In a similar manner in which n-dimensional a; bð Þ-overlap functions were defined as a counterpart for n-
dimensional overlap functions, one could define n-dimensional a; bð Þ-grouping functions as a counterpart for n-
dimensional grouping functions. Since n-dimensional grouping functions are the dual notion of n-dimensional overlap func-
tions, properties such as the one expressed in Corollary 3.2 can also be obtained in the context of n-dimensional a; bð Þ-
grouping functions.

Other A0-shifted classes of a; bð Þ-aggregation functions can be defined in a similar manner as presented in Example 3.4
and Definition 3.6. To exemplify that, in the following we define a; bð Þ-t-norms, a; bð Þ-t-conorms and a; bð Þ-uninorms.

Definition 3.7. Consider a bivariate a; bð Þ-fusion function Ta;b : a; b½ �2 ! a; b½ � and the following properties:

(TAB1)

Ta;b is symmetric;

(TAB2)

Ta;b is associative;

(TAB3)

Ta;b has b as its neutral element;

(TAB4)

Ta;b is increasing.

Then, the class Ta;b of a; bð Þ-t-norms Ta;b is given by:
Ta;b ¼ Ta;b : a; b½ �2 ! a; b½ �j Ta;b satisfies all the properties in PTa;b

n o
ð23Þ
where PTa;b ¼ TAB1ð Þ; TAB2ð Þ; TAB3ð Þ; TAB4ð Þf g.
The following result is immediate:

Proposition 3.3. Consider the class of t-norms T (Definition 2.5) and the class of a; bð Þ-t-norms Ta;b (Definition 3.7). Then,
the class Ta;b is T-shifted.
Example 3.6.

i) The a; bð Þ-fusion function Ta;b
L : a; b½ �2 ! a; b½ �, given, for all x; y 2 a; b½ �, by
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Ta;b
L x; yð Þ ¼ max xþ y� b; af g; ð24Þ

is an a; bð Þ-t-norm. When a ¼ 0 and b ¼ 1; Ta;b
L ¼ TL, which is the Łukasiewicz t-norm, given in Eq. (9);
ii) The function TH : a; b½ �2 ! a; b½ �, such that b > 1, given by
TH x; yð Þ ¼ a if x ¼ y ¼ a;
xy

xþy�xy otherwise;

(

is inspired by the Hamacher product t-norm, defined in Eq. (51), but cannot be an a; bð Þ-t-norm, since it is not well
defined. It is not trivial to define an ‘‘Hamacher product-like” a; bð Þ-t-norm, so we show in Section 4 a construction

method to obtain an a; bð Þ-t-norm Ta;b based on any given core t-norm T.
Remark 3.4. Observe that there is not an analogous result for a; bð Þ-t-norms as the ones stated in Theorem 3.1 and Corollary
3.2 for n-dimensional a; bð Þ-overlap functions. Those results derive from the fact that the generalized composition of n-
dimensional overlap functions provides an n-dimensional overlap function (Theorem 2.1 and Corollary 2.1), but the same
property does not necessarily hold for t-norms.
Definition 3.8. Consider a bivariate a; bð Þ-fusion function Sa;b : a; b½ �2 ! a; b½ � and the following properties:

(SAB1)

Sa;b is symmetric;

(SAB2)

Sa;b is associative;

(SAB3)

Sa;b has a as its neutral element;

(SAB4)

Sa;b is increasing.

Then, the class Sa;b of a; bð Þ-t-conorms Sa;b is given by:
Sa;b ¼ Sa;b : a; b½ �2 ! a; b½ �j Sa;b satisfies all the properties in PSa;b

n o
ð25Þ
where PSa;b ¼ SAB1ð Þ; SAB2ð Þ; SAB3ð Þ; SAB4ð Þf g.
The following result is immediate:

Proposition 3.4. Consider the class of t-conorms S (Definition 2.6) and the class of a; bð Þ-t-conorms Sa;b (Definition 3.8). Then,
the class Sa;b is S-shifted.
Example 3.7.

i) The function MAX : a; b½ �2 ! a; b½ �, given, for all x; y 2 a; b½ �, by

MAX ~xð Þ ¼ max x; yf g; ð26Þ
is an a; bð Þ-t-conorm;
ii) The probabilistic sum, given by Eq. (11), is only an a; bð Þ-t-conorm function when a ¼ 0 and b ¼ 1. In Section 4, we

present a construction method to obtain an n-dimensional a; bð Þ-t-conorm Sa;b based on a given t-conorm S, for any
arbitrary a; b 2 R, such that a < b.
Remark 3.5. Observe that a; bð Þ-t-norms and a; bð Þ-t-conorms, constructed via our general framework, can be seen as a par-
ticular cases of t-norms and t-conorms, respectively, defined on a bounded poset (see [14]). Also, if considering continuous
a; bð Þ-t-norms and a; bð Þ-t-conorms, then they are, in fact, I-semigroups introduced and discussed in [38].
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Definition 3.9. Consider a bivariate a; bð Þ-fusion function Ua;b : a; b½ �2 ! a; b½ � and the following properties:

(UAB1)

Ua;b is symmetric;

(UAB2)

Ua;b is associative;

(UAB3)

Ua;b has a neutral element;

(UAB4)

Ua;b is increasing.

Then, the class Ua;b of a; bð Þ-uninorms Ua;b is given by:
Ua;b ¼ Ua;b : a; b½ �2 ! a; b½ �j Ua;b satisfies all the properties in PUa;b

n o
ð27Þ
where PUa;b ¼ UAB1ð Þ; UAB2ð Þ; UAB3ð Þ; UAB4ð Þf g.
The following result is immediate:

Proposition 3.5. Consider the class of uninorms U (Definition 2.7) and the class of a; bð Þ-uninormsUa;b (Definition 3.9). Then, the
class Ua;b is U-shifted.
Example 3.8.

i)Consider q 2 a; b½ �. Then, the function Ua;b
C : a; b½ �2 ! a; b½ �, given, for all x; y 2 a; b½ �, by
UC x; yð Þ ¼ max x; yf g if x; y 2 q; b½ �;
min x; yf g otherwise;



ð28Þ
is an a; bð Þ-uninorm with q as its neutral element. One may observe that Ua;b
C is a counterpart on a; b½ � for the uninorm UC (Eq.

(12));
ii)As discussed on Examples 3.5 and 3.6, some aggregation functions are not trivially transposed to obtain an analogous
definition on a; b½ �. That is the case of the UP uninorm, given by Eq. (13). So, in Section 4, we present a construction method
to obtain a; bð Þ-unimorms, based on a choice of any core unimorm, such as UP .
Remark 3.6. In the same manner that uninorms can be seen as a generalization of t-norms and t-conorms, it is immediate
that a; bð Þ-uninorms are a generalization of a; bð Þ-t-norms and a; bð Þ-t-conorms.

4. Construction methods for F -shifted a;bð Þ-fusion functions

In [45], Wang et al. introduced a construction method for overlap functions on a lattice L based on a ‘‘generator triple”
composed of an overlap function (which is bivariate) on some lattice M and two complete homomorphisms from L to M,
under several constraints. Here, we develop construction methods for any n-dimensional a; bð Þ-fusion function, with focus
on a; bð Þ-aggregation functions and their subclasses, based on a core fusion function and an increasing bijective function,
without imposing any additional constraints.

Consider a fusion function F : 0;1½ �n ! 0;1½ � and an increasing and bijective function / : a; b½ � ! 0;1½ � and the a; bð Þ-fusion
function Fa;b

/ : a; b½ �n ! a; b½ � given, for all x1; . . . ; xn 2 a; b½ �, by
Fa;b
/ x1; . . . ; xnð Þ ¼ /�1 F / x1ð Þ; . . . ;/ xnð Þð Þð Þ: ð29Þ
Then, F is said to be the core function of Fa;b
/ . Eq. (29) plays an important role in the following construction methods. In the

remainder of the paper, we denote Fa;b
/ simply by Fa;b.

