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A B S T R A C T

Emissions trading within the Emissions Trading Scheme of the European Union (EU ETS) strongly influences
European industrial companies. The companies must choose their strategy of reduction the costs of emissions
allowances as possible. The changing system’s conditions and volatile prices of allowances make this decision
challenging. The main aim of this study is to compare different ways of risk management: banking (i.e., buying
the allowances in forward) and using derivatives: futures and options. Despite several studies devoted to the
relationship between the EU ETS and companies have already been published, there is still a gap in this
field. Namely, the published studies have been substantially simplified so far by ignoring the risk of driving
parameters. We construct a realistic large-scale stochastic optimization model, which avoids the mentioned
simplifications. We use the Markov Stochastic Dual Dynamic Programming algorithm (MSDDP) to find the
optimal solution. We apply the model to the data of a real-life industrial company. We find that banking is
the most costly way of risk reduction, while using derivatives is efficient in risk reduction. Surprisingly, out
of the derivatives, it is always optimal to use futures and not to use options. These results are confirmed by
a thorough sensitivity analysis. The preference of the futures over options is mainly due to the less price of
futures in comparison to options reducing risk equivalently.
1. Introduction

Emissions trading within the European Emissions Trading System
(EU ETS) is the main tool of the EU environmental policy since 2005.
Rules and settings of the EU ETS are given by several EU direc-
tives (Council of European Union, 2003, 2004, 2013, 2018). This
system obliges companies to use emission allowances (EUAs) to cover
their CO2 emissions, thus it is a source of additional financial risk
and costs related with trading the allowances. Many studies have
been already devoted to analysis of the EU ETS’ impact on companies
with the same results — this effect cannot be omitted and should be
involved in strategic planning (Šmíd et al., 2017; Zapletal et al., 2019;
Zhang & Xu, 2013). However, in our opinion, there results can only be
considered a first step towards a more profound understanding of the
companies’ optimal behaviour in terms of emissions trading.

Based on our thorough literature review, we identified four features
which in our opinion a realistic model optimizing companies’ decisions
on emissions trading should include:

(a) multi-period setting allowing for use of banking (transferring the
allowances to following time periods);

(b) uncertain demand for products (the demand is a crucial factor
for production, and thus for amount of emissions too);
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(c) uncertain EUA price (since the EU ETS is a cap-and-trade system,
the allowance price is essential);

(d) involving all available derivatives for allowances (futures and
options).

None of the models published so far concerned with all these
features together, see Table 1.

Table 1 provides a review of the available models, and the fea-
tures missing in modelling therein, according to the list above. The
simplifications can stem from two main reasons. First, the authors
established their model under the conditions valid at the time of
origin of their work, namely the rules of the EU ETS, and the state
of economy. For instance, financial derivatives could not be used by
companies in the beginning of the EU ETS, banking of allowances was
not allowed between the first (2005–2008) and the second (2009–
2012) trading phase (Zapletal & Moravcová, 2013). Moreover, during
the deep economic crisis, due to very low levels of demand and EUA
price and over-allocation of the system, the emissions trading was
rather profitable than generating additional losses. The second reason
for simplification could be that the authors may have been aware of all
the mentioned factors, but they decided for simplification just to keep
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Table 1
The review on published optimization models devoted to company’s
behaviour regarding the emissions trading.
Authors Omitted factors

Lemathe and Balakrishnan (2005) a, b, c, d
Rong and Landhelma (2007) d
Sirikitputtisak et al. (2009) b, c, d
Mirzaesmaeeli et al. (2010) b, c, d
Gong and Zhou (2013) d
Tang and Song (2013) c, d
Zhang and Xu (2013) a, c, d
Zapletal and Šmíd (2016) a, d
Šmíd et al. (2017) a
Zapletal et al. (2019) d (options)

the size of the models small enough to be still solvable, like in the case
of Zapletal et al. (2019).

The goal of this paper is to explore the optimal risk management
of emissions trading. Unlike Zapletal et al. (2019), we involve the
possibility to use the options on EUAs into the model, we also capture
the stochastic parameters in a more precise way (namely, without
former discretization into scenarios), and, finally, we use the more
suitable risk measure, namely nested CVaR instead of multi-period
CVaR. As shown by Kozmík (2013), the nested model provides more
stable (and more risk-averse) solutions. In particular, we establish a
complex stochastic optimization model involving the factors (a)–(d).

The established model is too complex to be solved using the stan-
dard algorithms of stochastic programming. Therefore, we apply the
Stochastic Dual Dynamic algorithm (SDDP), which is known to
solve large stochastic programming models efficiently (Pereira & Pinto,
1991). To be precise, we use its modification relaxing the restricting as-
sumption of stage-wise independence, allowing the random parameters
to follow a hidden Markov models (Löhndorf & Shapiro, 2019; Philpott
et al., 2013).

The proposed model is applied to a real-world Czech steel company,
for which we explore the impact of the factors (a)–(d) on the costs of
emissions trading and the associated financial risk. Furthermore, we
construct the optimal portfolio of emission allowances and we evaluate
the impact of the emissions trading on production of the modelled
company. This analysis is supported by a sensitivity analysis performed
for the selected parameters.

The rest of this paper is organized as follows. After this introductive
section, we provide a description of the problem together with the
problem definition (Section 2). Section 3 contains a description of the
input data. Furthermore, we continue with the preliminary analysis
(Section 4), in which we illustrate the optimal risk management on a
simplified single-stage example. Section 5 discusses the solution of the
multi-stage problem. Section 6 is a core part of this paper providing the
results of modelling and their discussion. The last section (Section 7)
provides a thorough sensitivity analysis of the results.

2. Description of the problem

A company decides on ways of covering their emissions 𝑌1,… , 𝑌𝑇
stemming from their exogenously given production, at times 1,… , 𝑇 , by
allowances. At each 𝑡 = 1,… , 𝑇 , 𝑟𝑡 allowances are given (grandfathered)
to the company for free. Further, allowances may be bought (sold) at
a secondary market at any time 𝑡 = 0,… , 𝑇 . The allowances may be
saved (banked) for future periods.

In addition to the allowances themselves (spots), at each 𝑡 =
0,… , 𝑇 − 1, futures with maturities 𝑡 + 1, 𝑡 + 2,… 𝑇 may be bought.
Moreover, at each 𝑡 = 0,… , 𝑇 − 1, call and put options with maturities
𝑡 + 1, 𝑡 + 2,… , 𝑇 , and strike prices 𝐾1,… , 𝐾𝜅 , 𝐿1,… , 𝐿𝜅 , respectively,
may be bought. In principle, the holder of an option is not obliged
to exercise it at the time of their maturity. However, as we neglect
2

transaction costs, exercising only some options is always no better 𝜌
than exercising all options and selling (or buying) the spots. Thus,
one can assume that all the options are exercised. The company can
trade the allowances and their derivatives freely. However, it cannot
take short positions and they cannot sell futures (we do not allow
selling the futures to avoid speculations which are prevented by margin
requirements in practice, but are neglected here).

The company is risk-averse, minimizing the discounted nested
mean-CVaR dynamic risk measure, applied to the difference of the
profits from the production and the costs of emissions trading.

2.1. Problem definition

As it was premised, the subject of decision is the emission trading.
In particular, the decision variables at 𝑡 include the amount 𝛥𝑠𝑡 of the
spot allowances purchased (or sold) at time 𝑡, the amounts

𝛥𝑓𝑡 = (𝛥𝑓 𝑡+1𝑡 ,… , 𝛥𝑓𝑇𝑡 )

of the futures with maturities 𝑡 + 1,… , 𝑇 purchased at time 𝑡, and the
amounts

𝛥𝜙𝑡 =
⎡

⎢

⎢

⎣

𝛥𝜙𝑡+1,1𝑡 … 𝛥𝜙𝑇 ,1𝑡
⋮ ⋮

𝛥𝜙𝑡+1,𝜅𝑡 … 𝛥𝜙𝑇 ,𝜅𝑡

⎤

⎥

⎥

⎦

, 𝛥𝜓𝑡 =
⎡

⎢

⎢

⎣

𝛥𝜓 𝑡+1,1𝑡 … 𝛥𝜓𝑇 ,1𝑡
⋮ ⋮

𝛥𝜓 𝑡+1,𝜅𝑡 … 𝛥𝜓𝑇 ,𝜅𝑡

⎤

⎥

⎥

⎦

,

of the traded call options and put options, respectively. In particular,
𝛥𝜙𝜏,𝑖𝑡 stands for the number of purchased call options with maturity 𝜏
and strike price 𝐾𝑖, and 𝛥𝜓𝜏,𝑖𝑡 denotes the number of sold put options
with maturity 𝜏 and strike price 𝐿𝑖, any 0 ≤ 𝑡 < 𝜏 ≤ 𝑇 , 1 ≤ 𝑖 ≤ 𝜅.

