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1Department of Econometrics, Institute of Information Theory and
Automation of the Czech Academy of Sciences

smid@utia.cas.cz

Abstract

We generally discuss modeling the present COVID pandemics. We argue that
useful models have to be simple in the first case, yet their uncertainty has to be
handled properly. In order to study circumstances of the upcoming wave of infec-
tion, we construct a simple stochastic model and present predictions it gives. We
conclude that the autumn wave is most likely unavoidable and suggest concentrating
to mitigation.

1 Introduction

Vast majority of epidemic models are derived from the seminal SIR model (Kermack
and McKendrick, 1927). These models are all both explainable (opposed to black boxes,
the mechanism of their predictions is understandable by humans) and interpretable (the
assumed causes produce expected effects, coherent with common sense as well as scientific
state of the art); as Rudin (2019) correctly points out, especially the latter property is
important whenever the model takes part in decisions on “high-stake” matters, which
a pandemic certainly is. Moreover, SIR-like models comply with the well known Hill’s
criteria of causation (Šmı́d and Kuběna, 2022; Hill, 1965). Despite this, their application
during the recent covid pandemics became subject of numerous controversies, mostly due
to untreated or wrongly interpreted uncertainty, wider sense co-linearity, model risk and
the models’ normativeness, resulting e.g. in the prevention paradox.

Apparently, uncertainty is the most severe limiting factor of epidemic models as well
as the most common source of misunderstanding. Uncertainty can be either about the
characteristics of the disease and their variations, about human behavior, about efficiency
of counter-epidemic measures, immunity waning, or the rate of reporting. Unfortunately,
these uncertainties multiply in time, which brings problems especially to forecasting in
the phase of the epidemic growth.
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Moreover, parameters of the models often fail to be (in the statistical sense) identified.
Unfortunately, often the parameters evaluating impacts of individual counter-epidemic
measures suffer from this problem, so it is virtually impossible to quantify the measures’
efficiency.

Further, there is a risk of omitted or a falsely considered factors in the models, called
model risk. The omitted factors could be e.g. seasonality or the onset of a new virus
variant. The false factor could, on the other hand, be an alleged effect of otherwise
ineffective measure. Due to the multiplicative nature of the models, this can totally
invalidate forecasts stemming from them.

Another problem is that epidemic models are potentially normative, meaning that
people can act to prevent the predicted effects, e.g. when, in fear of the forecast, they
impose measures and/or start behaving protectively, which consequently leads to damping
of the epidemics contrary to the prediction; this effect is called the prevention paradox.

Yet these shortcomings are severe, they need not prevent the quantitative models
from being used. If the uncertainty is correctly taken into account and the models are
wisely formulated, then the models can give reasonable forecasts with a reasonable un-
certainty. The co-linearity may be handled as well, yet for the price of not modeling all
the influences individually. The model risk can be, to certain extent, guarded by means
of suitable performance measure, which should, however, also evaluate the quantification
of forecasts’ uncertainty (see e.g. Bracher et al. (2021)). Finally, the normativeness of
the models should be clearly communicated and, instead of unavoidable forecasts, the
scenarios should be published, e.g. what would happen if no reaction takes place, what
happens if a lockdown is imposed, etc.

In this slightly non-traditional, little informal paper, we demonstrate the ideas men-
tioned above by constructing a simple model predicting the autumn 2022 wave of Covid
infection from the perspective of May 2022.

2 Simplicity First

After two years engagement in quantitative analysis of the COVID pandemic related
data, I understood that one of the greatest virtues of successful models is simplicity.
Together with Rudin (2019) I argue that added value of complex models in comparison
to simple ones is sometimes negligible, especially when the overall uncertainty is high.
Simple models, on the other hand, are sooner to be developed, easier to be maintained,
easier to be explained, less time-consuming to be dealt with both by its author and the
audience, and, most importantly, easier to be intuitively understood by the author, which
fact brings him necessary confidence when using, presenting and justifying it.

Of course, there is always a trade-off between complexity and explainability of the
model (Gilpin et al., 2018); however, benefits of simple models often prevail in my opin-
ion, yet the price for the simplicity is the fact that we often have to create them ad-hoc
for specific situations rather than trying to construct an universal reusable model. My
experience can serve as an example: during the first year of pandemic, we developed
a complex compartment stochastic SEIR model (Šmı́d et al., 2021). Yet it appears to
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perform well, adjusting it so that it could answer a specific question always took substan-
tial effort as well as time, both human and computational. Moreover, all the (possibly
unrelated) parameters had to be always estimated, bringing additional uncertainty, and
the evaluation and sensitivity analysis took so much time that it often could not be done.
The simple model I am going to present here, on the other hand, has been created out of
scratch within a single working day and is implemented using a OpenOffice spreadsheet1

which means that any computation or parameter change is nearly immediate.