Theorem 4.1. Consider a fusion function A : 0;1½ �n ! 0;1½ �, an increasing and bijective function / : a; b½ � ! 0;1½ � and an a; bð Þ-
fusion function Aa;b : a; b½ �n ! a; b½ � given, for all x1; . . . ; xn 2 a; b½ �, by
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Aa;b x1; . . . ; xnð Þ ¼ /�1 A / x1ð Þ; . . . ;/ xnð Þð Þð Þ: ð30Þ

Then, Aa;b is an a; bð Þ-aggregation function if and only if A is an aggregation function.
Proof. It is immediate that Aa;b is well defined.(() Suppose that A is an aggregation function. Then, let us prove that Aa;b has

all properties from Pa;b
A :

(A1*)Let ~x;~y 2 a; b½ �n be such that~x 6~y. Since / and A are increasing, then it follows that
~x 6~y ) Aa;b ~xð Þ 6 Aa;b ~yð Þ;

(A2*)Consider ~a ¼ a; . . . ; að Þ and ~b ¼ b; . . . ; bð Þ. Then:

Aa;b a
!� �

¼/�1 A / að Þ; . . . ;/ að Þð Þð Þ
¼/�1 A 0; . . . ;0ð Þð Þ; since / is bijective and increasing

¼/�1 0ð Þ; by A2ð Þ ¼ a;

and
Aa;b b
!� �

¼/�1 A / bð Þ; . . . ;/ bð Þð Þð Þ

¼/�1 A 1; . . . ;1ð Þð Þ; since / is bijective and increasing

¼/�1 1ð Þ by A2ð Þ
¼b:
()) Suppose that Aa;b is an a; bð Þ-aggregation function. Now, let us prove that A respects all conditions from Definition 2.3:

(A1) Let ~x;~y 2 0;1½ �n be such that ~x 6~y. Then, it holds that /�1 xið Þ 6 /�1 yið Þ, for all i 2 1; . . . ; nf g, since /�1 is increasing.
From (A1*), one has that:
Aa;b /�1 x1ð Þ; . . . ;/�1 xnð Þ� �
6 Aa;b /�1 y1ð Þ; . . . ;/�1 ynð Þ� �

)/�1 A / /�1 x1ð Þ� �
; . . . ;/ /�1 y1ð Þ� �� �� �

6 /�1 A / /�1 x1ð Þ� �
; . . . ;/ /�1 y1ð Þ� �� �� �

; by Eq: A2ð Þ
)A x1; . . . ; xnð Þ 6 A y1; . . . ; ynð Þ; since /�1 is bijective and increasing:
(A2) From (A2*), one has that:
Aa;b a; . . . ; að Þ ¼ a

) /�1 A / að Þ; . . . ;/ að Þð Þð Þ ¼ a

) /�1 A 0; . . . ; 0ð Þð Þ ¼ a

) A 0; . . . ;0ð Þ ¼ 0;

and

Aa;b b; . . . ; bð Þ ¼ b

) /�1 A / bð Þ; . . . ;/ bð Þð Þð Þ ¼ b

) /�1 A 1; . . . ;1ð Þð Þ ¼ b

) A 1; . . . ;1ð Þ ¼ 1:

h

Example 4.1. A basic increasing bijection /A : a; b½ � ! 0;1½ � is the only affine transform between a; b½ � and 0;1½ �, defined, for
all x 2 a; b½ �, by
/A xð Þ ¼ x� a
b� a

� �
: ð31Þ
More generally, one may consider /p
A : a; b½ � ! 0;1½ �, defined, for all x 2 a; b½ � and for p > 0, by
/p
A xð Þ ¼ x� a

b� a

� �p

: ð32Þ
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Then, let GM : 0;1½ �n ! 0;1½ � be the geometric mean, given by Eq. (6). Thus, the a; bð Þ-fusion function GMa;b : a; b½ �n ! a; b½ �,
given, for all x1; . . . ; xn 2 a; b½ �, by
GMa;b x1; . . . ; xnð Þ ¼ /p
A

� ��1 GM /p
A x1ð Þ; . . . ;/p

A xnð Þ� �� � ¼ /�1
A GM /A x1ð Þ; . . . ;/A xnð Þð Þð Þ; ð33Þ
is an a; bð Þ-aggregation function. We can rewrite Eq. (33) as follows:
GMa;b x1; . . . ; xnð Þ ¼ GM
x1 � a
b� a

; . . . ;
xn � a
b� a

� �
� b� að Þ þ a:
Remark 4.1. It is immediate that any aggregation function A : 0;1½ �n ! 0;1½ � can be the core function of the construction
method presented in Theorem 4.1, as it was the case with the geometric mean in Example 4.1. By applying the construction
method, one can obtain an analogous a; bð Þ-aggregation function for any given aggregation function.
Remark 4.2. In the context of Theorem 4.1, when considering the basic increasing bijection /A, shown in Example 4.1, some
a; bð Þ-aggregation functions and their respective core aggregation functions share the same formula. This is the case for pos-
itively homogeneous and shift invariant aggregation functions [18], like the Choquet integral [7]. In fact, the a; bð Þ-Choquet
integral, constructed by this method, corresponds to the asymmetric Choquet integral introduced by Denneberg [10]. Hence,
all the special instances of this function, such as the minimum, maximum, arithmetic mean, weighted mean and OWA [48],
preserve their formulas when applied as the core of the construction method for defining analogous a; bð Þ-aggregation
functions.
Remark 4.3. In Theorem 4.1, one could also obtain an a; bð Þ-aggregation function by considering / as a decreasing bijection.
However, for this and the following construction methods, we focus only on applying increasing bijections to facilitate the
shifting of properties of the core aggregation function from 0;1½ � to a; b½ �.
Remark 4.4. More complex ways could be considered for constructing a; bð Þ-fusion functions based on increasing (or
decreasing) bijections, instead of just / and /�1, as in Eq. (29). For instance, one could consider the monotonic bijections

g;/1; . . . ;/n : a; b½ � ! 0;1½ � and a fusion function F : 0;1½ �n ! 0;1½ � to construct an a; bð Þ-fusion Fa;b : a; b½ �n ! a; b½ �, defined,
for all ~x 2 a; b½ �n, by
Fa;b ~xð Þ ¼ g�1F /1 x1ð Þ; . . . ;/n xnð Þð Þ:

With this approach, some shifted properties from F are preserved for Fa;b (e.g., Fa;b is an a; bð Þ-aggregation function if and

only if F is an aggregation function) but others properties may not be preserved (e.g., symmetry and associativity).
Similar construction methods from the one in Theorem 4.1 can be obtained for different subclasses of a; bð Þ-aggregation

functions.

Theorem 4.2. Consider a fusion function O : 0;1½ �n ! 0;1½ �, an increasing and bijective function / : a; b½ � ! 0;1½ � and an a; bð Þ-
fusion function Oa;b : a; b½ �n ! a; b½ � given, for all x1; . . . ; xn 2 a; b½ �, by
Oa;b x1; . . . ; xnð Þ ¼ /�1 O / x1ð Þ; . . . ;/ xnð Þð Þð Þ; ð34Þ

Then, Oa;b is an n-dimensional a; bð Þ-overlap function if and only if O is an n-dimensional overlap function.
Proof. ()) Suppose that Oa;b is an n-dimensional a; bð Þ-overlap function. Then, it is immediate that O is increasing, symmet-
ric and continuous. Let us prove that O respects the remaining conditions of Definition 2.4:

(O2)
O x1; . . . ; xnð Þ ¼ 0

() O / /�1 x1ð Þ� �
; . . . ;/ /�1 xnð Þ� �� � ¼ 0; since / is bijective

() /�1 O / /�1 x1ð Þ� �
; . . . ;/ /�1 xnð Þ� �� �� � ¼ /�1 0ð Þ

() Oa;b /�1 x1ð Þ; . . . ;/�1 xnð Þ� � ¼ a; by Eq: 34ð Þ
() /�1 xið Þ ¼ a; for some i 2 1; . . . ;nf g; by OAB2ð Þ
() xi ¼ 0; for some i 2 1; . . . ;nf g:
(O3)
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O x1; . . . ; xnð Þ ¼ 1

() O / /�1 x1ð Þ� �
; . . . ;/ /�1 xnð Þ� �� � ¼ 1; since / is bijective

() /�1 O / /�1 x1ð Þ� �
; . . . ;/ /�1 xnð Þ� �� �� � ¼ /�1 1ð Þ

() Oa;b /�1 x1ð Þ; . . . ;/�1 xnð Þ� � ¼ b; by Eq: 34ð Þ
() /�1 xið Þ ¼ a; for all i 2 1; . . . ;nf g; by OAB3ð Þ
() xi ¼ 1; for all i 2 1; . . . ;nf g:
(() Suppose that O is an n-dimensional overlap function. From (O1), (O4) and (O5), we also have that Oa;b is symmetric,
increasing and continuous. Now, let us prove that it respects the remaining conditions of Definition 3.6:

(OAB2) Suppose that Oa;b ~xð Þ ¼ a, for some ~x 2 a; b½ �n. Then, from Eq. (34), we have that:
a ¼ /�1 O / x1ð Þ; . . . ;/ xnð Þð Þð Þ () 0 ¼ O / x1ð Þ; . . . ;/ xnð Þð Þ;

since / is increasing and bijective. From (O2), it follows that:
/ xið Þ ¼ 0 for some i 2 1; . . . ;nf g () xi ¼ a for some i 2 1; . . . ;nf g:
(OAB3) Suppose that Oa;b ~xð Þ ¼ b, for all ~x 2 a; b½ �n. Then, from Eq. (34), we have that:

b ¼ /�1 O / x1ð Þ; . . . ;/ xnð Þð Þð Þ () 1 ¼ O / x1ð Þ; . . . ;/ xnð Þð Þ;
since / is increasing and bijective. From (O3), it follows that:
/ xið Þ ¼ 1 for all i 2 1; . . . ;nf g () xi ¼ b for all i 2 1; . . . ;nf g:

h

Example 4.2. The a; bð Þ-aggregation function GMa;b : a; b½ �n ! a; b½ � defined in Example 4.1 is an n-dimensional a; bð Þ-overlap
function.

In the next theorem, we show that one can obtain the same n-dimensional a; bð Þ-overlap function from two distinct meth-

ods, both based on a tuple of core n-dimensional overlap functions O
!¼ O1; . . . ;Omð Þ . One method consists in first obtaining

the n-dimensional overlap function A
O
! by the generalized composition of the core n-dimensional overlap functions by an

aggregation function A (as in Theorem 2.1), followed by the application of the construction method of Theorem 4.2 taking
A
O
! as the core function. The other method consists in first applying both the construction method of Theorem 4.2 m times,

one for each core overlap function from O
!
, as well as the construction method of Theorem 4.1 with an aggregation function A

as the core function, followed by the generalized composition of the m resulting n-dimensional a; bð Þ-overlap functions

Oa;b
1 ; . . . ;Oa;b

m

� �
by the resulting a; bð Þ-aggregation function Aa;b.

