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Abstract

Decision-making involves our daily life at any level, something that entails un-
certainty and potential occurrence of risks of varied nature. When dealing with
industrial engineering systems, effective decisions are fundamental in terms of main-
tenance planning and implementation. Specifically, several forms of uncertainty may
affect decision-making procedures, for which adopting suitable techniques seems to
be a good strategy to attain the main maintenance goals by taking into account
system criticality along with decision-maker(s) opinions. A wide variety of factors
contributes to uncertainty, being some of them greatly important while other ones
less significant. However, all of these factors in synergy can impact the function-
ing of systems in a positive, neutral, or negative way. In this case, the question
is whether obtaining a complete picture of such uncertainty can improve decision-
making capabilities and mitigate both through-life costs and unforeseen problems.
The fundamental issues include dealing with ambiguity in the maintenance decision-
making process by employing numerous evaluation criteria and dealing with real-
world scenarios in the maintenance environment. In this study, the Multi-Criteria
Decision-Making (MCDM) approach is analysed, with particular reference to the
Fuzzy Technique for Order of Preference by Similarity to Ideal Solution (FTOPSIS),
technique capable to effectively rank alternatives while dealing with uncertainty for
maintenance decision-making. A final case study is developed to demonstrate the
applicability of the method to the field of maintenance in industry 4.0. The pro-
posed study may be useful in supporting intelligent and efficient decisions resulting
in favorable maintenance outcomes.
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1 Introduction

Enabled by such industry 4.0 technologies as machine learning, big data, and augmented
reality, the current digital era is generally characterised by an abundance of information
available to aid in decision-making. Assets can be easily and real-time connected via
networks of suitable sensors, commonly referred to as the Internet of Things (IoT). The
primary problem has shifted from obtaining data to making educated decisions on the
basis of the acquired information. The whole maintenance management relies on such
information, as well as on how to utilise data and predictive analytic to improve our
judgments. As a consequence, new possibilities for data-driven techniques including pre-
dictive analytic, artificial intelligence, and machine learning have been developed, with
the potential for large efficiency advantages. Everyday life is associated with constant
decision-making and each of these decisions involves potential of uncertainty and risk
(Van Staden, 2021), something that can directly influence maintenance strategies.

Numerous variables contribute to uncertainty, some of them are extremely signifi-
cant while other ones may be inconsequential, affecting performance of the system in a
favourable, neutral, or negative way (Grenyer et al., 2019). On the whole, two differ-
ent forms of uncertainty can be distinguished: quantitative, based on recorded statistical
data, and qualitative, based on unobserved statistical data consisting of heuristic esti-
mates obtained from expert opinions, supplier specifications, and equipment accuracy.
On the one hand, the first category is well-documented and can be simply represented as
the standard deviation of a particular data set. On the other hand, the second category is
often difficult to be characterised. Additionally, uncertainty can be classified as epistemic
and aleatory. The first one stems from model or data accuracy, which is impacted by the
available amount of knowledge, and may therefore be alleviated or improved. The other
type denotes statistical variables that change continually and so cannot be minimized
(Grenyer et al., 2019). Among the several causes of uncertainty, the primary source is
the lack of knowledge about engineering phenomena. Indeed, decision-making processes
are affected by several types of uncertainty, depending on its own root causes.

Uncertainty manifests itself at several levels in diagnostic problems, particularly when
it comes to information and/or system defects. Two primary aspects of uncertainty refers
to the available information used to support decision-making problems: fuzziness and
stochasticity. The ideal decision-making procedures under situations of uncertainty in
order to achieve the maintenance objective vary according to the system’s nature and
the decision maker’s priorities (Borissova et al., 2011). Currently, industrial maintenance
decision-making is primarily based on two major categories of data: captured data and
subjective expert views. The collected data contains objective facts that are subjected to
a degree of uncertainty statistically quantifiable as the standard deviation of the dataset
under analysis. Subjective expert opinions assign qualitative uncertainty to individuals
based on their characteristics that qualify them as experts and the foundation for their
perspective in order to prove its legitimacy. The precision of the equipment employed
together with the competence of the maintainer are seldom recognised as contributors to
total uncertainty in methods of data collection. However, their roles are fundamental to
comprehensively characterise and manage uncertainty, as exemplified in Figure 1.
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Figure 1: Contributors of uncertainty in maintenance (Grenyer et al., 2019)

