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Abstract: To detect contaminant intrusion and, in general, to assess quality problems in
their water distribution systems, water utilities need quality sensors that continuously measure,
directly from the network, conductivity, PH, concentration of different substances, and other
related parameters. Due to the nature of the objectives involved, the decision about where
to place sensors in the network and the amount of them to be installed is a very challenging
problem. In this investigation, we present a multi-objective approach to cast light on those
decisions. Instead of a crisp solution, the multi-objective approach will provide a wide spectrum
of solutions representing the best trade-off among all the decision criteria of the problem.
This approach aims to integrate the practical experience of engineers into the decision-making
process since, eventually, the solution will be selected among the Pareto front of solutions using
the engineers’ experience and the specific characteristics of their utility. To this end, the used
algorithm adds agents based on both technical and user-preference rules on top of evolutionary
search techniques to explore the decision space. The algorithm runs as a part of the Agent
Swarm Optimization framework, a consolidated multi-objective software. Another novelty of
this contribution is computational: the evaluation of the objective functions is executed directly
in the MS SQL server and simulation data is never required to be loaded in their entirety.
Without this important implementation detail, the solution for “large” water network models
would not be affordable with the hardware typically used in desktop computers. To illustrate
the solution process, a use case focused on a mid-size water supply network is addressed.
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1. INTRODUCTION AND LITERATURE REVIEW

It is difficult to ascertain the importance of drinking
water supply infrastructures for the sustainable existence
and development of modern cities (Gandy (2004); Hoek-
stra and Mekonnen (2012)). Water distribution systems
(WDSs) are complex structures formed by pipes, valves,
pumps, tanks, and other elements designed and erected
to transport water of sufficient quality from water sources
to consumers. The amount of the above elements, which
can reach up to tens of thousands of links and junctions,
their frequently wide spatial dispersion, and the WDS
characteristic of being very dynamic structures make the
management of real WDSs a complex problem (Perelman
and Ostfeld (2012); Izquierdo et al. (2012); Ostfeld (2012);
Diao et al. (2016)). However, although the main objective
is to supply water in the quantity and quality required,

other requirements are essential, namely maintaining con-
ditions far from failure scenarios (Ostfeld et al. (2014);
Herrera et al. (2016)), ability to quickly detect sources of
contamination intrusion (Islam et al. (2015); Nafi et al.
(2018)), minimization of leaks (Covas and Ramos (1999);
Candelieri et al. (2014)), etc.

Most of these objectives may be achieved through the
suitable location of sensors along the network and, cur-
rently, an increasing number of efforts are carried out in
this direction (Zhao et al. (2016); Sarrate et al. (2014);
Rathi and Gupta (2017); Antunes and Dolores (2016).
The identification of potential contaminant intrusion in
water networks is a crucial point to fully guarantee water
quality in distribution systems. As a consequence, water
utilities are bound to measure water quality parameters
continuously, so that quality can be adequately monitored.
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To this end, an optimal lattice of sensors should be de-
signed using strategic points of the water network (Oliker
and Ostfeld (2015)). As this is a matter of safety and secu-
rity arrangement in WDS management, sensors cannot be
randomly placed along the network. Placing sensors may
seem simple at the beginning; however, considering sensor
costs and the extension of the pipes that should be covered,
it turns out to be a challenging problem.

The plurality of potential contaminants, the identification
of the potential contamination sources in the network,
and the reaction time for the utilities to deal with a con-
tamination event are also important elements to consider.
Contamination spreads in WDSs derived, mainly, from the
water flows along the system. Thus, a good understanding
of water flows leads to a good understanding of contami-
nation scenarios.

Several complexities inherent to WDSs should be consid-
ered additionally. For example, as suggested by Di Nardo
et al. (2013, 2014) and Chang et al. (2011), among others,
using a simplified system (for example a sectorization
or division of the system in so-called DMAs, for district
metered areas (Ilaya-Ayza et al. (2018); Ferrari et al.
(2014); Campbell et al. (2016, 2015)), including dynamic
sectorization (Wright et al. (2014)), may lead to quick
responses to such extreme events as infection intrusion,
and this would reduce the number of required elements
for monitoring and, as a result, the operational expenses.