Theorem 4.3. Consider a continuous aggregation function A : 0;1½ �m ! 0;1½ �, such that

(PA) A ~xð Þ ¼ 0 if and only if xi ¼ 0, for some i 2 1; . . . ;mf g;
(PB) A ~xð Þ ¼ 1 if and only if xi ¼ 1, for all i 2 1; . . . ;mf g;

a tuple O
!¼ O1; . . . ;Omð Þ of n-dimensional overlap functions and the n-dimensional overlap function A

O
! : 0;1½ �n ! 0;1½ �, defined,

for all ~x 2 0;1½ �n, by

A
O
! ~xð Þ ¼ A O1 ~xð Þ; . . . ;Om ~xð Þð Þ: ð35Þ
Also, consider an increasing and bijective function / : a; b½ � ! 0;1½ �, the n-dimensional a; bð Þ-overlap function

Aa;b

O
! : a; b½ �n ! a; b½ � given, for all ~y 2 a; b½ �n, by
Aa;b

O
! ~yð Þ ¼ /�1 A

O
! / y1ð Þ; . . . ;/ ynð Þð Þ

� �
; ð36Þ
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the a; bð Þ-aggregation function Aa;b : a; b½ �m ! a; b½ �, given, for all~z 2 a; b½ �m, by
Fig. 1.
Aa;b ~zð Þ ¼ /�1 A / z1ð Þ; . . . ;/ zmð Þð Þð Þ; ð37Þ

the n-dimensional a; bð Þ-overlap functions Oa;b

1 ; . . . ;Oa;b
m : a; b½ �n ! a; b½ �, given, for all ~y 2 a; b½ �n, by
Oa;b
i

~yð Þ ¼ /�1 Oi / y1ð Þ; . . . ;/ ynð Þð Þð Þ; i 2 1; . . . ;mf g; ð38Þ
and the n-dimensional a; bð Þ-overlap function OCa;b : a; b½ �n ! a; b½ �, defined, for all ~y 2 a; b½ �n by
OCa;b ~yð Þ ¼ Aa;b Oa;b
1 ~yð Þ; . . . ;Oa;b

m
~yð Þ

� �
: ð39Þ
Then, it holds that Aa;b

O
! ¼ OCa;b.
Proof. Consider ~x 2 0;1½ �n and ~y 2 a; b½ �n such that xi ¼ / yið Þ for all i 2 1; . . . ;nf g. As / is bijective, it is immediate that
yi ¼ /�1 xið Þ for all i 2 1; . . . ;nf g. Then, it follows that:
Aa;b

O
! y

!� �
¼/�1 A

O
! / y1ð Þ; . . . ;/ ynð Þð Þ

� �
; by Eq: 36ð Þ

¼/�1 A
O
! x1; . . . ; xnð Þ

� �
¼/�1 A O1 x

!� �
; . . . ;Om x

!� �� �� �
; by Eq: 5ð Þ

¼/�1 A / /�1 O1 x
!� �� �� �

; . . . ;/ /�1 Om x
!� �� �� �� �� �

; since / is bijective

¼Aa;b /�1 O1 x
!� �� �

; . . . ;/�1 Om x
!� �� �� �

; by Eq: 37ð Þ
¼Aa;b /�1 O1 / y1ð Þ; . . . ;/ ynð Þð Þð Þ; . . . ;/�1 Om / y1ð Þ; . . . ;/ ynð Þð Þð Þ� �
¼Aa;b Oa;b

1 y1; . . . ; ynð Þ; . . . ;Oa;b
m y1; . . . ; ynð Þ

� �
; by Eq: 38ð Þ

¼OCa;b y
!� �

; by Eq: 39ð Þ:
h

Theorem 4.3 shows that the diagram of Fig. 1 commutes, where O
!¼ O1; . . . ;Omð Þ and Oa;b

		!
¼ Oa;b

1 ; . . . ;Oa;b
m

� �
.

Theorem 4.4. Consider a bivariate fusion function T : 0;1½ �2 ! 0;1½ �, an increasing and bijective function / : a; b½ � ! 0;1½ � and a

bivariate a; bð Þ-fusion function Ta;b : a; b½ �2 ! a; b½ � given, for all x; y 2 a; b½ �, by

Ta;b x; yð Þ ¼ /�1 T / xð Þ;/ yð Þð Þð Þ; ð40Þ
Then, Ta;b is an a; bð Þ-t-norm if and only if T is a t-norm.
Proof. ()) Suppose that Ta;b is an a; bð Þ-t-norm. Then, it is immediate that T is symmetric (T1) and increasing (T4). Let us
prove the remaining conditions:

(T2) From (TAB2), one has that, for all x; y; z 2 0;1½ �:
Commutative diagram of the construction methods of an n-dimensional a; bð Þ-overlap function based on a tuple of n-dimensional overlap functions.
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Ta;b Ta;b /�1 xð Þ;/�1 yð Þ� �
;/�1 zð Þ

� �
¼ Ta;b /�1 xð Þ; Ta;b /�1 yð Þ;/�1 zð Þ� �� �

) Ta;b /�1 T / /�1 xð Þ� �
;/ /�1 yð Þ� �� �� �

;/�1 zð Þ� � ¼ Ta;b /�1 xð Þ;/�1 T / /�1 yð Þ� �
;/ /�1 zð Þ� �� �� �� �

;

by Eq: 42ð Þ
)/�1 T T x; yð Þ; zð Þð Þ ¼ /�1 T x; T y; zð Þð Þð Þ; since / is bijective
) T T x; yð Þ; zð Þ ¼ T x; T y; zð Þð Þ;
which means that T is associative.
(T3) From (TAB3), one has that, for all x 2 0;1½ �:

Ta;b /�1 xð Þ; b� � ¼ Ta;b b;/�1 xð Þ� � ¼ /�1 xð Þ

)/�1 T / /�1 xð Þ� �
;/ bð Þ� �� � ¼ /�1 xð Þ; by Eq: 42ð Þ

)/�1 T x;1ð Þð Þ ¼ /�1 xð Þ; since / is bijective
)T x;1ð Þ ¼ x;

which implies that T has 1 as its neutral element. Since T is symmetric and increasing, the result follows.
Thus, T is a t-norm.

(() Suppose that T is a t-norm. From (T1) and (T4), we also have that Ta;b is symmetric and increasing. Now, let us prove
the remaining conditions:

(TAB2)
For all x; y; z 2 a; b½ �, one has that:
Ta;b Ta;b x; yð Þ; z
� �

¼/�1 T / Ta;b x; yð Þ
� �

;/ zð Þ
� �� �

; by Eq: 42ð Þ
¼/�1 T T / xð Þ;/ yð Þð Þ;/ zð Þð Þð Þ; since / is bijective

¼/�1 T / xð Þ; T / yð Þ;/ zð Þð Þð Þð Þ; by T2ð Þ
¼/�1 T / xð Þ;/ Ta;b y; zð Þ

� �� �� �
¼ Ta;b x; Ta;b y; zð Þ

� �
;

showing that Ta;b is associative.
(TAB3)
For all x 2 a; b½ �, it holds that:
Ta;b x; bð Þ ¼/�1 T / xð Þ;/ bð Þð Þð Þ; by Eq: 42ð Þ
¼/�1 T / xð Þ;1ð Þð Þ; since / is bijective

¼/�1 / xð Þð Þ; by T3ð Þ
¼ x:

Since Ta;b is symmetric, it follows that b is its neutral element.
h

Example 4.3. Consider the Hamacher product TH : 0;1½ �2 ! 0;1½ �, given by Eq. (51), and /p
A : a; b½ � ! 0;1½ �, defined in Eq. (32).

Then, the a; bð Þ-fusion function Ta;b
H : a; b½ �2 ! a; b½ �, given, for all x; y 2 a; b½ �, by
Ta;b
H x; yð Þ ¼ /p

A

� ��1 TH /p
A xð Þ;/p

A yð Þ� �� �
; ð41Þ
is an a; bð Þ-t-norm. By taking p ¼ 1, we can rewrite Eq. (41) as follows:
Ta;b
H x; yð Þ ¼ TH

x� a
b� a

;
y� a
b� a

� �
� b� að Þ þ a:
Remark 4.5. It is clear that, in the context of Theorem 4.4, when a ¼ 0 and b ¼ 1, Eq. (42) provides a t-norm. In this case, if
T ¼ TP (the product t-norm), then the constructed t-norm T0;1 is a continuous strict t-norm (strictly increasing in 0;1ð �). If
T ¼ TL (Łukasiewicz t-norm, given in Eq. (9)), then the constructed T0;1 is a continuous nilpotent t-norm.
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Theorem 4.5. Consider a bivariate fusion function S : 0;1½ �2 ! 0;1½ �, an increasing and bijective function / : a; b½ � ! 0;1½ � and a

bivariate a; bð Þ-fusion function Sa;b : a; b½ �2 ! a; b½ � given, for all x; y 2 a; b½ �, by

Sa;b x; yð Þ ¼ /�1 S / xð Þ;/ yð Þð Þð Þ; ð42Þ
Then, Sa;b is an a; bð Þ-t-conorm if and only if S is a t-conorm.
Proof. Analogous to the proof of Theorem 4.4. h
Example 4.4. Consider the probabilistic sum Sp : 0;1½ �2 ! 0;1½ �, given by Eq. (11), and /p
A : a; b½ � ! 0;1½ �, defined in Eq. (32).