At 𝑡 = 0, the company may buy allowances on the spot market only:

𝑒0 = 𝑠0. (1)

At 0 < 𝑡 ≤ 𝑇 , the company uses free allowances 𝑟𝑡, spots 𝑠𝑡 bought
at 𝑡, allowances secured by the futures with maturity 𝑡 (𝑓 𝑡𝑡 ), call options
with maturity 𝑡 and strike price 𝐾𝑖 (𝜙𝑡,𝑖𝑡 ), and put options with maturity
𝑡 and strike price 𝐿𝑖 (𝜓 𝑡,𝑖𝑡 ) to cover (random) CO2 emissions at 𝑡 (𝑌𝑡):

𝑒𝑡 = 𝑒𝑡−1 + 𝑟𝑡 + 𝑠𝑡 + 𝑓 𝑡𝑡 +
𝜅
∑

𝑖=1
𝜙𝑡,𝑖𝑡 +

𝜅
∑

𝑖=1
𝜓 𝑡,𝑖𝑡 − 𝑌𝑡, 0 < 𝑡 ≤ 𝑇 . (2)

All allowances have to be used at 𝑇 :

𝑒𝑇 = 0. (3)

At 𝑡 = 0, the income of the company (𝑧0) is negative, consisting of
(minus) costs for spots and options purchases:

𝑧0 = −𝑃0𝛥𝑠0 −
𝑇
∑

𝜏=1

𝜅
∑

𝑖=1
𝐵𝜏,𝑖0 𝛥𝜙

𝜏,𝑖
0 −

𝑇
∑

𝜏=1

𝜅
∑

𝑖=1
𝐶𝜏,𝑖0 𝛥𝜓𝜏,𝑖0 , (4)

hereas at any 0 < 𝑡 ≤ 𝑇 , in addition, the income includes profit from
roduction (𝑋𝑡), costs of futures with maturity 𝑡, and costs of spots
ecured by the options:

𝑡 = 𝑋𝑡 − 𝑃𝑡𝛥𝑠𝑡 −
𝜅
∑

𝑖=1
min(𝑃𝑡, 𝐾𝑖)𝜙

𝑡,𝑖
𝑡−1 +

𝜅
∑

𝑖=1
max(𝑃𝑡, 𝐿𝑖)𝜓

𝑡,𝑖
𝑡−1−

−
𝑡−1
∑

𝜏=0
𝑄𝑡𝜏𝛥𝑓

𝑡
𝜏 −

𝑇
∑

𝜏=𝑡+1

𝜅
∑

𝑖=1
𝐵𝜏,𝑖𝑡 𝛥𝜙

𝜏−𝑡,𝑖
𝑡 −

𝑇
∑

𝜏=𝑡+1

𝜇
∑

𝑖=1
𝐶𝜏,𝑖𝑡 𝛥𝜓

𝜏−𝑡,𝑖
𝑡 .

(5)

ere, 𝑓𝑡 =
∑𝑡
𝜏=0 𝛥𝑓

𝑡
𝜏 , 𝜙𝑡 =

∑𝑡
𝜏=0 𝛥𝜙

𝑡
𝜏 and 𝜓𝑡 =

∑𝑡
𝜏=0 𝛥𝜓

𝑡
𝜏 . Furthermore,

𝑡 ∈ R+ is the profit from the production at time 𝑡, 𝑃𝑡 ∈ R+ is the spot
rice at time 𝑡, 𝑄𝜏𝑡 ∈ R+ is the price of the future with maturity 𝜏 at
ime 𝑡, and 𝐵𝜏,𝑖𝑡 ∈ R+ and 𝐵𝜏,𝑖𝑡 ∈ R+ are the premia paid at 𝑡 for the call
nd put option, respectively, with strike price 𝐾𝑖 and 𝐿𝑖, respectively,
nd with maturity 𝜏.

Finally, we assume a minimizing decision criterion (i.e., the objec-
ive function):

𝑇
(−𝑧0,… ,−𝑧𝑇 ) = 𝜇1(𝜇2(…𝜇𝑇 (−𝑧0 − 𝜚𝑧1 −⋯ − 𝜚 𝑧𝑇 )… )). (6)
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where 𝜚 is a discount factor, and

𝑡(𝑍) = (1 − 𝜆)E(𝑍|𝑡−1) + 𝜆CVaR𝛼(𝑍|𝑡−1), 0 ≤ 𝜆 ≤ 1 and 0 < 𝛼 < 1

(7)

is the mean-CVaR conditional risk measure, and 𝑡 is the information
available at 𝑡.

To summarize, the objective function (6)) is to be minimized subject
to the constraints (1)–(5), and (7).

To make orientation easier for readers, we offer a list of used
mathematical symbols in Appendix A (Table 7).

3. Data

In this section, we describe the input data for the stochastic param-
eters of the model, i.e., the amount of CO2 emissions 𝑌𝑡, the profit of
the company 𝑋𝑡, the price of EUA spot 𝑃𝑡, prices of the futures on EUA
spot 𝑄𝑡, and the option prices 𝐵𝑡. We consider 4 stages in the model
where the first one corresponds to the beginning of 2018 (𝑡 = 0) and the
last one (𝑇 ) represents the end of 2020 (𝑡 = 3). The data on emissions
trading were taken from the ICE market (theice.com), the rest of the
data were provided by managers of the modelled company.

For the spot prices 𝑃 and the future prices 𝑄, we adopt the model
from Zapletal et al. (2019). In particular, we assume the prices to
follow the Geometrically Brownian motion. The volatility 𝜎 is estimated
by Maximum Likelihood from the historical EUA prices, the mean
parameter is set such the price process is a martingale (to satisfy the
Efficient Market Hypothesis Cuthbertson & Nitzsche, 2005). As a result,
we have

𝑃𝑡 = 𝑃0 exp

{ 𝑡
∑

𝜏=1
𝑢𝜏

}

, 𝑢𝑡 ∼ 
(

−𝜎
2

2
, 𝜎2

)

, 1 ≤ 𝑡 ≤ 𝑇 ,

with 𝜎 = 0.439, where 𝑢1,… , 𝑢𝑇 are i.i.d. increments needed to express
he Geometrical Brownian motion, and
𝜏
𝑡 = 𝑃𝑡 exp{(𝜏 − 𝑡)(𝜇 + 𝑣𝜏𝑡 )}, 𝑣

𝜏
𝑡 ∼  (0, 𝜍2), 1 ≤ 𝑡 < 𝜏, 1 ≤ 𝜏 ≤ 𝑇 , (8)

with 𝜍 = 0.010 and 𝜇 = 0.00974. Here, 𝑄𝜏𝑡 denotes the price of the future
with maturity 𝜏 at time 𝑡 following, and 𝑣𝜏𝑡 are i.i.d., independent of
𝑢1,… , 𝑢𝑇 . This (Geometrically Brownian) model of spot price evolution
and the (cost-of-carry) model of future price evolution are adopted
from Zapletal et al. (2019) together with the estimates of 𝜍 and 𝜇.

The initial prices are equal to their historical values:

0 = 7.77, 𝑄1
0 = 7.81, 𝑄2

0 = 7.87, 𝑄3
0 = 7.97.