A mix of objective data and subjective opinions should be considered to elicit reliable
judgments leading to effective maintenance results. Certain instances need indeed further
skills while other ones necessitate additional data. The issue is whether taking a compre-
hensive picture of such uncertainties may help to enhance decision-making capability and
mitigate both through-life costs and unanticipated problems (Grenyer et al., 2019).

Reviewing and adapting maintenance policies to the many possibilities available in
systems or plants is critical for maintenance managers. Especially when multiple con-
flicting criteria and methods are taken into account, it is difficult to undertake proper
maintenance strategies. The primary problems include dealing with uncertainty in the
evaluation of maintenance policies using multiple assessment criteria and dealing with
real-world situations in maintenance (Mojtahedi et al., 2020). In this study, we are going
to assume a Multi-Criteria Decision-Making (MCDM) perspective and, in particular, an
approach based on the Fuzzy Technique for Order of Preference by Similarity to Ideal
Solution (FTOPSIS) is going to be applied to rank alternatives relevant to industry 4.0
in order to characterise uncertainty in maintenance decision-making. The proposed study
may be useful in supporting companies to make effective decisions optimising business
results on the whole.

2 Literature review

MCDM methods are extensively implemented in many domains, e.g. engineering, supply
chain management, economics, social sciences, medical sciences, among others. Despite
its variety, the MCDM paradigm shares several aims and criteria that are sometimes in
conflict with each other. Over the last decades, MCDM methods have grown in impor-
tance in such fields as operations research (Nădăban et al., 2016), and their adoption is
commonly considered to be a robust scientific strategy to make intelligent and acceptable
decisions in complex maintenance contexts (Abdulgader et al., 2018) such as those in-
volved in industry 4.0. Various MCDM methodologies have been largely used by several
professionals in different areas of study (Palczewski and Sa labun, 2019).
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Figure 2: MCDM techniques and types (Aruldoss et al., 2013)

Some of these techniques are summarised by Aruldoss et al. (2013), as recalled in Fig-
ure 2, and can be applied in their traditional version or even in their fuzzy developments.
In the first case, decision-making elements (i.e. criteria, sub-criteria, alternatives) are
evaluated, ranked and/or weighted on the basis of assessments given in the form of crisp
numbers. Alternatively, in the second case, linguistic variables to be translated into fuzzy
numbers are used in order to better manage the ambiguity as well as the lack of precision
and clarity affecting input evaluations (Wang and Lee, 2009).

Among the MCDM methods available in literature, we are going to discuss about the
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) along with
its fuzzy extension (FTOPSIS). This choice is justified by the fact that these techniques
allow extreme flexibility in ranking elements, something that appears to be particularly
useful in modern maintenance contexts, greatly impacted by digital transformations.

2.1 Traditional TOPSIS: advantages and limitations

In the vast majority of real-life scenarios, given the ambiguity of human preference be-
haviour, decision-makers are often unable to produce effectively representative numerical
evaluations for discriminating among the main elements of a complex problem. Numerous
MCDM approaches have been developed and applied over the years and, among them,
TOPSIS is one of the most common methods used in literature to deal with complex
decision-making problems (Salih et al., 2019; Palczewski and Sa labun, 2019; Hung and
Chen, 2009; Kutlu and Ekmekçioğlu, 2012; Kore et al., 2017), with the ultimate goal of
producing a structured ranking of alternatives (Kutlu and Ekmekçioğlu, 2012; Gupta,
2018) on the basis of evaluation criteria, suitably weighted.