Then, the a; bð Þ-fusion function Sa;bp : a; b½ �2 ! a; b½ �, given, for all x; y 2 a; b½ �, by
Sa;bp x; yð Þ ¼ /p
A

� ��1 Sp /p
A xð Þ;/p

A yð Þ� �� �
; ð43Þ
is an a; bð Þ-t-conorm. By taking p ¼ 1, we can rewrite Eq. (43) as follows:
Sa;bp x; yð Þ ¼ Sp
x� a
b� a

;
y� a
b� a

� �
� b� að Þ þ a:
Theorem 4.6. Consider e 2 0;1½ �; q 2 a; b½ �, a bivariate fusion function U : 0;1½ �2 ! 0;1½ �, an increasing and bijective function

/ : a; b½ � ! 0;1½ �, such that / qð Þ ¼ e, and a bivariate a; bð Þ-fusion function Ua;b : a; b½ �2 ! a; b½ � given, for all x; y 2 a; b½ �, by
Ua;b x; yð Þ ¼ /�1 U / xð Þ;/ yð Þð Þð Þ; ð44Þ

Then, Ua;b is an a; bð Þ-uninorm with q as its neutral element if and only if U is an uninorm with e as its neutral element.
Proof. Analogous to the proof of Theorem 4.4. h
Example 4.5. Consider the unimorm UP : 0;1½ �2 ! 0;1½ �, given by Eq. (13), and /p
A : a; b½ � ! 0;1½ �, defined in Eq. (32). Then,

the a; bð Þ-fusion function Ua;b
P : a; b½ �2 ! a; b½ �, given, for all x; y 2 a; b½ �, by
Ua;b
P x; yð Þ ¼ /p

A

� ��1 UP /p
A xð Þ;/p

A yð Þ� �� �
; ð45Þ
is an a; bð Þ-uninorm. By taking p ¼ 1, we can rewrite Eq. (45) as follows:
Ua;b
P x; yð Þ ¼ UP

x� a
b� a

;
y� a
b� a

� �
� b� að Þ þ a:
5. Study of some properties of a; bð Þ-aggregation functions

In this section, we analyze some properties of a; bð Þ-aggregation functions, in particular, the cases in which the properties
of the core aggregation functions are preserved/shifted when constructing an analogous a; bð Þ-aggregation functions via the
previously introduced construction methods.

5.1. Idempotency and averaging properties

A fusion function F : 0;1½ �n ! 0;1½ � is idempotent [18] if, for all x 2 0;1½ �, it holds that:
F x; . . . ; xð Þ ¼ x: ð46Þ

Clearly, idempotency can be analogously defined for a; bð Þ-fusion functions.

Proposition 5.1. Let Aa;b 2 Aa;b be an a; bð Þ-aggregation function. Then, Aa;bj c;d½ � is a c; dð Þ-aggregation function for all c; d½ �# a; b½ �
if and only if Aa;b is idempotent.
Proof. ()) Suppose that Aa;bj c;d½ � is a c; dð Þ-aggregation function for all c; d½ �# a; b½ �. Then, for all c; d½ �# a; b½ �, it holds that

Aa;b c; . . . ; cð Þ ¼ c and Aa;b d; . . . ; dð Þ ¼ d, meaning that Aa;b x; . . . ; xð Þ ¼ x, for all x 2 a; b½ �;
(() Now, suppose that Aa;b is idempotent. Then, it is immediate that Aa;bj c;d½ � is increasing and idempotent. Moreover, for

all c; d½ �# a; b½ �, it follows that Aa;bj c;d½ � c; . . . ; cð Þ ¼ c and Aa;bj c;d½ � d; . . . ; dð Þ ¼ d, meaning that Aa;bj c;d½ � is a c; dð Þ-aggregation
function. h
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Theorem 5.1. Let A : 0;1½ �n ! 0;1½ � be an aggregation function, / : a; b½ � ! 0;1½ � an increasing bijective function and

Aa;b : a; b½ �n ! a; b½ � an a; bð Þ-aggregation function defined, for all ~x 2 a; b½ �n, by Aa;b ~xð Þ ¼ /�1 A / x1ð Þ; . . . ;/ xnð Þð Þð Þ. Then, Aa;b is
idempotent if and only if A is idempotent.
Proof. ()) Suppose that Aa;b is idempotent. So, for all x 2 0;1½ �, it follows that:
Aa;b /�1 xð Þ; . . . ;/�1 xð Þ� � ¼ /�1 xð Þ
) /�1 A / /�1 xð Þ� �

; . . . ;/ /�1 xð Þ� �� �� � ¼ /�1 xð Þ; by Eq: 30ð Þ
) A x; . . . ; xð Þ ¼ x; since / is bijective;
showing that A is idempotent.
(() Suppose that A is idempotent. Thus, for all x 2 a; b½ �n, it holds that:
Aa;b x; . . . ; xð Þ ¼ /�1 A / xð Þ; . . . ;/ xð Þð Þð Þ; by Eq: 30ð Þ
¼ /�1 / xð Þð Þ; since A is idempotent;
¼ x; since / is bijective;
which means that Aa;b is idempotent. h

A fusion function F : 0;1½ �n ! 0;1½ � is averaging when, for all ~x 2 0;1½ �n, it holds that:
min ~xf g 6 F ~xð Þ 6 max ~xf g:

In the context of aggregation functions, since they are increasing, the idempotency and averaging properties are equiv-

alent [18]. The same holds for a; bð Þ-aggregation functions, since they are also increasing, and the averaging property can be
naturally shifted from 0;1½ � to a; b½ � (the same holds for idempotency). Therefore, the following result is immediate.

Corollary 5.1. Let A : 0;1½ �n ! 0;1½ � be an aggregation function, / : a; b½ � ! 0;1½ � an increasing bijective function and

Aa;b : a; b½ �n ! a; b½ � the a; bð Þ-aggregation function defined, for all ~x 2 a; b½ �n, by Aa;b ~xð Þ ¼ /�1 A / x1ð Þ; . . . ;/ xnð Þð Þð Þ. Then, Aa;b is
averaging if and only if A is averaging.
Example 5.1.

i)The arithmetic mean is an idempotent and averaging a; bð Þ-aggregation function;

ii)The n-dimensional a; bð Þ-overlap function GMa;b, given by Eq. (33), is also idempotent and averaging.

5.2. Generalized migrativity

Consider a 2 0;1½ �. A bivariate fusion function F : 0;1½ �2 ! 0;1½ � is said to be a-migrative [12] if, for all x; y 2 0;1½ �, it holds
that:
F a � x; yð Þ ¼ F x;a � yð Þ: ð47Þ

In [15], a-migrativity was generalized by replacing both product operations on Eq. (47) by a t-norm T, obtaining the con-

cept of a; Tð Þ-migrativity. Humberto et al. [5] generalized this concept by considering an aggregation function B, instead of a
t-norm, introducing the a;Bð Þ-migrativity. Qiao and Hu [41] studied the migrativity property for an overlap function O,
rewriting Eq. (47), with F ¼ O and replacing the first product operation by an overlap function O1 and the second product
operation by an overlap function O2, resulting in the concept of a;O1;O2ð Þ-migrativity for overlap functions. More recently,
Qiao [40] introduced a similar definition of migrativity for overlap functions on lattices, where O1 and O2 are replaced,
respectively, by binary operators A;B on a lattice L, with a 2 L, named a;A; Bð Þ-migrativity of overlap functions. Inspired
by such developments, here we introduce the concept of a; F1; F2ð Þ-migrativity of a fusion function F, as follows:

Definition 5.1. Consider a 2 0;1½ � and two fusion functions F1; F2 : 0;1½ �n ! 0;1½ �. A fusion function F : 0;1½ �n ! 0;1½ � is said
to be k;a; F1; F2ð Þ-migrative if, for all ~x 2 0;1½ �n, it holds that:
F F1 a; x1ð Þ; x2; . . . ; xnð Þ ¼ F x1; . . . ; F2 a; xkð Þ; . . . ; xnð Þ; ð48Þ

for some k 2 2; . . . ;nf g. Whenever, F is k;a; F1; F2ð Þ-migrative for all k 2 2; . . . ;nf g, then it is said to be a; F1; F2ð Þ-migrative.