This work, however, is not intended to cover all the aspects
related to network protection against potential contami-
nant intrusion. It will rather concentrate on proposing a
solution just for the sensor placement problem, namely,
optimally determining the number of sensors and their
locations. And we address this optimization problem from
a multi-objective perspective.

Several goals should be considered when placing water
quality sensors. Optimal sensor placement aims to achieve
early contaminant detection and seclusion of affected areas
so that the public exposure to contamination is minimum.
First, it is desired to identify quality problems as soon
as possible; this means minimizing the detection time.
Second, irrespective of the location of the contaminant
source, at least one sensor should always be able to
identify a quality problem; this amounts to minimizing
the detection failure. Additionally, the bulk of poor or
bad quality water consumed should be minimized; this,
specifically, involves that high population density areas
have to receive special attention compared to other areas
with a much lower consumption rate. And, importantly,
the cost, which is directly proportional to the number of
installed sensors, should be kept to a minimum or at least
should not go beyond some upper budget limit.

These objectives should ideally be reached with a suitable
sensor placement solution. However, it is a fact that the
mutually conflicting nature of the objectives makes them
pull in opposite directions. Improving one of them will
probably result in a detriment for another. The rationale
is clear. For example, maximizing the protection coverage
in the network will require either to increase the number
of sensors (it means the cost) or to probably be bound to
accept larger detection times. Consequently, the final so-
lution will result from a compromise among the objectives

rather than from a unique “best alternative”. Suitably
solving problems of this nature requires the use of a multi-
objective approach. The key idea boils down to not finding
one single optimal solution but to find (an approxima-
tion of) the Pareto front representing the best trade-off
that can be achieved among all the objectives involved
(Hurt and Murray 2010; Quifiones-Grueiro et al. (2019);
Giudicianni et al. (2020); Wéber and Hés (2020)). The
known alternative consisting in first somehow pondering
the objectives and then adding their weighted influence
into a single expression for solving a single objective prob-
lem will probably result in finding just one point of the
Pareto front. This approach is equivalent to producing an
a priori trade-off without having any clear idea of how the
obtained solution relates to the rest of the potential solu-
tions of the problem. Another approach, as the one used
in (Brentan et al. (2021)), produces an entire Pareto front
of non-dominated solutions which is subsequently clus-
tered and organized using suitable multi-criteria decision-
making methods. This can be of great help for the utility
managers, who can easily be lost in a densely populated
Pareto front, frequently formed by many potential solu-
tions. However, those approaches are unable to answer
marginal, what-if cost questions, such as if it is worth buy-
ing an additional sensor to get a reasonable improvement
in another objective, because, for example, there is no way
to know how much improvement in protection coverage
and detection time would bring that additional sensor.
Those are the kinds of questions a multi-objective, rule,
and preferences-based approach helps answer. This implies
the existence of some utility function (Fishburn (1970))
behind the decision-making process, which is derived from
some compromise scheme allowing a constructive solution
of the multi-objective problem (Voronin and Savchenko
(2020)). We claim that those are the kind of questions
and answers needed to eventually find a sensor placement
solution that represents a good trade-off among all the
objectives involved. The main novelties of the proposal are
the following. First, the proposed algorithm adds agents
based on both technical and user-preference rules on top
of evolutionary search techniques to explore the decision
space. The algorithm runs as a part of the Agent Swarm
Optimization framework, a consolidated multi-objective
software. Second, the evaluation of the objective functions
is executed directly in the MS SQL server and simulation
data is never required to be loaded in their entirety. With-
out this important implementation detail, the solution for
“large” water network models would not be affordable with
the hardware typically used in desktop computers.