The option prices 𝐵𝜏,𝑖𝑡 (see the problem’s definition) are computed
by the Black–Scholes formula with the implied volatility (i.e., the
hypothetical volatility such that the actual option prices fulfil the
Black–Scholes formula). We determine the implied volatility from the
historical option prices and, to have this value for an arbitrary strike
price, we fit the volatility curve, i.e., the implied volatility as a function
of the intrinsic value (the difference between the strike price and the
market price). As a result of the estimation, we got the volatility smile,
i.e., a convex (quadratic in our case) function with the minimum near
to the strike price, see Fig. 1. For the notion of volatility smile, see Hull
(2019). The shape of the smile function has been estimated using 110
observations of actual option prices on the ICE market. As the risk-
free rate, 1.75% was taken, being equal to the repo rate in the Czech
Republic in 2018. Two strike prices were considered for each type of
options: 𝐾1 = 8, 𝐾2 = 10, 𝐿1 = 8, 𝐿2 = 6.

Our model of yearly profits 𝑋 (in thousands of EUR) and emissions
𝑌 (in metric tonnes) is as follows
[

𝑋𝑡
𝑌𝑡

]

=
[

37, 847.73
232, 561.57

]

+
[

0.6981 −0.1211
1.712 −0.2638

] [

𝑋𝑡−1
𝑌𝑡−1

]

+ 𝑒𝑡, 𝑒𝑡 =  (0, 𝑉 )
3

(9)
Fig. 1. Volatility smile function.

where 𝑒1, 𝑒2,… , 𝑒𝑇 are i.i.d. and 𝑉 is a variance matrix defined by
standard deviations 7968 and 25,499 and correlation 0.7368. As the
initial values, we took

𝑋0 = 33, 735, 𝑌0 = 246, 974.

See Appendix B for details on construction of the model.1
As for the information 𝑡, available at 𝑡, we assume that, at any 𝑡,

the company observes the history of 𝑃 ,𝑄,𝑋, 𝑌 up to 𝑡, and they are
partially informed about 𝑋 and 𝑌 one step ahead (𝜔 is a coefficient
representing the knowledge of randomness), namely that

𝑒𝑡 = 𝑓𝑡 + 𝑔𝑡, 𝑓𝑡 ∼  (0, 𝜔𝑉 ), 𝑔𝑡 ∼  (0, (1 −𝜔)𝑉 ), 𝑓𝑡 ⟂⟂ 𝑔𝑡, 1 ≤ 𝑡 ≤ 𝑇 ,

(10)

for some 0 ≤ 𝜔 ≤ 1, and

𝑡 = 𝜎((𝑃𝜏 , 𝑄𝜏 , 𝑋𝜏 , 𝑌𝜏 )𝜏≤𝑡, 𝑓𝑡+1).

Finally, according to Zapletal et al. (2019), the discount factor 𝜚 was
chosen to reflect the risk free rate, i.e., 𝜚 = 0.96.

4. Preliminary analysis

In this section, we illustrate the problem of the optimal emissions
covering on a simplified single-stage example.

Say that the amount of emissions 𝑌1 has to be covered at 𝑡 = 1.
At 𝑡 = 0, spots with price 𝑃0 and futures with price 𝑄0 can be bought.
Furthermore, call- and put options with strike prices 𝐾, 𝐿, respectively,
may be bought at time zero for prices (option premia) 𝑏, 𝑐, respectively.
Finally, the spots may be bought or sold for a random price 𝑃1 at time
one.

The distributions of 𝑃1 and 𝑌1 are discrete. The prices 𝑏, 𝑐, 𝑃0 and
𝑄0 are deterministic.

First, let us observe that buying a future at 𝑡 = 0 is equivalent to
buying the spot at 𝑡 = 0 because the result is always having a spot at
𝑡 = 1, either for 𝑄0, or for 𝜚−1𝑃0, where 𝜚 is the discount factor.2 Thus,
the cheaper option will always be used rather than the other one. Thus,
we can treat both cases simultaneously, say as buying a future.

1 We neglect the fixed costs as the income depends on these costs only up
o an additive constant. Thus, once these costs are deterministic, they do not
lter the optimal solutions.

2 Here we assume that the future price is paid at 𝑡 = 1. In practice, a part
of the future price has to be paid in forward in form of a margin; however,

we neglect this in this simplified setting.
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We do not study all combinations of the instruments in this simpli-
fied example. Rather, we discuss using futures, call options, and put
options, separately. In all these cases, the decision maker chooses the
amount of the selected derivative so that the risk is minimized. As a
risk measure, we use the supremum (worst case), which we denote by
𝜎. Although it is different from the mean-CVaR, which is used in the
model presented in Section 2, it is similar, as it also penalizes the worst
cases. Moreover, it coincides with CVaR for the discrete distributions
with the probability of the scenarios being no less than the CVaR level.

As to the first case, let us assume that 𝑥 futures are bought at 𝑡 = 0,
resulting in costs

𝐶𝑥 = 𝑥𝑄0 + (𝑌1 − 𝑥)𝑃1

with
𝜎(𝐶𝑥) = 𝑥𝑄0 + sup

𝑖
sup
𝑗

{

(𝑦𝑗 − 𝑥)𝑝𝑖
}

= 𝑥𝑄0 + sup
𝑖

{

(𝑦𝑛 − 𝑥)𝑝𝑖
}

=

{

𝑥𝑄0 + (𝑦𝑛 − 𝑥)𝑝𝑚 𝑥 ≤ 𝑦𝑛
𝑥𝑄0 + (𝑦𝑛 − 𝑥)𝑝1 𝑥 > 𝑦𝑛

.

If we, naturally, assume that 𝑝1 < 𝑄0 < 𝑝𝑚, then both the branches are
minimized at 𝑥 = 𝑦𝑛, giving

𝜎𝐶 = min
𝑥≥0

𝜎(𝐶𝑥) = 𝑄0𝑦𝑛 = 𝑄0 sup 𝑌1.

Further, assume that the strike price 𝐾 of the call option coincides
with some atom 𝑝𝑖. If 𝑥 call options are bought at 𝑡 = 0, then the costs
are

𝐷𝑥 = 𝑏𝑥 + (𝑌1 − 𝑥)𝑃1 + 𝑥min(𝑃1, 𝐾),

with

𝜎(𝐷𝑥) = 𝑏𝑥 + sup
𝑖
sup
𝑗

{

(𝑦𝑗 − 𝑥)𝑝𝑖 + 𝑥min(𝑝𝑖, 𝐾)
}

=

= 𝑏𝑥 + sup
𝑖

{

(𝑦𝑛 − 𝑥)𝑝𝑖 + 𝑥min(𝑝𝑖, 𝐾)
}

=

= 𝑏𝑥 +

(

sup
𝑝𝑖≤𝐾

𝑦𝑛𝑝𝑖 ∨ sup
𝑝𝑖≥𝐾

{

(𝑦𝑛 − 𝑥)𝑝𝑖 + 𝑥𝐾
}

)

= 𝑏𝑥 +
[

𝑦𝑛𝐾 ∨ 𝑑(𝑥)
]

,

𝑑(𝑥) =

{

(𝑦𝑛 − 𝑥)𝑝𝑚 + 𝑥𝐾 𝑥 ≤ 𝑦𝑛
𝑦𝑛𝐾 𝑥 > 𝑦𝑛,

i.e.,

𝜎(𝐷𝑥) =

⎧

⎪

⎨

⎪

⎩

𝑏𝑥 + [𝑦𝑛𝐾 ∨ (𝑦𝑛𝑝𝑚 + 𝑥(𝐾 − 𝑝𝑚))]
= (𝑏𝑥 + 𝑦𝑛𝐾) ∨ (𝑦𝑛𝑝𝑚 + 𝑥(𝑏 +𝐾 − 𝑝𝑚)) 𝑥 ≤ 𝑦𝑛
𝑏𝑥 + 𝑦𝑛𝐾 𝑥 > 𝑦𝑛.