TOPSIS was established on the notion that the selected alternative(s) should have
the shortest distance to an ideal point, called Positive Ideal Solution (PIS) and, simulta-
neously, the longest distance to another ideal point, called Negative Ideal Solution (NIS)
(Wang and Lee, 2009; Hung and Chen, 2009; Kutlu and Ekmekçioğlu, 2012; Kore et al.,
2017; Wang and Elhag, 2006). The output is then based on the calculation, for each al-
ternative, of the positive and negative distances (Solangi et al., 2021). To such an aim, an
accommodative aggregation technique may preliminary evaluate a set of alternatives by
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assigning weights to each criterion (Palczewski and Sa labun, 2019). However, using actual
crisp values to score the alternatives under analysis may lead to restrictions in addressing
uncertainty (Salih et al., 2019). In any case, TOPSIS includes an easily comprehensible
and flexible calculation technique having the capability to take into consideration several
criteria with varied units at the same time (Kutlu and Ekmekçioğlu, 2012). Given to its
great flexibility of application, TOPSIS is a prominent MCDM method employed by many
scholars in a huge variety of sectors (Solangi et al., 2021; Behzadian et al., 2012). More-
over, it has been widely integrated with several other MCDM strategies as an efficient way
for prioritizing maintenance decision-making (see Singh et al. (2016); Ighravwe and Oke
(2021), among others). TOPSIS is indeed considered to be faster, apart from much more
adaptable, comprehensible, and straightforward than many other MCDM methodologies
(Haddad et al., 2021).

TOPSIS’ strengths comprise transparency, intuitively grasped concepts, improved
working efficiency, and capability to evaluate the overall efficiency of each alternative
in a simple mathematical format, something that has resulted in the broad acceptance
and understanding of this approach from a varied range of industries (Hung and Chen,
2009). The main benefit of employing TOPSIS is that it requires just few data sets from
professionals, such as criteria values and linguistic evaluations of alternatives (Gupta,
2018). It accepts contributions in the form of any set of criteria and characteristics.
Because of the notion of detachment from flawless patterns, it has actually instinctual
physical significance. It is indeed extremely effective in dealing with circumstances in
which maintenance managers, due to their specialized knowledge, believe that technical
difficulties may be scaled from the most significant to the least critical considerations. The
discussed peculiarities of TOPSIS make it a viable choice for dealing with prioritization is-
sues (Ighravwe and Oke, 2021), also considering the possibility to take simultaneously into
account optimal and critical solutions by means of an easy mathematical programming
procedure (Rani et al., 2020).

Despite its widespread use, TOPSIS has several limitations in its traditional form,
since it actually fails to offer precise information when problems are particularly am-
biguous and unexplained (Solangi et al., 2021). Additionally, the use of crisp values
for evaluating alternatives is generally inefficient in capturing the subjective character of
human cognition. This may lead the technique to fail in effectively reflecting decision
makers’ priorities in real-world scenarios (Haddad et al., 2021). In multi-criteria con-
texts, variables are usually in discordant proportions, something that generates complex
assessment challenges. Furthermore, TOPSIS’ weaknesses may originate the following
flaws: (1) its simplistic application may produce incorrect findings; (2) its traditional
deterministic version may not exhaustively help in considering uncertainty (Abdulgader
et al., 2018). As a result, standard TOPSIS can only partially accommodate ambiguous
or vague input through expert opinions. To address all of the mentioned shortcomings,
various works of research have integrated fuzzy logic ideas within MCDM approaches. In
such a direction, the FTOPSIS technique, originally deveoped by Chen (2000), is pro-
posed as a combination of fuzzy set theory and traditional TOPSIS, under which fuzzy
values are employed to provide preference ratings by experts (Palczewski and Sa labun,
2019; Salih et al., 2019; Gupta, 2018; Haddad et al., 2021).
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2.2 FTOPSIS: effective treatment of uncertainty