However, when constructing an a; bð Þ-aggregation function as a counterpart of a (generalized) migrative aggregation
function, the constructed function, most likely, does not respect any definitions of migrativity that are made in the context
of the unit interval. So, here we shift the property of a; F1; F2ð Þ-migrativity (Definition 5.1) from 0;1½ � to a; b½ �, which results in
the following definition:
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Definition 5.2. Consider d 2 a; b½ � and two a; bð Þ-fusion functions Fa;b1 ; Fa;b2 : a; b½ �n ! a; b½ �. An a; bð Þ-fusion function

Fa;b : a; b½ �n ! 0;1½ � is said to be k; d; Fa;b1 ; Fa;b2

� �
-migrative if, for all ~x 2 a; b½ �n, it holds that:
Fa;b Fa;b
1 d; x1ð Þ; x2; . . . ; xn

� �
¼ Fa;b x1; . . . ; F

a;b
2 d; xkð Þ; . . . ; xn

� �
; ð49Þ
for some k 2 2; . . . ;nf g. Whenever, Fa;b is k; d; Fa;b
1 ; Fa;b

2

� �
-migrative for all k 2 2; . . . ;nf g, then it is said to be d; Fa;b

1 ; Fa;b
2

� �
-

migrative.
Theorem 5.2. Let / : a; b½ � ! 0;1½ � be an increasing bijective function, Fa;b
1 ; Fa;b

2 : a; b½ �2 ! a; b½ � be two bivariate a; bð Þ-fusion func-

tions defined, for all ~x 2 a; b½ �2, by Eq. (29), with F1; F2 : 0;1½ �2 ! 0;1½ � as their respective core fusion functions, and

Aa;b : a; b½ �n ! a; b½ � be an a; bð Þ-aggregation function defined, for all~y 2 a; b½ �n, by Eq. (30), with A : 0;1½ �n ! 0;1½ � as its core aggre-
gation function. Then, for d 2 a; b½ �;Aa;b is d; Fa;b

1 ; Fa;b
2

� �
-migrative if and only if A is / dð Þ; F1; F2ð Þ-migrative.
Proof. ()) Suppose that Aa;b is d; Fa;b
1 ; Fa;b

2

� �
-migrative. So, for all d 2 a; b½ �;~x 2 0;1½ �n and i 2 2; . . . ;nf g, by Definition 5.2, it

follows that:
Aa;b Fa;b
1 d;/�1 x1ð Þ
� �

;/�1 x2ð Þ; . . . ;/�1 xnð Þ
� �

¼Aa;b /�1 x1ð Þ; . . . ;Fa;b
2 d;/�1 xið Þ
� �

; . .. ;/�1 xnð Þ
� �

)Aa;b /�1 F1 / dð Þ;/ /�1 x1ð Þ
� �� �� �

;/�1 x2ð Þ; . . . ;/�1 xnð Þ
� �

¼

Aa;b /�1 x1ð Þ; . .. ;/�1 F2 / dð Þ;/ /�1 xið Þ
� �� �� �

; . . . ;/�1 xnð Þ
� �

; by Eq: 29ð Þ

)/�1 A / /�1 F1 / dð Þ;/ /�1 x1ð Þ
� �� �� �� �

;/ /�1 x2ð Þ
� �

; .. . ;/ /�1 xnð Þ
� �� �� �

¼

/�1 A / /�1 x1ð Þ
� �

; . . . ;/ /�1 F2 / dð Þ;/ /�1 xið Þ
� �� �� �� �

; . . . ;/ /�1 xnð Þ
� �� �� �

; by Eq: 30ð Þ
)A F1 / dð Þ;x1ð Þ;x2;. . . ;xnð Þ¼A x1; . . . ;F2 / dð Þ;xið Þ; . . . ;xnð Þ; since/�1 is bijective;
showing that A is / dð Þ; F1; F2ð Þ-migrative.(() Suppose that A is / dð Þ; F1; F2ð Þ-migrative. Thus, for all d; x; . . . ; xn 2 a; b½ � and
i 2 2; . . . ;nf g, it holds that:
Aa;b Fa;b
1 d; x1ð Þ; x2; . . . ; xn

� �
¼Aa;b /�1 F1 / dð Þ;/ x1ð Þð Þð Þ; x2; . . . ; xn

� �
; by Eq: 29ð Þ

¼/�1 A / /�1 F1 / dð Þ;/ x1ð Þð Þð Þ� �
;/ x2ð Þ; . . . ;/ xnð Þ� �� �

;

by Eq: 30ð Þ
¼/�1 A F1 / dð Þ;/ x1ð Þð Þ;/ x2ð Þ; . . . ;/ xnð Þð Þð Þ; since / is bijective;

¼/�1 A / x1ð Þ; . . . ; F2 / dð Þ;/ xið Þð Þ; . . . ;/ xnð Þð Þð Þ;
since A is / dð Þ; F1; F2ð Þ �migrative;

¼/�1 A / x1ð Þ; . . . ;/ /�1 F2 / dð Þ;/ xið Þð Þð Þ� �
; . . . ;/ xnð Þ� �� �

;

since / is bijective;

¼Aa;b x1; . . . ;/
�1 F2 / dð Þ;/ xið Þð Þð Þ; . . . ; xn

� �
; by Eq: 30ð Þ

¼Aa;b x1; . . . ; F
a;b
2 d; xið Þ; . . . ; xn

� �
; by Eq: 29ð Þ
which means that Aa;b is d; Fa;b
1 ; Fa;b

2

� �
-migrative. h
Corollary 5.2. Let / : a; b½ � ! 0;1½ � be an increasing bijective function, Fa;b
1 ; Fa;b

2 : a; b½ �2 ! a; b½ � be two bivariate a; bð Þ-fusion func-

tions defined, for all ~x 2 a; b½ �2, by Eq. (29), with F1; F2 : 0;1½ �2 ! 0;1½ � as their respective core fusion functions, and

Aa;b : a; b½ �n ! a; b½ � be an a; bð Þ-aggregation function defined, for all~y 2 a; b½ �n, by Eq. (30), with A : 0;1½ �n ! 0;1½ � as its core aggre-
gation function. Then, for d 2 a; b½ � and k 2 2; . . . ;nf g;Aa;b is k; d; Fa;b

1 ; Fa;b
2

� �
-migrative if and only if A is k;/ dð Þ; F1; F2ð Þ-migrative.
Example 5.2.

i) Let A ¼ Ak : 0;1½ �n ! 0;1½ � jk 2 2; . . . ;nf g� �
, where Ak is defined, for all ~x 2 0;1½ �n, by
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Ak ~xð Þ ¼
0; if xk ¼ 0;Yn
i¼1

x2
i

xk
; otherwise;

8>><
>>: ð50Þ

be a family of aggregation functions and F1; F2 : 0;1½ �2 ! 0;1½ � be two bivariate fusion functions, defined, for all
x; y 2 0;1½ �, respectively, by
F1 x; yð Þ ¼ x � y;
and

F2 x; yð Þ ¼ x2 � y;
It is immediate that each aggregation function Ak 2 A is k;a; F1; F2ð Þ-migrative, with a 2 0;1½ �. Now, considering an

increasing and bijective function / : a; b½ � ! 0;1½ �, define the a; bð Þ-fusion functions Fa;b
1 ; Fa;b

2 : a; b½ �2 ! a; b½ �, through
Eq. (29), with F1 and F2 as their respective core aggregation functions. Also, define the a; bð Þ-aggregation functions
Ak : a; b½ �n ! a; b½ �, through Eq. (30), with Ak as their core aggregation functions and k 2 2; . . . ;nf g. Thus, for

d ¼ /�1 að Þ, one has that every Aa;b
k is a k; d; Fa;b

1 ; Fa;b
2

� �
-migrative function. Observe that this result does not imply that,

for some specific k 2 2; . . . ;nf g;Aa;b
k is d; Fa;b

1 ; Fa;b
2

� �
-migrative.
ii) Consider d 2 a; b½ �, the product overlap OP , given by Eq. (5), and let Oa;b
P : a; b½ �n ! a; b½ � be the n-dimensional a; bð Þ-

overlap function obtained by Theorem 4.2, based on OP as its core n-dimensional overlap function and an increasing

and bijective function / : a; b½ � ! 0;1½ �. Then, one has that Oa;b
P is d;Oa;b

P ;Oa;b
P

� �
-migrative. If n ¼ 2; d;Oa;b

P ;Oa;b
P

� �
-

migrativity is the result of shifting the traditional a-migrativity property from 0;1½ � to a; b½ �;
iii) Consider a 2 0;1ð Þ, the overlap function Oq : 0;1½ �2 ! 0;1½ �, defined, for all x; y 2 0;1½ �, by Oq x; yð Þ ¼ xq � yq, with q > 0,

and the aggregation function A : 0;1½ �n ! 0;1½ �, given, for ~x 2 0;1½ �n, by
A x
!� �

¼
Qn
i¼1

xi; if xj 2 0;a½ � for some j 2 1; . . . ;nf g

1; otherwise:

8<
: ð51Þ

Then, A is a;Oq;Oq
� �

-migrative. Observe that, if n ¼ 2;A coincides with the function O að Þ, presented in [41] (Example
3.1), which is an example of a function that is a;O1;O2ð Þ migrative, with O1 ¼ O2 ¼ Oq. Considering an increasing

and bijective function / : a; b½ � ! 0;1½ �, define the a; bð Þ-overlap function Oa;b
q : a; b½ �2 ! a; b½ �, through Eq. (34), with

Oq as its core overlap function. Also, define the a; bð Þ-aggregation function Aa;b : a; b½ �n ! a; b½ �, through Eq. (30), with

A as its core aggregation function. Then, for d ¼ /�1 að Þ;Aa;b is a d;Oa;b
q ;Oa;b

q

� �
-migrative function;
iv) Consider a 2 0;1½ �, the projection function PROJ2 : 0;1½ �2 ! a; b½ �, given, for all x; y 2 0;1½ �, by F2 x; yð Þ ¼ y, the bivariate

arithmetic mean BAM : 0;1½ �2 ! 0;1½ � given, for all x; y 2 0;1½ �, by BAMa;b x; yð Þ ¼ xþy
2 and the projection function

PROJ1 : 0;1½ �n ! 0;1½ �, given, for all ~x 2 0;1½ �n, by PROJ1 ~xð Þ ¼ x1. Then, one has that PROJ1 is a; PROJ2;BAMð Þ-
migrative. Considering d 2 a; b½ �, if we define the functions PROJa;b1 : a; b½ �n ! a; b½ � and PROJa;b2 ;BAMa;b : a; b½ �2 ! a; b½ �
analogously, then, it is immediate that PROJa;b1 is d; PROJa;b2 ;BAMa;b

� �
-migrative.