If 𝑏 +𝐾 ≤ 𝑝𝑚 then the first branch is no less than

(𝑏𝑥+ 𝑦𝑛𝐾) ∨ [𝑦𝑛𝑝𝑚 + 𝑦𝑛(𝑏+𝐾 − 𝑝𝑚)] = (𝑏𝑥+ 𝑦𝑛𝐾) ∨ (𝑦𝑛(𝑏+𝐾)) = 𝑦𝑛(𝑏+𝐾)

where the bound is attained by 𝑥 = 𝑦𝑛. As the second branch is no less
than 𝑦𝑛(𝑏 +𝐾), we have that

𝜎𝐷 = min
𝑥
𝜎(𝐷𝑥) = (𝑏 +𝐾) sup 𝑌1.

If, on the other hand, 𝑏 + 𝐾 > 𝑝𝑚, then the first branch has a lower
bound 𝑦𝑛𝐾 ∨ 𝑦𝑛𝑝𝑚 = 𝑦𝑛𝑝𝑚, attained by 𝑥 = 0, while the second branch
is no less than 𝑦𝑛(𝑏 + 𝐾), i.e., 𝜎(𝐷𝑥) ≥ 𝑦𝑛𝑝𝑚, with the right-hand side
attained by 𝑥 = 0, giving 𝜎𝐷 = 𝑦𝑛𝑝𝑚. Together, this gives

𝜎𝐷 = 𝑦𝑛[𝑝𝑚 ∧ (𝐾 + 𝑏)]

with the optimal solution being 𝑦𝑛 if 𝑏 + 𝐾 ≤ 𝑝𝑚, and being zero
otherwise.

Finally, let us assume that 𝑥 put options are bought at 𝑡 = 0, leading
to the costs

𝐸𝑥 = 𝑐𝑥 + (𝑌1 + 𝑥)𝑃1 − 𝑥max(𝑃1, 𝐾).

We have

𝜎(𝐸𝑥) = 𝑐𝑥 + sup sup{(𝑦𝑗 + 𝑥)𝑝𝑖 − 𝑥max(𝑝𝑖, 𝐾)}
4

𝑖 𝑗
= 𝑐𝑥 + sup
𝑖
{(𝑦𝑛 + 𝑥)𝑝𝑖 − 𝑥max(𝑝𝑖, 𝐾)}

= 𝑐𝑥 +

(

sup
𝑝𝑖≤𝐾

{(𝑦𝑛 + 𝑥)𝑝𝑖 − 𝑥𝐾} ∨ sup
𝑝𝑖≥𝐾

{𝑦𝑛𝑝𝑖}

)

= 𝑐𝑥 +
(

[(𝑦𝑛 + 𝑥)𝑝𝑚 − 𝑥𝐾] ∨ 𝑦𝑛𝑝𝑚
)

=
(

[𝑐𝑥 + 𝑦𝑛𝑝𝑚 + (𝑝𝑚 −𝐾)𝑥] ∨ [𝑐𝑥 + 𝑦𝑛𝑝𝑚]
)

≥ 𝑦𝑛𝑝𝑚

where the bound is attained for 𝑥 = 0, i.e., put options will no way help
to reduce risk.

Clearly, buying all the spots at 𝑡 = 1 leads to the costs 𝐹 = 𝑌1𝑃1
with

𝜎(𝐹 ) = sup𝑃1 sup 𝑌1 = 𝑝𝑚𝑦𝑛.

Summarized, if we have to choose which instrument to use, we will
choose futures if

𝑄0 < 𝐾 + 𝑏, (11)

or call options otherwise. In both cases, the number of spots secured at
time zero will correspond to the worst possible need for the emissions.

Applied to the actual data we use further, our simple model suggests
that the futures will be used rather than options or banking the spots
because, for the call options with strike prices 8.0 and 10.0, we get
𝐾1+𝐵

1,1
0 = 8.0+2.22 = 10.22, 𝐾2+𝐵

1,2
0 = 10+1.41 = 11.41, respectively,

which is both much greater than 𝑄0 = 7.81 (the future price), which
itself is less than 𝜚−1𝑃0 = 1.042 × 7.77 = 8.09 (the estimated spot price).
The results for the other strike prices are similar.

Furthermore, if the initial future and spot prices are stochastic
according to (8) (which is what we assume in the further stages),
then the choice between a spot and future will depend mostly on the
discount factor 𝜌. As it was discussed above, the spot will be chosen
rather than the future (with one period maturity) if 𝑃0 < 𝜚𝑄1, which
happens if and only if 𝜈 > −ln𝜚− 0.00974 where 𝜈 is a standard normal
variable. Given the discount factor 𝜌 = 0.96 which we work with, the
probability of this event is about 10%, and it would be 83% if 𝜚 = 1, or
15% if 𝜚 = 0.98. Thus, according the simplified model, the futures will
be used much more often than (banking) the spots.

Clearly, within the general setting, the situation is more complex:
the mean-CVaR is used instead of the supremum, the random variables
are continuous, and, most importantly, the problem is dynamic with
the nested structure. Nevertheless, as it will be shown below, the results
given by the complex model are similar to this simplified example.

It should be also noted that, in financial theory, the prices of
futures (forwards, more exactly) and options are tied by put–call parity,
i.e., the equivalence of the forward and the portfolio containing the
long position of the call and the short position of the put, so the use
of forwards and options should be exchangeable. In the context of the
market we examine, however, this principle can hardly be applicable
because of the illiquidity of the options, sparsity of quoted strike prices
and difficulty to take short positions.

5. Solution

The general decision problem defined in Section 2, as well as
all its variants (see Section 6), were solved using the Markov SDDP
method, introduced by Philpott et al. (2013) and thoroughly discussed
by Löhndorf and Shapiro (2019). Unlike the traditional SDDP, which
requires stage-wise independence, this method allows for ‘‘switching
regime’’ stochastic model, in which the random parameters need not to
be stage-wise independent, but it suffices that the 𝑡th stage parameters
are conditionally independent of all the past parameters given 𝑚𝑡 where
𝑚 is a finite Markov Chain.

We give a brief description of the SDDP algorithm in order to
give sufficient context for presenting our results. SDDP applies to the
dynamic programming equations. During a typical iteration of the
SDDP algorithm, cuts have been accumulated at each stage. These
represent a piecewise linear outer approximation of the expected future
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cost functions, separately for each possible state. On a forward pass
we sample a number of linear paths through the tree. As we solve a
sequence of master programs along these forward paths, the cuts that
have been accumulated so far are used to form decisions at each stage.
Solutions found along a forward path in this way form a policy, which
does not anticipate the future. In fact, the solutions can be found at
a node on a sample path via the stage 𝑡 master program, even before
we sample the random parameters at stage 𝑡 + 1. The sample mean of
the costs incurred along all the forward sampled paths through the tree
forms an estimator of the expected cost of the current policy, which is
determined by the master programs.

In the backward pass of the algorithm, we add cuts to the collection
defining the current approximation of the expected future cost function
at each stage. We do this by solving subproblems at the descendant
nodes of each node in the linear paths from the forward pass, except in
the final stage, 𝑇 . The cuts collected at any node in stage 𝑡 apply to all
the nodes in that stage, and hence we maintain a single set of cuts for
ach stage, however, separately for each future state. This reduction is
ossible because of our markov property assumption.

The Markov SDDP (sometimes denoted ADDP), modifies the original
rocedure in a way that the dependent random parameter (𝑃 in our

case) is approximated by a sparse Markov chain and, at each stage, cut
collections are maintained for each possible values of the Markov chain.
See Löhndorf and Shapiro (2019) for further details on Markov SDDP.