In complex decision-making situations related to maintenance management in industry
4.0, analysing the many variables and factors can be a complex task. As we have already
explained, extending traditional models to fuzzy logic can significantly help to mitigate
this problem, as it has been successfully demonstrated in many industrial applications
(Palczewski and Sa labun, 2019). In 1965, Zadeh developed the concept of fuzzy sets for
stimulating spontaneous reasoning by taking into account human ambiguity and subjec-
tivity. As the primary goal of fuzzy logic is to grasp the inaccuracy of human thinking
and describe it mathematically (Hung and Chen, 2009; Solangi et al., 2021), linguistic
variables can be represented by means of fuzzy numbers with an associated degree of
membership µ(x), varying between 0 and 1. Several researchers have been focusing on
the possibility to deal with complex uncertain decision-making problems utilizing fuzzy
sets theory. Furthermore, in 1993, Gau and Buehrer introduced the concept of ambiguous
sets, stressing as a single value cannot testify to its reality (Hung and Chen, 2009).

FTOPSIS is particularly effective in handling ambiguity and uncertainty affecting
input data as it results from human perception and evaluation. Given the ambiguity and
lack of knowledge in MCDM, linguistic terms used in FTOPSIS can represent inaccurate
data so as to better deal with unclear information (Palczewski and Sa labun, 2019; Salih
et al., 2019). Indeed, the use of fuzzy numbers for criteria evaluation streamlines the whole
assessment process by also making decision-makers more comfortable in expressing their
personal opinions when it comes to qualitative criteria. As a result, FTOPSIS represents
a simple, practical forecasting and compensatory method to accept or reject potential
options based on hard cut-offs (Kore et al., 2017; Wang and Elhag, 2006). However, it
is vital to underline that most of the information gathered and used in FTOPSIS derives
from human evaluations, something that makes the estimation of values of importance
and also strictly dependent on the quantity of data, that hence need to be “dependable,
reliable, constant, certain, authentic, real, and respectable”. Despite these drawbacks,
FTOPSIS can be regarded as an appropriate method to analyse the values and rank
relevant decision-making elements on the basis of linguistic variables and related fuzzy
numbers (Solangi et al., 2021).

Numerous studies on FTOPSIS and its integrations are identified in literature. Hwang
et al. (2022) assessed maintenance criteria for railroad electrical facility systems based on
subjective judgment information of decision-makers by using Design Structure Matrix
(DSM) and FTOPSIS approaches. Alshraideh et al. (2021) used a FTOPSIS model to
identify the most suitable maintenance contractor under unpredictable conditions, by
evaluating proposals’ quality. Momeni et al. (2011) proposed the FTOPSIS as a tool for
selecting maintenance plans by translating uncertain and imprecise judgment from the
decision makers into fuzzy figures. Selim et al. (2016) created a maintenance planning
framework integrating the FTOPSIS and the Failure Mode and Effect Analysis (FMEA)
approaches for determining the repair priorities of the machines in order to decrease and
stabilize maintenance expenditures. Chen et al. (2020) applied the FTOPSIS technique
to rate and prioritize paths to e-waste implementation management solutions in Ghana
while accounting for the subjectivity of decision-maker preferences.
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FTOPSIS have been developed to deal with any type of problem, examples are: assess-
ing and prioritizing strategies for long-term deployment of renewable energy technologies
in Pakistan (Solangi et al., 2021); evaluating many alternatives against subjective crite-
ria and weighting all of the factors for robot selection (Chu and Lin, 2003); evaluating
suppliers under Health Safety and Environment (HSE) criteria in the oil and gas sector
to prioritize operations and maintenance contracts (Haddad et al., 2021); and so on. As
reported by Kutlu and Ekmekçioğlu (2012), FTOPSIS has been used also for dealing with
the following problems: selection of plant location, supplier selection, industrial robotic
system selection, municipal solid waste disposal method and site selection, selection of the
best energy technology alternative, and modeling consumer product adoption processes.