5.3. Generalized homogeneity

A fusion function F : 0;1½ �n ! 0;1½ � is said to be homogeneous of order c 2 0;þ1½ Þ if, for any a; x1; . . . ; xn 2 0;1½ �, it holds
that:
F a � x1; . . . ;a � xnð Þ ¼ ac � F x1; . . . ; xnð Þ; ð52Þ

considering 00 ¼ 0. This property was generalized in [43], in the form of abstract homogeneity of order 1, by replacing the
product operations in Eq. (52) by another bivariate fusion function g and applying an automorphism on the parameter a,
with c ¼ 1. When this automorphism is the identity function, we obtain the g-homogeneity property, defined as follows:

Definition 5.3. [43] Consider a bivariate fusion function g : 0;1½ �2 ! 0;1½ �. A fusion function F : 0;1½ �n ! 0;1½ � is said to be g-
homogeneous if, for any a; x1; . . . ; xn 2 0;1½ �, it holds that:
F g a; x1ð Þ; . . . ; g a; xnð Þð Þ ¼ g a; F x1; . . . ; xnð Þð Þ: ð53Þ
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As discussed for the generalized migrativity property, a; bð Þ-aggregation functions constructed based on g-homogeneous
aggregation functions are not expected to be g-homogeneous, since g is not an a; bð Þ-fusion function. So, let us shift the g-
homogeneity property from 0;1½ � to a; b½ �, as follows:
Definition 5.4. Consider a bivariate a; bð Þ-fusion function ga;b : a; b½ �2 ! a; b½ �. An a; bð Þ-fusion function Fa;b : a; b½ �n ! a; b½ � is
said to be ga;b-homogeneous if, for any d; x1; . . . ; xn 2 a; b½ �, it holds that:
Fa;b ga;b d; x1ð Þ; . . . ; ga;b d; xnð Þ� � ¼ ga;b d; Fa;b x1; . . . ; xnð Þ
� �

: ð54Þ
Theorem 5.3. Let / : a; b½ � ! 0;1½ � be an increasing bijective function, ga;b : a; b½ �n ! a; b½ � be an a; bð Þ-fusion function defined, for

all~x 2 a; b½ �n, by Eq. (29), with g : 0;1½ �2 ! 0;1½ � as its core fusion function, and Aa;b : a; b½ �n ! a; b½ � be an a; bð Þ-aggregation func-

tion defined, for all~x 2 a; b½ �n, by Eq. (30), with A : 0;1½ �n ! 0;1½ � as its core aggregation function. Then, Aa;b is ga;b-homogeneous if
and only if A is g-homogeneous.
Proof. ()) Suppose that Aa;b is ga;b-homogeneous. So, for all d 2 a; b½ � and ~x 2 0;1½ �n, it follows that:
Aa;b ga;b d;/�1 x1ð Þ� �
; . . . ; ga;b d;/�1 xnð Þ� �� � ¼ ga;b d;Aa;b /�1 x1ð Þ; . . . ;/�1 xnð Þ� �� �

)Aa;b /�1 g / dð Þ;/ /�1 x1ð Þ� �� �� �
; . . . ;/�1 g / dð Þ;/ /�1 x1ð Þ� �� �� �� �

¼ /�1 g / dð Þ;/ Aa;b /�1 x1ð Þ; . . . ;/�1 xnð Þ� �� �� �� �
; by Eq: 29ð Þ

)/�1 A / /�1 g / dð Þ;/ /�1 x1ð Þ� �� �� �� �
; . . . ;/ /�1 g / dð Þ;/ /�1 x1ð Þ� �� �� �� �� �� �

¼ /�1 g / dð Þ;/ /�1 A / /�1 x1ð Þ� �
; . . . ;/ /�1 xnð Þ� �� �� �� �� �� �

; by Eq: 30ð Þ
)A g / dð Þ; x1ð Þ; . . . ; g / dð Þ; xnð Þð Þ ¼ g / dð Þ;A x1; . . . ; xnð Þð Þ; since / is bijective;
showing that A is g-homogeneous.
(() Suppose that A is g-homogeneous. Thus, for all d; x1; . . . ; xn 2 a; b½ �, it holds that:
Aa;b ga;b d; x1ð Þ; . . . ; ga;b d; xnð Þ� � ¼Aa;b /�1 g / dð Þ;/ x1ð Þð Þð Þ; . . . ;/�1 g / dð Þ;/ xnð Þð Þð Þ� �
;

by Eq: 29ð Þ
¼/�1 A / /�1 g / dð Þ;/ x1ð Þð Þð Þ� �

; . . . ;/ /�1 g / dð Þ;/ xnð Þð Þð Þ� �� �� �
;

by Eq: 30ð Þ
¼/�1 A g / dð Þ;/ x1ð Þð Þ; . . . ; g / dð Þ;/ xnð Þð Þð Þð Þ; since / is bijective;

¼/�1 g / dð Þ;A / x1ð Þ; . . . ;/ xnð Þð Þð Þð Þ; since A is g � homogeneous;

¼/�1 g / dð Þ;/ /�1 A / x1ð Þ; . . . ;/ xnð Þð Þð Þ� �� �� �
; since / is bijective;

¼/�1 g / dð Þ;/ Aa;b x1; . . . ; xnð Þ
� �� �� �

; by Eq: 30ð Þ

¼ ga;b d;Aa;b x1; . . . ; xnð Þ
� �

; by Eq: 29ð Þ
which means that Aa;b is ga;b-homogeneous. h
Example 5.3.

i)Consider the bivariate arithmetic mean BAMa;b : a; b½ �2 ! a; b½ � given, for all x; y 2 a; b½ � by BAMa;b x; yð Þ ¼ xþy
2 . Then, the (n-

ary) arithmetic mean, given by Eq. (3), is a BAMa;b-homogeneous a; bð Þ-aggregation function;

ii)Consider the a; bð Þ-overlap function BGMa;b, constructed via Theorem 4.2 with the overlap function BGM : 0;1½ �2 ! 0;1½ �,
given, for all x; y 2 0;1½ �, by BGM x; yð Þ ¼ ffiffiffiffiffiffiffiffiffi

x � yp
, as its core function. Also, consider the a; bð Þ-aggregation functions

MIN : a; b½ �n ! a; b½ �, given by Eq. (26) (minimum operator), and MAX : a; b½ �n ! a; b½ �, given, for all ~x 2 a; b½ �n, by

MAX ~xð Þ ¼ max x1; . . . ; xnf g:
Then, MIN and MAX are BGMa;b-homogeneous a; bð Þ-aggregation functions.
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6. Towards F -shifted a;b; c;dð Þ-fusion functions

In Section 3, we presented a framework to define new classes of functions with domain a; b½ �n and codomain a; b½ � based on
functions with domain 0;1½ �n and codomain 0;1½ �. That is, we showed how to define a; bð Þ-fusion functions based on fusion
functions, by shifting their defining properties. Here, we discuss the concepts necessary to develop a similar framework to
define classes of functions with domain a; b½ �n and codomain c; d½ �, such that c; d 2 R and c < d. We call those functions as
a; b; c; dð Þ-fusion functions.

Definition 6.1. An a; b; c; dð Þ-fusion function is an arbitrary function Fc;da;b : a; b½ �n ! c; d½ �.

It is immediate that every fusion function is an a; b; c; dð Þ-fusion function for a ¼ c ¼ 0 and b ¼ d ¼ 1. Also, every a; bð Þ-
fusion function is an a; b; c; dð Þ-fusion function when a ¼ c and b ¼ d. So, every 0;1;0;1ð Þ-fusion function is called just as
fusion function and every a; b; a; bð Þ-fusion function is called just as a; bð Þ-fusion function.

Properties from either fusion functions or a; bð Þ-fusion functions can be shifted to the context of a; b; c; dð Þ-fusion func-
tions, by taking into consideration the domain a; b½ �n and codomain c; d½ �.

Example 6.1. Suppose that we intend to shift the property (A2’) (see Example 3.1) that conveys the boundary conditions of
an �10;10ð Þ-aggregation function F : �10;10½ �n ! �10;10½ � to obtain an analogous property for a �10;10;0;10ð Þ-fusion
function H : �10;10½ �n ! 0;10½ �. The shifted property (A2y) is defined as follows:
(A2y) A �10; . . . ;�10ð Þ ¼ 0 and A 10; . . . ;10ð Þ ¼ 10.

Based on Definition 3.4, we define a; b; c; dð Þ-aggregation functions in the following.