As it is clear from Section 3, random parameters 𝑃 ,𝑋 and 𝑌 are time
dependent rather than conditionally independent, given some Markov
chain. As neither 𝑋𝑡 nor 𝑌𝑡 are multiplied by a decision variable in
the constraints of the problem, their time-dependence may be circum-
vented by regarding them as decision variables, constrained by (9),
the residuals 𝑒𝑡 becoming new random parameters. However, the same
procedure cannot be used for 𝑃 , as it is multiplied by other decision
ariables in the constraints. Instead, we directly approximate 𝑃 by a
inite Markov process 𝜋𝑡 with 15, 21 and 30 atoms (states) at stages 1,
, 3, respectively. As the 𝑒𝑡 are i.i.d. and as 𝑄∙

𝑡 – the remaining random
arameters – are functions of 𝜋𝑡 and an i.i.d. collection 𝑣∙𝑡 , the vector of
he new random parameters (i.e., 𝑒𝑡, 𝑄∙

𝑡 , 𝜋𝑡) is stage-wise conditionally
ndependent given 𝜋𝑡, hence eligible for Markov SDDP.

To get the solutions of the model, we use our own implementation of
arkov SDDP, written in C++, which calls CPlex optimizer for solving

he linear subproblems. The used programming codes are available in
he external repository (Šmíd, 2021). The algorithm copes with the
on-linearity of CVaR by computing its subgradient rather than by a
inearization of the whole problem. The solution of each problem took
everal hours in a regular PC with Intel Core i7 and 48 GB RAM.

. Results

In the present section, we report the solution results for various
ettings of the general decision problem. In doing so, we mainly focus
n actual (monetary) income rather than on the values of the decision
riterion – the nested Mean-CVaR risk measure – which is difficult to
nterpret. The actual profits, on the other hand, are easily understand-
ble for decision makers, e.g., managers. To obtain the actual profits,
e first solved the problem (with the nested Mean-CVaR criterion)
nd, based on the solution, we constructed an optimal policy. Next we
enerated 1000 scenarios of the random parameters, this time without
pproximation. Then we applied the optimal policy on each scenario,
nd evaluated the profit. As a result, we got a random sample of 1000
alues of the profit. Having a sample for each setting (variant) of the
odel, we could compare the results (samples) either by their mean

alues, but also by means of stochastic dominance (see below); this
ay of comparison is clearly more robust than the comparison only
y means, as its avoids ‘‘victories’’ of risky strategies over more robust
nes with only slightly less mean.

Three different settings of the model in terms of derivatives and
anking were discussed. The first setting (S1) corresponded to the situ-
5

tion when the company can use the derivatives (futures and options) d
Table 2
Explored settings and their properties.
Setting Derivatives allowed Banking allowed

S1 ✔ ✔

S2 ✗ ✔

S3 ✗ ✗

on emission allowances, and it can also transfer unused allowances
between time periods (i.e., banking is allowed). The second setting
(S2) does not allow for the derivatives, but it is possible to keep the
allowances for future periods (banking). The last setting (S3) allows
neither derivatives nor banking, i.e., all allowances held at a given
period must be used till the end of this period. In fact, S3 does not
provide any space for decisions on carbon management; therefore, it
represents the situation when no risk management is applied at all
(i.e., it is a trivial policy when the company buys the necessary amount
of spots for the given year at the end of this year). The settings are
summarized in Table 2.

For all the three settings S1–S3, the parameters of risk aversion and
awareness (see (10)) were set to moderate values 𝜆 = 0.55, 𝜔 = 0.5,
espectively.

First, we compared the mean profits given by the settings S1–S3.
onsidering the mean profit for S3 (no risk management) as the 100%
enchmark, settings S1 and S2 generated the profit of 102.6% and
9.9%, respectively, on average. Thus, S1 clearly outperformed both S2
nd S3 which means that the derivatives can bring savings when used
n emissions trading (note that most of the profit originates from selling
f the production which cannot be influenced by the decisions, while
he contribution of the emissions trading is small). Not surprisingly,
anking the allowances without futures (S2) brought the same profit
s the setting without any carbon management (S3) (0.1% percentage
oint in favour of the model without banking is within the standard
rror). The reason for this equality is that the prices are martingales
y construction, so the price of the spot at 𝑡 has the same (conditional)
ean as that at 𝑡 + 1.

As taking into account only mean values could be misleading be-
ause it neglects risk, we further compared the settings S1–S3 by means
f stochastic dominance, which is a much stronger tool for comparison
f random variables (a variable stochastically dominating another one
as a greater mean, but not vice versa). In particular, we used two
ost commonly used versions of this notion: the first-order- and the

econd-order stochastic dominance.
First, we compared the settings by means of the first-order stochastic

ominance (FSD). According to Post (2003), a discrete random variable
first-order stochastically dominates random variable 𝐵 if 𝐹𝐴(𝑥) ≤ 𝐹𝐵(𝑥)

or all 𝑥, where 𝐹𝐴, 𝐹𝐵 denote cumulative distribution functions 𝐴, 𝐵,
espectively (with strict inequality at least at one 𝑥). When comparing
wo random samples, which is our case, this means that the ordered
alues of the first sample are not less than those of the second sample
ith at least one strict equality. When only certain percentage 𝑝 of
bservation pairs is no less, we speak of 𝑝% almost first-order domi-
ance (Leshno & Levy, 2002). When applied to the profit samples given
ur three settings, it appeared that there is no strict FSD relationship
etween the settings, however, there is 97% almost dominance of S1
ver the other two settings. This superiority of S1 was also confirmed
y a different measure of an imprecise stochastic dominance – the ratio
etween the area where FSD is violated and the total area between
𝐴(𝑥) and 𝐹𝐵(𝑥) (Leshno & Levy, 2002) – which came out as 0.0301
for S2) and 0.0083 (for S3), respectively.

Next, we compared the settings by the less strict second-order
tochastic dominance. Mathematically said, a discrete random variable

second-order stochastically dominates (SSD) a random variable 𝐵 if
𝑥
−∞

(

𝐹𝐵(𝑡) − 𝐹𝐴(𝑡)
)

𝑑𝑡 for all 𝑥, with strict inequality at least at one 𝑥.
n words, this means the dominated variable involves more risk and

oes not have a higher mean (Post, 2003). When exploring if there is
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Fig. 2. Emissions management under the settings S1–S3.
a SSD between the settings, we got a positive answer: S1 second-order
stochastically dominates both S2 and S3.

To summarize, the setting S1 including both the types of derivatives
(futures and options) as well as banking is superior to the other two
settings. In other words the carbon management including derivatives
optimized using our model was clearly useful for the company.

As for the optimal mixture of the risk management tools, i.e., bank-
ing, futures, and options, the results showed that it is optimal to use
only two tools, see Fig. 2, showing the average amount of individual
tools in the portfolio. First, the company used futures on EUA and
bought them each year. Second, the purchased allowances were used in
the following years, so the company used banking of allowances. These
results are fully in line with Zapletal et al. (2019). The options on EUA
were not used at all, which confirmed the results of the preliminary
analysis provided in Section 4. Note that a part of grandfathered
allowances (approximately 20%) were sold in the second and third
year; the other way around, the company bought almost 34,000 spots
at the end of the last period as a possible corrective action caused by
uncertainty during the last year.

Figs. 3a, 3b, and 3c show the optimal emissions management by
scenarios. In couple of scenarios, the number of futures bought at the
beginning of the second year deviated from the rest of the scenarios
and was extremely high, see Fig. 3a. These deviations were balanced
by selling spots at the beginning of the following year, see Fig. 3b.
The total number of traded allowances had a slightly decreasing trend
in time, see Fig. 3c. The optimal emissions covering by scenarios for
settings S2 and S3 is depicted in Fig. 4. When the company could
not transfer the allowances between time periods, it had to increase
the number of bought spots year by year because the number of
grandfathered allowances decreases each year, see Fig. 4b.

7. Sensitivity analysis

In this section, we analyse the robustness of the model with respect
to several factors. This analysis should support the reliability of the
model and the obtained results and strengthen their applicability.
Namely, we focus on the three following issues. First, the model was run
again with various values of the input parameters 𝜆 and 𝜔, which were
originally set to the moderate values. Second, we examine whether op-
tions, which were found unfavourable under the actual market prices,
can become applicable when their price decreases. Third, we tested
how robust our results are with respect to the stochastic nature of the
SDDP algorithm, namely the sample generated from the distribution of
the random parameters.
6

Fig. 3. Optimal emissions management by scenarios under S1 (the number of
allowances traded in each stage).
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Fig. 4. Optimal emissions management by scenarios under S2 and S3 (the number of
allowances traded in each stage).