3 When the Next Wave Comes?

The question the intended model is supposed to answer is what will be the autumn
COVID wave be like, and whether and how it could be influenced. As we cannot know
how the virus will mutate, we shall assume that the currently variant Omicron will keep
prevailing. For our analysis, we shall use a discretized and perturbed SIR model:

Xt = ρst−1ct−2It−1Xt−1 + Et, t ≥ 1

where Xt is the number of reported cases of the Omicron variant, ρ is an estimated con-
stant reflecting the infectiousness of the variant, It is the ratio of susceptible population,
st is the seasonal factor, ct is the risk contact reduction, and Et is the error term. Two
things are important here: the weekly time step and heteroskedasticity.

As for the former: Yet daily data are available, they show significant weekly season-
ality with unpredictably changing pattern, modeling of which is a perfect example of an
unnecessary complexity bringing unnecessary obstacles and little benefit (the estimate of
ρ could be more precise only in case that we can handle the seasonality precisely).

The heteroskedasticity reflects the fact that variance of the errors scales with the
cases numbers. In toy textbook models, the cases number would be Poisson, so the scale
would be proportional to

√
Xt; in practice, however, the distribution is over-dispersed

(Endo et al., 2020; Getz et al., 2006) so the error variance scales rather with Xt. As a
consequence, we can reformulate the model as

Dt = ρst−1ct−2It−1 + et, Dt =
Xt

Xt−1
, t ≥ 1,

with et being white noise.
The seasonality term we assume to be

st = 1 + κcos(ϕ+ ψt), t ≥ 1,

where ϕ and ψ are such that the maximum of s happens in the middle of January each
year. We set κ = 0.18, which is the value obtained by Šmı́d (2022), roughly equal to the
following from Gavenčiak et al. (2021).

The contact reduction is measured by the longitudinal study PAQ research (2021); the
fact that the epidemic growth depends on c two weeks earlier is discussed in Šmı́d and

1See https://github.com/cyberklezmer/epidata/blob/main/autumn22.ods.
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Kuběna (2022); Šmı́d (2022) as well as in Šmı́d et al. (2021); it should be said, however,
that, contrary to the previous years, only little or no contact reduction takes place this
year and is not likely to happen in the future, so we keep c in the model only to be able
to model potential crisis scenarios.

In line with Šmı́d (2022), we further assume that

It = VtJt, Vt = 1− Yt
p
, Jt = 1− Zt

p

where Yt and Zt are the numbers of individuals having the vaccine-induced immunity,
post-infection immunity, respectively, and p is the total population of the Czech Republic.
In determining Yt and Zt, we use quite precious estimates of vaccine effectiveness, post-
infection protection and their waning, obtained by our recent work Šmı́d et al. (2022).
As for vaccination, we take

Yt = Y f
t + Y b

t , Y f
t = (1− wf )Y

f
t−1 + efFt − γfBt, Y b

t = (1− wb)Y
b
t−1 + ebBt;

where Ft and Bt are numbers of newly fully vaccinated, having obtained the booster,
respectively, ef = 0.45 and eb = 0.61 are the initial effectiveness of full vaccination,
booster, respectively, wf = 0.056 and wb = 0.082 are the weekly rates of waning of the
vaccination effectiveness, booster effectiveness, respectively, and γf is the rate of Yt and
its hypothetical counterpart with ef = 1, wf = 0.

As for the post-infection immunity, we divide the infected into those, who were infected
once by the Omicron variant, those infected once by the other variants, and those who
were reinfected by the Omicron or the other variants:

Zt = Zo
t + Zδ

t + Zo+
t + Zδ+

t .

Here,
ZO+
t = ZO+

t−1 +O+
t , Zδ+

t = Zδ+
t−1 +∆+

t

where O+
t and ∆+

t are the numbers of new reinfections of those, who were previously
infected by the Omicron variant, other variants, respectively, and

Zo
t = (1− wo)Z

o
t−1 +Ot − γoO

+
t , Zδ

t = (1− wδ)Z
δ
t−1 +∆t − γδ∆

+
t ,

where Ot and ∆t are newly coming infections by the Omicron variant, other variants,
respectively, wo and wδ = 0.022 are waning coefficients, and γo and γδ are analogous
to γf . Note that we assume hundred percent initial post-infection immunity which does
not wane if the individual has been infected twice. It should be stressed that wo is still
unknown as there is still a short time from the Omicron’s emergence so relevant data is
still not available. Thus we later perform our analysis for its various values. As not all
infections are reported, we assume that

Ot =
Xt

α
,

where α is the ascertainment rate, i.e. the fraction of reported infections, and we compute
∆t, O

+
t and ∆+

t from their reported counterparts analogously. In line with Šmı́d (2022),
we put α = 0.4.
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4 Results

As inputs of our model, we used publicly available data ČR (2021) and an online vari-
ant proportion estimator.2 For the estimation, we used data from week 2/2022 when
the Omicron variant started to prevail, to week 16/2022 – two weeks before the model
construction.