Definition 6.2. An a; b; c; dð Þ-aggregation function is any function Ac;d
a;b 2 Ac;d

a;b, such that:
Ac;d
a;b ¼ Ac;d

a;b : a; b½ �n ! c;d½ �j Ac;d
a;b satisfies all the properties in Py

A

n o

where
Py
A ¼ A1y

� �
; A2y
� �n o

;

and

(A1y)Ac;d
a;b is increasing;

(A2y)Ac;d
a;b a; . . . ; að Þ ¼ c and Ac;d

a;b b; . . . ; bð Þ ¼ d.
Example 6.2. The bivariate �10;10;0;10ð Þ-fusion function H : �10;10½ �2 ! 0;10½ �, given, for all x; y 2 �10;10½ �, by
H x; yð Þ ¼ xþ yþ 20
4

is a bivariate �10;10;0;10ð Þ-aggregation function.
The construction method for a; bð Þ-aggregation functions presented in Theorem 4.1 can be adapted to obtain a construc-

tion method for a; b; c; dð Þ-aggregation functions based on a core aggregation function.

Theorem 6.1. Consider a fusion function A : 0;1½ �n ! 0;1½ �, an increasing and bijective function / : a; b½ � ! 0;1½ �, an increasing

and bijective function w : 0;1½ � ! c; d½ � and an a; b; c; dð Þ-fusion function Ac;d
a;b : a; b½ �n ! c; d½ � given, for all x1; . . . ; xn 2 a; b½ �, by
Ac;d
a;b x1; . . . ; xnð Þ ¼ w A / x1ð Þ; . . . ;/ xnð Þð Þð Þ: ð55Þ
Then, Ac;d
a;b is an a; b; c; dð Þ-aggregation function if and only if A is an aggregation function.
Proof. Analogous to the proof of Theorem 4.1. h
Remark 6.1. Observe that Eq. (55) is more general than Eq. (30), even in the particular case when a; b½ � ¼ c; d½ �, since w does
not need to be the inverse of /.
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Example 6.3. Consider the geometric mean GM : 0;1½ �n ! 0;1½ �, given by Eq. (6), an increasing and bijective function
/ : a; b½ � ! 0;1½ �, defined, for all x 2 a; b½ �, by
/ xð Þ ¼ x� a
b� a

� �p

; p > 0;
and an increasing and bijective function w : 0;1½ � ! c; d½ �, defined, for all y 2 0;1½ �, by
w yð Þ ¼ y
1
q � d� cð Þ þ c; q > 0:
Then, the a; b; c; dð Þ-fusion function GMc;d
a;b : a; b½ �n ! c; d½ �, given, for all x1; . . . ; xn 2 a; b½ �, by
GMc;d
a;b x1; . . . ; xnð Þ ¼ w GM / x1ð Þ; . . . ;/ xnð Þð Þð Þ; ð56Þ
is an a; b; c; dð Þ-aggregation function. By taking p ¼ q ¼ 1, we can rewrite Eq. (56) as follows:
GMc;d
a;b x1; . . . ; xnð Þ ¼ GM

x1 � a
b� a

; . . . ;
xn � a
b� a

� �
� d� cð Þ þ c: ð57Þ
In the following, we present a construction method for a; b; c; dð Þ-aggregation function based on a core a; bð Þ-aggregation
function.
Theorem 6.2. Consider an a; bð Þ-fusion function Aa;b : a; b½ �n ! a; b½ �, an increasing and bijective function h : a; b½ � ! c; d½ � and an

a; b; c; dð Þ-fusion function Ac;d
a;b : a; b½ �n ! c; d½ � given, for all x1; . . . ; xn 2 a; b½ �, by
Ac;d
a;b x1; . . . ; xnð Þ ¼ h Aa;b x1; . . . ; xnð Þ

� �
: ð58Þ
Then, Ac;d
a;b is an a; b; c; dð Þ-aggregation function if and only if Aa;b is an a; bð Þ-aggregation function.
Proof. Analogous to the proof of Theorem 4.1. h
Example 6.4. Consider the aggregation function GM : 0;1½ �n ! 0;1½ �, given by Eq. (6), the a; bð Þ-aggregation function

GMa;b : a; b½ �n ! a; b½ �, given by Eq. (33), and increasing and bijective function h : a; b½ � ! c; d½ �, defined, for all x 2 a; b½ �, by
h xð Þ ¼ x� a
b� a

� �
� d� cð Þ þ c: ð59Þ
Then, the a; b; c; dð Þ-fusion function GMc;d
a;b : a; b½ �n ! c; d½ �, given, for all x1; . . . ; xn 2 a; b½ �, by
GMc;d
a;b x1; . . . ; xnð Þ ¼ h GMa;b x1; . . . ; xnð Þ

� �
; ð60Þ
is an a; b; c; dð Þ-aggregation function. From Eqs. (33), (59) and (60), one has that:
GMc;d
a;b x1; . . . ; xnð Þ ¼ GM

x1 � a
b� a

; . . . ;
xn � a
b� a

� �
� d� cð Þ þ c: ð61Þ
One can observe that Eqs. (57) and (61) coincide. This fact is derived from the following theorem.
Theorem 6.3. Let ARc;d
a;b : a; b½ �n ! c; d½ � be an a; b; c; dð Þ-aggregation function constructed via Theorem 6.1 using increasing and

bijective functions / : a; b½ � ! 0;1½ � and w : 0;1½ � ! c; d½ �, and a core aggregation function A : 0;1½ �n ! 0;1½ �. Let

ASc;da;b : a; b½ �n ! c; d½ � be an a; b; c; dð Þ-aggregation function constructed via Theorem 6.2 using an increasing and bijective function

h : a; b½ � ! c; d½ � and the core a; bð Þ-aggregation function Aa;b : a; b½ �n ! a; b½ �, which, in turn, is constructed via Theorem 4.1 using /

and the core aggregation function A. Thus, if w ¼ h � /�1 then ARc;d
a;b ¼ ASc;da;b.
Proof. For all ~x 2 a; b½ �n, one has that:
w ¼ h � /�1

)w A / x1ð Þ; . . . ;/ xnð Þð Þð Þ ¼ h � /�1� �
A / x1ð Þ; . . . ;/ xnð Þð Þð Þ

)w A / x1ð Þ; . . . ;/ xnð Þð Þð Þ ¼ h /�1 A / x1ð Þ; . . . ;/ xnð Þð Þð Þ� �
)w A / x1ð Þ; . . . ;/ xnð Þð Þð Þ ¼ h Aa;b x1; . . . ; xnð Þ

� �
; by Eq: 30ð Þ

)ARc;d
a;b ¼ ASc;da;b; by Eqs: 55ð Þ and 58ð Þ:
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h

Theorem 6.3 shows that the diagram presented in Fig. 2 commutes, whenever w ¼ h � /�1.
7. An illustrative example

In this section, we show an illustrative example where a; bð Þ-fusion functions, which are constructed by the introduced
construction methods and whose classes are defined through our presented framework, are applied as the pooling operator
of a CNN to deal with an image classification problem.

First, we recall the main aspects of CNNs and point out how a; bð Þ-fusion functions (particularly, a; bð Þ-aggregation func-
tions) are incorporated on their architecture.
7.1. Convolutional neural networks

CNNs have established themselves as the state-of-the-art technique for computer vision related tasks during the previous
decade, since the breakthrough of Krizhevsky et al. [29]. Equipped with a sequential structure that extracts progressively
more fine-grained features, as well as with a strong an efficient optimization algorithm, CNNs have achieved impressive
results in image classification [23] and segmentation [3], among others tasks. In the context of image classification, CNNs
are usually comprised of a feature extraction block, followed by a classifier (usually a Multilayer Perceptron).

The steps performed by a CNN are logically divided in sequential layers. The feature extraction process is taking care of in
convolution layers. Each of these layers receives, either an input image or a ‘‘feature matrix” generated by a previous con-
volution layer, and computes the response of each local region of the input to a series of convolution ‘‘filters”. The values of
these filters represent possible visual features that may, or may not, be present in the input. They are randomly initialized
and iteratively optimized in a supervised way using the gradient descent algorithm [42]. The convolution of each of these
filters generates a ‘‘feature image” which represents the presence or absence of the represented feature in all parts of the
input. All the feature images are concatenated with each other, generating a multidimensional feature matrix that is out-
putted to the following layer. Additionally, a non-linear function (or activation function) is applied to all the values of the
feature matrix, similarly to other neural network architectures.

The number of filters in a convolution layer can be high, which would mean an increase in the dimensionality of the out-
put feature matrix with respect to its input. This, in turn, would make the task of the network’s classifier difficult, contra-
dicting the objective of the feature extractor. In order to solve this problem, pooling layers are applied after convolution
layers.
7.1.1. Pooling functions
Pooling layers reduce the dimensionality of a feature image via traditional image downsampling. That is, the feature

image is separated in disjoint k� kwindows (or submatrices) channelwise, and their values are aggregated using some func-
tion f : Rn ! R, where n ¼ k � k is the number of values in each window to be aggregated.