7.1. Variation of 𝜆 and 𝜔

In addition to their moderate values, we solved the problem also
for more extreme values of 𝜆 and 𝜔 parameters, namely, 0.1 and 1
for 𝜆, and 0 and 1 for 𝜔), and all 9 resulting combinations of these
parameters (together with the original moderate values). Table 3 shows
the (mean) optimal profit under all these nine combinations, again
under the settings S1–S3 (see their description in Table 2). For 8 out of
9 combinations of 𝜆 and 𝜔 parameters, the company generated higher
profit under S1 in comparison with S3 (the values out of the standard
error are written in bold). This means that it was optimal for the
company to use derivatives and banking for (almost) all considered
combinations of both parameters. Figs. 5–7 show optimal emissions
management under all these combinations of parameters. Generally,
the company used more futures with increasing risk-aversion 𝜆. On
the other hand, the more the company was informed about the future
development of the random parameters (i.e., with increasing 𝜔), the
less spots had to be purchased within the corrective decision at the
end of the last period. Figs. 5–7 also provide a comparison of the
purchased and grandfathered allowances (the grandfathered amounts
are denoted by the black, almost horizontal, lines). Unlike the results
of the analysis by Zapletal et al. (2019), the company often bought
futures for more than one period ahead, which is obviously a result of
the fact that we used the nested risk measure here. The multi-period
CVaR, used in Zapletal et al. (2019), aggregates risk in each stage
separately, and, therefore, produces policies which are less risk-averse
than policies produces by nested CVaR, which is used in this paper
(Kozmík, 2013).

We also tested the settings S1–S3 for stochastic dominance for all
9 considered combinations of 𝜆 and 𝜔 described above. The results of
the comparison of S1 with S3 differ from the baseline in some cases,
see Table 5. In particular, only for 7 out of 9 combinations of 𝜆 and 𝜔,
it could be said that S1 almost first-order dominates S3, while, given
𝜆 = 0.1, 𝜔 = 0.5 and 𝜆 = 0.1, 𝜔 = 1, the dominance is violated in
nearly half of the cases. This is also confirmed by the area criterion,
see the values in parentheses. The reason for this could be that the
risk-aversion level 0.1 is close to risk-neutrality, so the algorithm cares
more of the expectation than of the shape of the distribution. This,
7

Table 3
Optimal profit under different levels of 𝜆 and 𝜔 and settings S1–S3 (the
value of 100% corresponds with the optimum under 𝜆 = 0.55, 𝜔 = 0.5
under S3)
𝜔 (→) 0

𝜆 (↓) S1 S2 S3

0.1 102.08% 100.88% 99.67%
0.55 101.82% 99.97% 99.57%
1 100.97% 99.91% 100.05%

𝜔 (→) 0.5

𝜆 (↓) S1 S2 S3

0.1 100.4% 100.09% 100.46%
0.55 102.59% 99.86% 100%
1 100.97% 99.65% 99.93%

𝜔 (→) 1

𝜆 (↓) S1 S2 S3

0.1 100.91% 100.15% 100.49%
0.55 101.81% 99.65% 99.59%
1 101.72% 100.42% 99.96%

however, does not explain the good dominance for 𝜔 = 0. As for the
SSD relationship, the results are displayed in Table 5 showing that S1
second-order stochastically dominates S3 only in 3 cases.

7.2. Variation of option prices

As the results of the model showed, the options on EUA were never
bought by the company, which is in line with the preliminary analysis
provided in Section 4. A natural question is whether they become
applicable when their price decreases. To check this, we considered 3
cases with decreasing implied volatility of the spot, giving lower option
prices — the case with 75%, 50% and 25% of the original implied
volatility, respectively. Table 4 shows the option premia corresponding
to the changed implied volatility levels, together with the results of the
perturbed solutions.

For the case with 75% of the original volatility, the situation re-
mains identical with the baseline in the sense that no options are
still used. A change occurred only in two scenarios with the lowest
volatility (and prices) – the company started to use all considered
call options. However, maximal possible amounts of the options, many
times exceeding the amounts needed for covering the emissions, are
bought in order to sell the underlying spots later — this phenomenon
is called arbitrage, i.e., unlimited buying of instruments, leading to
unlimited profits (measured by the decision criterion). Namely, for
these option prices, the arbitrage occurred in all decision stages except
the first one (i.e., the one when the price of option is deterministic), and
in 1% to 62% of scenarios. If the implied volatility further dropped to
25% of the original value, then the arbitrage would occur in all decision
stages and more generated scenarios (from 63% to 99.9%), see Table 4
(the cases when the arbitrage occurs are written in bold). Summarized,
the options would never be used for risk hedging: their realistic prices
are so high that they are always outperformed by futures, and lower
prices are impossible, because they would lead to arbitrage (which
would push the prices back up).3 These results are in line with the
preliminary analysis provided in Section 4, and Šmíd et al. (2017).

3 In fact, the situation is slightly more complicated, as we are not speaking
about the textbook arbitrage when we get a strictly positive income for
zero costs, but about the statistical arbitrage when we get a strictly positive
value of the decision criterion for zero cost. Clearly, it may happen, that the
arbitrage exists given a special (unrealistic) case of a decision criterion, a good
example being the sole expectation, which neglects all the risks. If, however,
all the market participants had the same decision criterion, even the statistical
arbitrage opportunities could not persist as they would be quickly exploited,
which would move the prices to non-arbitrage levels.
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Fig. 5. Emissions management under 𝜆 = 0.1 and different values of knowledge of uncertainty 𝜔.
Fig. 6. Emissions management under 𝜆 = 0.55 and different values of knowledge of uncertainty 𝜔.
7.3. Robustness with respect to random solution

Finally, we tested to what extent our results depend on the stochas-
ticity of the SDDP algorithm, whose solution is dependent on sampling
from the distribution of the random parameters.4 To address this issue,

4 Here, we do not mean the samples used for the evaluation of the profits,
mentioned at the beginning of this section, but the large sample generated
8

we ran the model with the identical settings, i.e., S1 setting (according
Table 2) and 𝜆 = 0.55, 𝜔 = 0.5, 10 times and analysed the differences
between the solutions. The results are summarized in Table 6. It can be
seen that the differences between the optimal values and the total profit

from the distribution of the random parameters, from which subsamples are
repeatedly drawn during the solution.
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Fig. 7. Emissions management under 𝜆 = 1 and different values of knowledge of uncertainty 𝜔.
Table 4
Sensitivity analysis for options (Y = arbitrage occurs already at the first decision stage, N = arbitrage occurs later; percentage
values show in how many scenarios the arbitrage occurs); arbitrage is denoted in bold.
Call options [EUR] 𝜙1

1 𝜙2
1 𝜙1

2

1× volatility 2.023 (N) 1.409 (N) 2.868 (N, 0%)
0.75× volatility 1.519 (N) 0.895 (N) 2.192 (N, 0%)
0.5× volatility 1.004 (N) 0.412 (N) 1.486 (N, 19.7%)
0.25× volatility 0.482 (Y) 0.053 (Y) 0.76 (Y, 64.2%)

Call options [EUR] 𝜙2
2 𝜙1

3 𝜙2
3

1× volatility 2.3 (N, 0%) 3.483 (N, 0%, 0%) 2.963 (N, 0%, 0%)
0.75× volatility 1.577 (N, 0%) 2.697 (N, 0%, 0%) 2.109 (N, 0%, 0%)
0.5× volatility 0.849 (N, 43.8%) 1.859 (N, 14.5%, 40.6%) 1.218 (N, 1.1%, 61.7%)
0.25× volatility 0.197 (Y, 86.5%) 0.986 (Y, 63%, 64.9%) 0.359 (Y, 85.6%, 82.6%)