3 Methodological procedure

As mentioned in some previous works (Brentan et al., 2021; Carpitella et al., 2018), the
most common types of fuzzy numbers are Triangular Fuzzy Numbers (TFNs) ñ, herein
considered, which can be expressed as follows (Klir and Yuan, 1996):

ñ = (a, b, c); (1)

where a ≤ b ≤ c. Common algebraic operations involving one or more fuzzy numbers
can be easily performed. For instance, one can write the following equations:

ñ1 ⊕ ñ2 = (a1 + a2, b1 + b2, c1 + c2); (2)

ñ1 ⊙ ñ2 = (a1 × a2, b1 × b2, c1 × c2); (3)

ñ−1
1 = (

1

c1
,
1

b1
,
1

a1
). (4)

On the basis of these preliminaries, we now describe the steps needed to implement
the FTOPSIS approach (Youssef, 2020; Akram and Arshad, 2019; Ilyas et al., 2021).

• Defining the fuzzy decision matrix X̃ collecting the whole set of input data:

X̃ =

 x̃11 · · · x̃1n

...
. . .

...
x̃m1 · · · x̃mn

 . (5)

The generic TFN x̃ij of matrix X̃ corresponds to the rating of alternative i under
criterion j:

x̃ij = (aij , bij , cij). (6)

• Weighting and normalising matrix X̃ with relation to different criteria, obtaining
matrix Ũ , whose components are calculated as:
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ũij =
(aij

c∗j
,
bij

c∗j
,
cij

c∗j

)
× wij , j ∈ I′; (7)

ũij =
(a−j

cij
,
a−j

bij
,
a−j

aij

)
× wij , j ∈ I′′; (8)

I
′

being the subset of criteria to be maximized, I
′′

the subset of criteria to be
minimized, wj the weight of criterion j and c∗j and a−j calculated as:

c∗j = max
i

cij if j ∈ I′; (9)

a−j = min
i

aij if j ∈ I′′. (10)

• Computing distances between each alternative and the fuzzy ideal solutions A∗ and
A−:

A∗ =
(
ũ∗
1, ũ

∗
2, . . . , ũ

∗
n); (11)

A− =
(
ũ−
1 , ũ−

2 , . . . , ũ−
n ). (12)

where ũ∗
j = (1, 1, 1) and ũ−

j = (0, 0, 0), j = 1. . . n. Distances between each alter-
native and these ideal points can be computed through the vertex method (Chen,
2000), for which the distance d(m̃, ñ) between two TFNs m̃ = (m1,m2,m3) and
ñ = (n1, n2, n3) corresponds to the crisp value:

d(m̃, ñ) =

√
1

3

[(
m1 − n1

)2
+

(
m2 − n2

)2
+

(
m3 − n3

)2]
. (13)

Then, aggregating with respect to the whole set of criteria, the distances of each
alternative i from A∗ and A− are, respectively:

d∗i =
n∑

j=1

d(ũij , ũ
∗
j ) i = 1, . . . , n; (14)

d−i =
n∑

j=1

d(ũij , ũ
−
j ) i = 1, . . . , n. (15)

• Calculating the closeness coefficient CCi:

CCi =
d−i

d−i + d∗i
(16)

To get the final ranking of alternatives it is necessary to order the values of the
closeness coefficient related to each alternatives in a decreasing way.

Characterizing Uncertainty In Decision-Making Models For Maintenance In Industry 4.0

8



4 Application and discussion

The present case study applies the FTOPSIS technique to rank a set of 13 alternatives,
that are the maintenance factors relevant for industry 4.0 identified and formalised in
(Ahmed et al., 2022). The considered factors aim to contemplate the role of maintenance
digitalization and their final ranking highlights those aspects to be taken primarily into
account when planning industrial strategies while considering uncertainty of evaluations.
Alternatives have been evaluated under three main criteria, that are safety & security
(C1), process quality (C2) and cost efficiency (C3), all of them to be maximised and, in
the present application, equally weighted. Linguistic evaluations reported in Table 1 refer
to a real company operating in the waste management sector, having been attributed in
cooperation with the human resources in charge, respectively, of the maintenance function
and of the safety and security system. The used linguistic variables and related TFNs
are: VL (1,1,3), very low impact; L (1,3,5), low impact; M (3,5,7), medium impact; H
(5,7,9), high impact; VH (7,9,9), very high impact. Table 1 summarises the results of the
FTOPSIS application along with the final ranking of maintenance factors.