Although some alternatives have been proposed [11], current implementations of CNNs usually employ the arithmetic
mean or the maximum to aggregate these values. Other aggregation functions would be a direct alternative for these func-
tions, but the fact that the data to be aggregated is real valued poses a challenge. However, if we take into account that, in
practice these values are typically bound to an interval a; b½ � 2 R, we can see how a; bð Þ-aggregation functions are a perfect
candidate to substitute these classic pooling functions, with the intent to analyze their effect on the classification acuity of
the system.

Thus, in this example, we apply a; bð Þ-t-norms (Definition 3.7), a; bð Þ-t-conorms (Definition 3.8) and a; bð Þ-uninorms (Def-
inition 3.9) as the aggregation operator. Since all of these functions are associative, we can directly apply them to the mul-
tidimensional setup and aggregate the n values of each feature image window.

It is noteworthy that the classes of a; bð Þ-t-norms, a; bð Þ-t-conorms and a; bð Þ-uninorms were defined through the pre-
sented framework to preserve the constitutive properties of t-norms, t-conorms and unimors, respectively. Each of those
classes of functions has a different nature in fuzzy logic, with t-norms acting in a conjunctive manner, t-conorms in a dis-
junctive one and uninorms combining both behaviours. An additional objective we pursue with this experiment is finding
out if either of these behaviours is beneficial for the pooling process of a CNN.
Fig. 2. Commutative diagram of the construction methods of an n-dimensional a; b; c; dð Þ-aggregation function based on a core aggregation function A.

825



Tiago da Cruz Asmus, Graçaliz Pereira Dimuro, Benjamín Bedregal et al. Information Sciences 610 (2022) 800–829
7.2. Experimental setup

� CNN architectures: In order to exemplify the suitability of a; bð Þ-aggregation functions to CNNs, we have performed
experiments replacing the pooling functions used by two different CNN architectures. The first one is the LeNet-5 archi-
tecture presented in [31], which represents the standard CNN model. LeNet-5 uses two convolutional layers followed by
their respective average pooling layers, as well as a two layer perceptron classifier. We have additionally added batch nor-
malization layers [25] after each pooling layer in order to soften the loss landscape and ease the learning process [44].
The second model is a ‘‘deeper” model presented in [32], which replaces convolution filters by multilayer perceptrons and
the final classifier by a Global Average Pooling layer [34]. In order to mitigate the ‘‘vanishing gradient” problem that deep
neural networks tend to face, hidden layer supervision [33] is used, which appends different classifiers at different levels
of the model and combines the loss associated with the different predictions.
We have set the ReLU activation function f xð Þ ¼ max 0; xð Þ as non-linearity for both models.

� Dataset: For our experimentation we have considered the CIFAR10 dataset [28], a fully balanced dataset composed of
60000 small 32� 32 pixel color images. Images are divided into 10 classes corresponding to objects and animals of
the real world, such as planes and birds. The dataset is divided into a 50000 image train partition, and a 10000 test one.

� Pooling functions: We have worked with different examples of a; bð Þ-aggregation functions of different nature. In par-
ticular, we have considered a; bð Þ-t-norms, a; bð Þ-t-conorms and a; bð Þ-uninorms, each one obtained by the construction
methods presented in Theorems 4.4, 4.5 and 4.6, respectively. In every constructed function, we considered the basic
bijection /A, given by Eq. (31). We set a and b to the minimum and maximum value of the input feature matrix, respec-
tively. All the tested functions are presented in Table 1. In the ‘‘Core Function” column of this Table, we present the
expression of each core aggregation function applied in the construction methods to obtain each correspondent a; bð Þ-
aggregation function.
We compare our results with the ones obtained using average and maximum pooling, since they are the most common
pooling functions used in the literature.

7.3. Results

The testing results offered for each of the different trained models are presented in Table 2. We report the mean and stan-
dard deviation accuracy obtained after training 5 equivalent models with different random initializations.

Firstly, it becomes apparent that a; bð Þ-t-norms are poor candidates for pooling functions. We believe that their conjunc-
tive nature, which results in smaller outputs, results counterproductive for preserving the higher activations obtained by
convolution filters. Additionally, some functions result in classifiers with a 10% accuracy rate, which is equivalent for this
dataset to a random classifier.

On the other hand, a; bð Þ-t-conorms achieve the best general results, with several of them clearly outperforming both
average and maximum pooling (which is also an example of a; bð Þ-t-conorm). This leads us to believe that the disjunctive
behaviour of these functions can be beneficial for CNNs. In particular, we point out that the best performing function on both

architectures, Sa;bp , was constructed with the probabilistic sum Sp as its core function, showing that our constructive frame-
work can produce competitive functions for non-fuzzy applications based on well established functions that are used in
fuzzy modeling.
Table 1
a; bð Þ-aggregation functions considered for substituting the pooling operation.

Name Core Function

a; bð Þ-t-norms Ta;b
p

Tp x; yð Þ ¼ x � y
Ta;b
L

TL x; yð Þ ¼ max xþ y� b;0f g
Ta;b
H TH x; yð Þ ¼ 0 if x ¼ y ¼ 0

xy
xþy�xy otherwise




a; bð Þ-t-conorms Sa;bp
Sp x; yð Þ ¼ xþ y� xy

Sa;bL
SL x; yð Þ ¼ min xþ y;1f g

Sa;bH SH x; yð Þ ¼ 1 if xy ¼ 1
2xy�x�y
xy�1 otherwise




a; bð Þ-uninorms Ua;b
min;max Umin;max ¼ min x; yð Þ if x; yð Þ 2 0;0:5½ �2

max x; yð Þ otherwise



Ua;b

Tp ;Sp
UTp ;Sp ¼

2xy if x; yð Þ 2 0;0:5½ �2
2xþ 2y� 1� 2xy if x; yð Þ 2 0:5;1½ �2

max x; yð Þ otherwise

8<
:

Ua;b
L;L

UL;L ¼
max xþ y� 1

2 ;0
� �

if x; yð Þ 2 0;0:5½ �2
min xþ y� 1

2 ;1
� �

if x; yð Þ 2 0:5;1½ �2
max x; yð Þ otherwise

8<
:
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Table 2
Results obtained over two different architectures when using the different
functions as pooling function.

Function Architecture 1 Architecture 2

Avg 75:29	 0:56 86:24	 0:31
Max 74:15	 0:11 86:31	 0:41

a; bð Þ-t-norms Ta;b
p

53:05	 0:53 10:00	 0:00

Ta;b
L

13:25	 4:29 10:00	 0:00

Ta;b
H

65:33	 0:39 80:07	 1:32

a; bð Þ-t-conorms Sa;bp
75:36	 0:24 87:92	 0:29

Sa;bL
74:92	 0:41 87:71	 0:31

Sa;bH
74:94	 0:31 87:86	 0:32

a; bð Þ-uninorms Ua;b
min;max

64:18	 0:27 85:86	 0:20

Ua;b
Tp ;Sp

50:25	 17:28 20:90	 9:08

Ua;b
L;L

24:95	 15:72 23:56	 3:29
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Finally, a; bð Þ-uninorms show a mixed but overall poor results, indicating that a pure disjunctive behaviour is preferable
when working with this family of models.
8. Conclusion

In this paper, we sought to provide a theoretical tool set to support the definition of new classes of fusion operators that
can aggregate data from any real closed interval, based on analogous known classes of such operators that are defined,
specifically, on the unit interval. There are many practical applications that can benefit from the developed concepts, in par-
ticular with the assurance that the advantageous properties of known aggregation functions can be preserved (shifted) when
applying the newly developed functions, even on problems that do not necessarily involve fuzzy modeling, such as image
classification via CNNs.

Here, we review our main theoretical contributions:

� The introduction of the concept property shifting, which is a novel denomination for the action of properly transposing
properties from one domain to another without sacrificing their fundamental characteristics;

� The development of a general framework for defining a; bð Þ-fusion functions, possibly in intervals other than 0;1½ �, by
shifting the defining properties of known fusion functions;

� The introduction of construction methods for different subclasses of a; bð Þ-fusion functions, based on choices of a core
fusion function and an increasing bijective function, which makes them highly adaptable and prone to be applied in
different practical problems;

� The study of both known and newly defined properties of aggregation functions, along with their shifted counterparts
in a; b½ �, and how they are related when we construct a; bð Þ-aggregation functions via our construction methods;

� The development of a general framework for defining a; b; c; dð Þ-fusion functions, which is designed in an analogous
manner as the one for a; bð Þ-fusion functions;

� The introduction of construction methods for a; b; c; dð Þ-aggregation functions, highlighting the different ways one can
obtain a given a; b; c; dð Þ-aggregation function.

To showcase the applicability of the developed theoretical concepts, we presented an illustrative example in which a; bð Þ-
aggregation functions ( a; bð Þ-t-norms, a; bð Þ-t-conorms and a; bð Þ-uninorms) carried out the pooling process of a CNN applied
in an image processing problem. We observed that a; bð Þ-t-conorms produced the best results, even surpassing the classic
pooling operators, which motivate us to further develop this type of neural network with other types of a; bð Þ-fusion func-
tions with similar behaviour. Moreover, the experiment showed that there is promise in applying known fuzzy operators
(such as the probabilistic sum) as the core functions of constructed a; bð Þ-fusion functions in practical problems that do
not necessarily involve fuzzy modeling.

Future works, regarding the theoretical standpoint, may include a deeper study of particular classes of a; bð Þ-fusion func-
tions, defined through our framework, with special interest in cases in which the shifting of properties may not be trivial.
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