Put options [EUR] 𝜓1
1 𝜓2

1 𝜓1
2

1× volatility 2.114 (N) 1.075 (N) 2.823 (N, 0%)
0.75× volatility 1.61 (N) 0.667 (N) 2.147 (N, 0%)
0.5× volatility 1.095 (N) 0.29 (N) 1.441 (N, 12.1%)
0.25× volatility 0.573 (Y) 0.029 (Y) 0.715 (Y, 74.7%)

Put options [EUR] 𝜓2
2 𝜓1

3 𝜓2
3

1× volatility 1.695 (N, 0%) 3.303 (N, 0%, 0%) 2.125 (N, 0%, 0%)
0.75× volatility 1.125 (N, 0%) 2.518 (N, 0%, 0%) 1.455 (N, 0%, 0%)
0.5× volatility 0.561 (N, 11.1%) 1.68 (N, 20.4%, 43.8%) 0.768 (N, 26.8%, 56.1%)
0.25× volatility 0.097 (Y, 96.2%) 0.807 (Y, 77.4%, 77.3%) 0.16 (Y, 99.9%, 96.4%)
of the company ranged within the standard error having low variability
(variation coefficient −0.24% and 0.59%, respectively). However, the
total number of used futures varied significantly (variation coefficient
exceeds 20%). These results suggest that it is safe to use the SDDP algo-
rithm, or, in other words, its user need not care about its stochasticity,
because the profit achieved by the resulting policy, which is the most
important quantity for the decision maker, comes out nearly the same.
To explain the significant variation of the futures amounts, additional
analysis would be necessary. One of the explanations could be that
this phenomenon originates from situations, when the discounted spot
price is close to the future price so buying any of them is nearly
equivalent.
9

8. Conclusion

This paper investigated the impact of European emissions trading
on industrial companies. Namely, we focused on the suitable risk
management of emissions trading. Having learnt from existing stud-
ies, we constructed the most realistic model to date, taking both the
dynamics and the stochasticity into account and involving all available
derivatives on the emission allowances. Contrary to all existing models,
we worked with continuous distributions rather than with scenario
trees, so our model can realistically capture tale events, whose accurate
modelling is indispensable for good risk management. To capture the
risk aversion, we used a dynamic time-consistent risk measure — the
multiperiod nested mean-CVaR.
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)

E

Table 5
First-order stochastic dominance of the setting S1 over the setting S3: % of scenarios,
for which the FSD holds (ratio between the area where the FSD does not hold and the
total area between the CDFs); second-order stochastic dominance between the same
settings (Y/N)

FSD (𝜆 ↓, 𝜔→) 0 0.5 1

0.1 95% (0.0196) 53% (0.5225) 54% (0.3406)
0.55 95% (0.0076) 97% (0.0301) 98% (0.0040)
1 96% (0.0258) 98% (0.0101) 97% (0.0083)

SSD (𝜆 ↓, 𝜔→) 0 0.5 1

0.1 N N N
0.55 Y Y N
1 N N Y

Table 6
Robustness of the results for 10 runs of the model (100% corresponds to the values
obtained at the first run; OF = objective function (value); VC = coefficient of variation

1 2 3 4 5

Optimal OF 100% 99.4% 99.7% 98.8% 99.1%
Profit 100% 100.1% 100.1% 99.9% 99.6%
Futures used 357896 304321 371728 313704 299610

6 7 8 9 10 VC

Optimal OF 98.5% 98.4% 99.4% 98.4% 99.65% −0.24%
Profit 99.8% 99.8% 99.9% 99.3% 99.8% 0.59%
Futures used 172762 297561 276370 341957 403189 20.13%

The results showed that the company should use a combination of
UA futures and EUA spots to cover its CO2 emissions by allowances,

which confirms the conclusions made by Zapletal et al. (2019). On the
other hand, options were never used at all.

To assess the impact of several parameters of the emissions trading
system, we considered 3 different settings — the one where the banking
and derivatives for allowances can be used, the one where the banking
can be used, but without the derivatives, and the last one where
neither banking, nor derivatives are available. We showed that, in
terms of the average profit of the company, the EUA futures used
together with banking are the best option for the company’s emissions
management. This combination outperformed the other two settings
using the almost first-order stochastic dominance and second-order
stochastic dominance for most of the combinations of input parameters.
On the other hand, we showed that banking itself (used separately
without the derivatives) cannot significantly reduce the costs of emis-
sions trading, which contradicts the results by Šmíd et al. (2017). These
results were also supported by the sensitivity analysis which confirmed
a similar optimal policy for almost all combinations of risk-aversion
and awareness parameters. Furthermore, the analysis showed that the
unfavorability to use options persists even if their price decreases.

Our study provides a profound analysis of the usefulness of the
EUA futures for companies, which was missing so far. The results of
the empirical analysis using the data of a real-life company are even
supported by the illustrative simplified theoretical analysis showing
that the EUA options will never be used by companies unlike the EUA
futures.
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Table 7
List of used mathematical symbols (in the same order as they appear in the text)

Notation Description

𝑌𝑡 Amount of emissions produced by the company at time 𝑡
𝑇 Number of considered time periods
𝑟𝑡 Number of free allowances at time 𝑡
𝐾𝑖 Strike price of the call option
𝐿𝑖 Strike price of the put option
𝜅 Number of considered strike prices
𝑠𝑡 Number of spots at time 𝑡
𝑓 𝜏𝑡 Number of futures with maturity 𝜏 at time 𝑡
𝜙𝜏,𝑖𝑡 Number of call options with maturity 𝜏 and strike price 𝐾𝑖 at time 𝑡
𝜓𝜏,𝑖
𝑡 Number of put options with maturity 𝜏 and strike price 𝐿𝑖 at time 𝑡

𝑒𝑡 Remaining allowances after covering the emissions at time 𝑡
𝑧𝑡 Income of the company at time 𝑡
𝑃𝑡 Price of spot at time 𝑡
𝐵𝜏,𝑖𝑡 Price of the call option with maturity 𝜏 and strike price 𝐾𝑖 at time 𝑡
𝐶𝜏,𝑖
𝑡 Price of the put option with maturity 𝜏 and strike price 𝐿𝑖 at time 𝑡

𝑋𝑡 Profit of the company from production at time 𝑡
𝑄𝜏
𝑡 Price of the future with maturity 𝜏 at time 𝑡

𝜚 Discount factor
𝜆 Risk-aversion coefficient
𝛼 Level of CVaR
𝑡 Information available at time 𝑡
𝜎 Standard deviation
𝜔 Awareness — level of knowledge of randomness
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Appendix A. List of used mathematical symbols

See Table 7.

Appendix B. Model for production income and emissions

This Appendix describes the construction of our model for yearly
profits 𝑋 and yearly emissions 𝑌 . For the latter, historical monthly
emission amounts of the modelled company were available for years
2014–2016. As for the profits, however, only data from a single time
instant in 2014 were available, i.e., no information on dynamics of the
profits was at our disposal. Thus, to construct the model, we faced two
challenges: to model the dynamics of the profits and to transform the
monthly model into the yearly one.

We start with the profit, computed as a difference of the selling price
and the production costs.

According to an expert in steel industry, the variable costs consist
mainly of three inputs: costs of coal, scrap and iron ore. The expertise
showed that these three inputs represent approximately 75% of variable
costs of a steel company, and each of these three inputs is equally
important, i.e., represents 25% of the total variable costs. We assume
that the remaining 25% of costs do not change in time (this part is
assumed to be fixed). The resulting variable costs of the 𝑖th product
at time 𝑡 (𝑐𝑖,𝑡) can be approximated by the initial value and the input
prices as:

𝑐𝑖,𝑡 = 𝑐𝑖,0

(

0.25
𝐶𝑂𝑡
𝐶𝑂0

+ 0.25
𝐶𝑆𝑡
𝐶𝑆0

+ 0.25
𝐶𝐼𝑡
𝐶𝐼0

+ 0.25

)

, 𝑗 = 𝑂,𝑆, 𝐼, (12)

where 0 is the time of the last observation, 𝐶𝑗𝑡 stands for the monthly
observed unit price of the 𝑗th input at time 𝑡, and 𝑂,𝑆, 𝐼 stand for coal,
scrap and iron ore, respectively. The historical data on prices of the
inputs were taken from the (paid) Czech Steel Union’s database.