ID Maintenance Factors C1 C2 C3 d∗
i d−

i CCi Rank.
pos.

MF1 Management commitment and support M M M 0.5844 2.4512 0.1925 9th

MF2 Smart technology development M H M 0.6558 2.3773 0.2162 7th

MF3 Organizational growth M M H 0.6558 2.3773 0.2162 7th

MF4 Development of skilled workforce VH VH H 0.8874 2.1277 0.2943 1st

MF5 Resources required for digitalization VH VH M 0.8160 2.2015 0.2704 3rd

MF6 Maintenance strategy development H H VH 0.8431 2.1787 0.2790 2nd

MF7 Corporate culture M M L 0.5161 2.5251 0.1697 10th

MF8 Change in working practices M M M 0.5161 2.5251 0.1697 10th

MF9 Effective maintenance system H H H 0.7987 2.2296 0.2637 4th

MF10 Regulatory compliance M H L 0.5875 2.4512 0.1933 8th

MF11 Safety and health awareness VH H M 0.7716 2.2525 0.2552 5th

MF12 Data privacy and security L M M 0.5161 2.5251 0.1697 10th

MF13 Sustainable performance improvement M H H 0.7273 2.3035 0.2400 6th

Table 1: Evaluation of maintenance factors relevant to industry 4.0

By observing Table 1, factor MF4, that is “development of skilled workforce”, has
prominent importance in maximising all the considered criteria, according to the percep-
tions of the involved experts. It can be noticed that also MF6 (“maintenance strategy
development”) and MF5 (“resource required for digitalization”) are regarded as priority
aspects. On the contrary, factors MF7, MF8 and MF12 that are, respectively, “corporate
culture”, “change in working practice” and “data privacy and security” occupy the last
position of the ranking, having associated lower impact with respect to the other mainte-
nance factors. Some of the factors occupy the same position in the ranking, e.g. factors
MF2 and MF3, and the reason of it is that criteria have associated the same weight. If
weights varied, so would do the ranking position. For example, again in the case of MF2

and MF3, if higher weight was attributed to the quality criterion and lower weight to the
cost efficiency, MF2 would eventually occupy a higher position in the final ranking with
respect to MF3, the last one having associated lower evaluation under C2.
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5 Conclusions

This work discusses how to deal with uncertainty affecting decision-making processes with
a special focus on industry 4.0 maintenance management. After a comprehensive review
on MCDM approaches implemented in the field under study, we underline the valuable
support provided by the integration of such tools as the fuzzy set theory for managing
complex real situations in which uncertain human opinions are elicited. Specifically, we
analyse the TOPSIS and FTOPSIS techniques on the basis of their high methodologi-
cal flexibility, by formalising weaknesses and advantages of both approaches. FTOPSIS
reveals to be particularly useful for treating uncertainty, as it can be demonstrated by
several applications. After describing methodological details, We implement a real case
study aimed at providing helpful practical insights for maintenance managers in the com-
plex era of digital transformation. Future lines of research may refer to the integration of
other MCDM methods supporting in a more precise calculation of criteria weights along
with useful mathematical tools as, for instance, the probability theory.
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A. C. Kutlu and M. Ekmekçioğlu. Fuzzy failure modes and effects analysis by using fuzzy
TOPSIS-based fuzzy AHP. Expert Systems with Applications, 39(1):61–67, 2012.

M. Mojtahedi, S. M. Mousavi, H. Gitinavard, and N. Foroozesh. Maintenance policy se-
lection considering resilience engineering by a new interval-valued fuzzy decision model
under uncertain conditions. Int. Journal of Science and Technology, 28(1), 2020.

M. Momeni, M. R. Fathi, and M. K. Zarchi. Fuzzy TOPSIS-based approach to mainte-
nance strategy selection: A case study. 2011.
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