The following regression graph with the observation labeled by week numbers shows
that the studied dependence may be regarded as linear; however, the onset of more
infectious variant BA2 is suggested. We neglect this fact first and use the overall estimate,
but we return to this issue later.

The estimated value of ρ is 4.22(0.25).
Before doing any forecast, we find important to realize that the future behavior of

the pandemic depends on many parameters, some of which we are uncertain about, and,
yet this additional uncertainty is often difficult to quantify, it has to be added up to
the inherent uncertainty, represented by et and the estimation error of ρ. Maybe more
important, however, is to realize that in systems depending on human behavior, which
pandemic certainly is, not only the behavior can change in a reaction to the system (e.g.
being careful when infection numbers are high), but it can change also in a reaction to
our forecast.

2https://covariants.org/
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The following graph shows a point forecasts of D and X given that (i) the contact
reduction keeps unchanged, being equal to ct = 0.9, (ii) the waning of the post-infection
immunity after Omicron infection is the same as that after Delta wo = wδ, and (iii) the
vaccination rate will not change, i.e. there will be 2000 final doses and 10000 boosters a
week:

The solid line shows predicted numbers of observed cases X, the dotted line depicts the
relative growths D together with a lower estimate of their standard forecast errors – we
do not include the part of the uncertainty caused by the fact that I depends on D’s,
which could, in principle, be evaluated, but this is beyond the scope of this short paper –
we only remark that, as the omitted errors would multiply, it is quite clear that the errors
explode after the confidence interval for I starts to contain unity. The situation is even
more serious for the predictions of X errors of which would start exploding immediately.
Thus, taking these as well as the mentioned additional uncertainties into account, it is
clear that such a forecast should be interpreted qualitatively rather than quantitatively.

The great uncertainty of the forecast, however, does not mean that the model does
not say anything. It is clear, for instance, that D will sooner or later reach unity, because
their determinants V and I keep growing (the waning obviously overturns the effects
of new vaccinations, new infections, respectively). In this sense, another wave seems
unavoidable. Note also that, after the predicted October wave, the forecasts of D quickly
approach unity again which means that another wave in the beginning of 2023 is likely.
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5 Sensitivity Analysis

As it has been already mentioned, two crucial parameters are subject of a great uncer-
tainty. Most important it is the rate wo of post-infection immunity waning given that the
original infection was by Omicron. So far we assumed it to be equal to the same value
0.022 as if the original infection were by other variants. Newly we set it to the waning
rate of the immunity against Delta after the Delta infection, i.e. wo = 0.003. The result
is following:

The fact that slowing the waning rate seven times only shifts the autumn wave one month
later might seem surprising; however, it suffices to realize that there is still more people
who were infected by older variants than those who underwent the Omicron infection and
that the seasonal component grows in autumn.

The second highly uncertain parameter is ρ. Below is the forecast assuming that, from
the time horizon (end of April), ρ starts to greater by 0.5, i.e. ρ = 4.72, perhaps due to
the fact that a new variant of Omicron prevailed.

Modeling COVID Pandemics: Strengths and Weaknesses of Epidemic Models

212



Not surprisingly, the expected wave came earlier. It is also less in its peak; however, this
does not be a great victory as the numbers start to grow at the end of the year, obviously
preparing for the next wave.

6 Discussion and Conclusion

We presented a simple model designed in order to study the circumstances of the expected
autumn wave of the COVID infection. Having observed great uncertainty of the model’s
forecasts, we resorted to qualitative forecasts instead of quantitative ones. Still, however,
we dare to conclude that another wave of infection is most likely unavoidable. Question
arises, whether it can be averted or at least how it can be mitigated.

The answer to the first question is unfortunately no, the reason being the low effec-
tiveness of the contemporary vaccines against Omicron infection. As we have no other
acceptable means of preventing the infection spreading, it remains to take the upcoming
wave as a fact and move to mitigation. As Šmı́d et al. (2022) show, the existing vaccines
are still rather effective against a severe course of the disease, so the most straightfor-
ward move is to vaccinate anyone who is or may be endangered. Moreover, still having
time enough, it would be reasonable to discuss “logistic” aspects of the wave, namely to
prepare measures which would prevent the wave from paralyzing daily life as it nearly
happened during the recent wave when e.g. schools could hardly function due to strict
quarantine rules.

The presented model, yet simple, can be improved too. As new data come, the
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waning and effectiveness parameters can be further refined, the impacts on hospitals can
be studied and the uncertainty may be quantified more preciously.

References

J. Bracher, E. L. Ray, T. Gneiting, and N. G. Reich. Evaluating epidemic forecasts in an
interval format. PLoS computational biology, 17(2):e1008618, 2021.

A. Endo et al. Estimating the overdispersion in covid-19 transmission using outbreak
sizes outside china. Wellcome Open Research, 5, 2020.
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opatřeńı? Korelace versus kauzalita. Carolinum, 2022. In print. In Czech.
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