As for the selling prices, according to the mentioned expert, the
influence of European steel companies on the market prices is very
weak, i.e., they are rather price-takers. We thus construct the selling
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Fig. 8. Analysis of 𝑥 and 𝑦.
prices using the monthly values of the price indices of the three main
groups of steel products — semiproducts (E), flat products (F) and long
products (L); the prices of each product are then constructed from its
initial (known) value and the relative dynamics of the index of the
group the product belongs to. In particular, in our model, the selling
price of the 𝑖th product at the time 𝑡 (𝜋𝑖,𝑡) is

𝜋𝑖,𝑡 = 𝜋𝑖,0 ⋅
𝛱𝑗𝑖 ,𝑡

𝛱𝑗𝑖 ,0
, (13)

where 0 is the time of the last observation, 𝑗𝑖 ∈ {𝐸, 𝐹 ,𝐿} is the group
of the 𝑖th product, 𝛱𝑗,𝑡, stands for the selling price of the 𝑗th product
group on the (European) market (again, the historical data on the
selling prices were taken from the (paid) Czech Steel Union’s database).

The resulting monthly profit (contribution margin) for the 𝑖th prod-
uct at time 𝑡 is then given as:

𝑥𝑖,𝑡 = 𝜋𝑖,𝑡 − 𝑐𝑖,𝑡, 𝑖 = 1,… , 4. (14)

Further, denote 𝑦𝑡 as the monthly emissions of the company. Next
we construct the joint monthly model of 𝑥 and 𝑦 in relation to (monthly)
prices 𝑝𝑡 of the EUA spots.

As all the correlations of any of 𝑥𝑡, 𝑦𝑡 with any of 𝑝𝑡, 𝑝𝑡−1 and
correlations of any of 𝛥𝑥𝑡, 𝛥𝑦𝑡 with any of 𝛥𝑝𝑡, 𝛥𝑝𝑡−1 are insignificant,
we model 𝑥, 𝑦 alone, independently of 𝑝. The time series plots and 𝑥𝑦-
plots of processes 𝑥𝑡, 𝑦𝑡 and the processes of their first differences can
be seen in Fig. 8:

It can be clearly seen that the values of 𝑥𝑡 and 𝑦𝑡 ‘‘go along’’ as well
as their first differences, so it is worth to model their evolution jointly.
As the ADF tests rejected unit root hypothesis for both the series, we
chose VAR model with the single lag to fit their time evolution and
estimated it as

𝑧𝑡 = 𝐶 + 𝐴𝑧𝑡−1 + 𝜀𝑡, 𝑧𝑡 =
[

𝑥𝑡
𝑦𝑡

]

, 𝐶 =
[

2306.45
12852.2

]

,

𝐴 =
[

1.26237 −0.158943
]

(15)
11

2.24683 0
where stdev(𝜀11) = 809.6647, stdev(𝜀21) = 4882.004 and corr(𝜀11, 𝜀
2
1) = 0.907.

Finally, we derive the yearly model. Denote

𝑍𝑠 =
[

𝑋𝑠
𝑌𝑠

]

𝑋𝑠 =
12𝑠
∑

𝜏=12(𝑠−1)
𝑥𝜏 , 𝑌𝑠 =

12𝑠
∑

𝜏=12(𝑠−1)
𝑦𝜏

the process of yearly sums.

Lemma 1.

𝑍𝑠|𝑍𝑠−1,… , 𝑍1 = 
(

𝜇𝑠, 𝑉𝑠
)

where

𝜇𝑠 = 𝐷 + 𝐸E(𝑧12(𝑠−1)|𝑍𝑠−1,… , 𝑍1),

𝐷 =

( 11
∑

𝑘=0
(12 − 𝑘)𝐴𝑘

)

𝐶, 𝐸 =
12
∑

𝑘=1
𝐴𝑘,

𝑉𝑠 = 𝐸var(𝑧12(𝑠−1)|𝑍𝑠−1,… , 𝑍1)𝐸′ +𝑊 ,

𝑊 =
11
∑

𝑖=0
𝐹𝑖var(𝜀1)𝐹 ′

𝑖 , 𝐹𝑘 =
𝑘
∑

𝑖=0
𝐴𝑖.

Proof. For any 𝑡 > 1 and 𝑘 > 1, we have,

𝑧𝑡+1 = 𝐶 + 𝐴𝑧𝑡 + 𝜀𝑡+1

𝑧𝑡+2 = (𝐼 + 𝐴)𝐶 + 𝐴2𝑧𝑡 + 𝜀𝑡+2 + 𝐴𝜀𝑡+1

…

𝑧 = (𝐼 +⋯ + 𝐴𝑘−1)𝐶 + 𝐴𝑘𝑧 + 𝜀 +⋯ + 𝐴𝑘−1𝜀 .
𝑡+𝑘 𝑡 𝑡+𝑘 𝑡+1
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𝑍

B
b
t

R

C

C
C

C
C
G

H
K

L

L

L

M

P

P

P

R

S

T

Š

Š

Z

Z

Z

Z

Summing this, we get

𝑍𝑠 = 𝐷 + 𝐸𝑧12(𝑠−1) + 𝜂𝑠, 𝜂𝑠 =
11
∑

𝑘=0
𝐹𝑘𝜀12𝑠−𝑘

Clearly, (𝑍1,… , 𝑍𝑠) is regular Gaussian, so 𝑍𝑠|𝑍𝑠−1,… , 𝑍1 is Gaussian
with

E(𝑍𝑠|𝑍𝑠−1,… , 𝑍1) = E(𝐷 + 𝐸𝑧(𝑠−1)12 + 𝜂𝑠|𝑍𝑠−1,… , 𝑍1) =

= 𝐷 + 𝐸E(𝑧(𝑠−1)12|𝑍𝑠−1,… , 𝑍1),

var(𝑍𝑠|𝑍𝑠−1,… , 𝑍1) = var(𝐷 + 𝐸𝑧(𝑠−1)12 + 𝜂𝑠|𝑍𝑠−1,… , 𝑍1) =

= var(𝜂𝑠) + 𝐸var(𝑧(𝑠−1)12|𝑍𝑠−1,… , 𝑍1)𝐸′

(note that 𝜂𝑠 ⟂⟂ (𝑍1,… , 𝑍𝑠−1)). Finally, as 𝜀𝑡 are i.i.d, we get var(𝜂𝑠) =
∑11
𝑘=0 𝐹𝑘var(𝜀1)𝐹

′
𝑘.

In our case, the matrices come out as

𝐷 =
[

37, 847.23
232, 561.57

]

, 𝐸 =
[

8.37724 −1.45331
20.54408 −3.16534

]

,

𝑊 = 𝑤′
[

1 0.7369
0.7369 1

]

𝑤, 𝑤 =
[

7, 967.99
25, 499.00

]

.

The parameters of the yearly model may be computed by Lemma 1.
However, the computation of the conditional expectation and the
conditional variance of 𝑧12(𝑠−1) is complicated (yet possible — by
the formula for the conditional distribution of a Gaussian subvector).
Thus, as the influence of these term is not great, we approximate
E(𝑧12(𝑠−1)|𝑍𝑠−1,… , 𝑍1) ≐ E(𝑍𝑠−112 |𝑍𝑠−1,… , 𝑍1) = 𝑍𝑠−1

12 ,
var(𝑧12(𝑠−1)|𝑍𝑠−1,… , 𝑍1) ≐ var(𝑍𝑠−112 |𝑍𝑠−1,… , 𝑍1) = 0 to get

𝑠 = 𝐷 + 1
12
𝐸𝑍𝑠−1 + 𝑒𝑠, 𝑒𝑠 ∼  (0,𝑊 ).

y imposing, we get (9). As the initial values (corresponding to the
eginning of 2018), we take the linear forecast of 𝑍0 =

∑12
𝑘=1 𝑧𝑡+𝑘 in

he monthly model, where 𝑡 corresponds to the beginning of 2017.
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