The rest of the paper is organized as follows. The following
two sections address the materials and methods issue.
Section 2 develops on contamination scenarios and the
evaluation of the considered objectives. Then, section 3
presents the multi-objective solution proposed based on
the contamination matrix and the contaminated consump-
tion matrix concepts and gives details about the used
optimization algorithm, which includes specific rules for
the agents that help reduce the search space. A use case
corresponding to a medium-size water distribution net-
work is presented in section 4 together with the obtained
results and a thorough discussion. Finally, section 5 pro-
vides some interesting conclusions and the paper is closed
by the references section.
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2. CONTAMINATION SCENARIOS AND
EVALUATION OF OBJECTIVES

WDSs are vulnerable against various sources of accidental
and intentional contaminations. In its protocol, the US
EPA (EPANET (2020)) considers three steps: (i) detection
of contaminant presence, (ii) source identification and (iii)
consequent management. To be able to develop Early
Warning Systems (EWSs) that ensure early detection of
contaminations it is necessary to monitor the water quality
through as many as possible of the quality significant
parameters such as pH, turbidity, etc. With no doubt, to be
able to develop suitable EWSs for alerting the consumers
and isolating contaminated areas, optimal location of
measurement devices is paramount in order to accurately
identify the source of contamination for the managers
to develop suitable management actions. After reviewing
several works on sensor location, Hart and Murray (2010)
describe EWSs and conclude that sensor placement is one
of the critical aspects of the design of EWSs.

2.1 The objectives

As stated in the Introduction, the objectives we consider
to solve the sensor location problem are: detection time,
detection failure, affected population and implementation
costs. For an arbitrary sensor network layout, A, that is,
a candidate solution to the problem, these objectives are
described next.

Detection time. For a layout of sensors, A, to detect
a contaminant in a distribution system having N nodes
susceptible of contamination the (average) detection time
is calculated through a set of hydraulic simulations, as
follows: contamination is introduced in the first node of
the network, then an extended period simulation (EPS)
is started and the detection time for this contamination
event will be the time elapsed between the beginning
of the contamination and the instant when at least one
sensor of is reached by the contaminant. Then a new
contamination is introduced in the second node of the
network, a new simulation is started, and the detection
time will be calculated with the same idea. The same
process is repeated for the rest of the network nodes in
turn. After completing this iterative process, the average
of all detection times is calculated. The calculation of this
average detection time can be summarized in the following
process:

(1) Initialize the sum of detection time as zero.

(2) Loop from 1 to the number of nodes considered as
potential contamination points.

a. Contaminate node j.

b. Consider the time until one of the sensors of A is
reached by the contaminant.

c. Add the current simulation time to the sum of
detection times.

d. Eliminate the contamination at node j.

(3) Calculate the average detection time by dividing
the sum of detection times obtained for the nodes
considered as potential contamination points whose
contamination event has been eventually detected.

This code may also be formulated in closed form as:

S (G 0) > 0)- (7, 0)

A =
1 >N G > 0)

(1)

where 7(j,t) is the time elapsed between the contamina-
tion time at node j and the time at which one of the
sensors in A first detects the contaminant, or 0 if the
contamination event is not detected. The logical condition
7(4,t) > 0 equals 1 if the condition is true and 0 otherwise.
Observe that non-detected contamination events do not
contribute to this calculation.

A natural question to ask is what happens with those cases
when none of the sensors in can detect the contaminant; for
example, when sensors are located “very upstream” and a
contaminant is injected “very downstream”. In these cases,
this approach does not calculate any detection time. In
(Berry et al. (2008)), for this case, it is assumed a detection
time equal to the simulation time (the simulation time is
introduced to define for how long the simulation should be
run). Another possibility is to establish in these cases that
the detection time is equal to zero, which is the approach
followed in this research. Assuming detection time equals
zero when there is no detection is not a problem if the
calculation is based on a multi-objective approach where
other objectives such as the detection failure and the
contaminated water consumed are also considered. We
consider these two objectives next.

Detection failure. The detection failure is calculated
as the sum of the cases where none of the sensors in A is
reached by the contaminant in the contamination events
analyzed for estimating the detection time. In a closed
form, this objective may be written as

Z = 0); 2)

which acts as a counter for non-detected contamination
events.

Affected population. It is important to consider not
only the detection time and the detection failure but also
how many people would be affected before the contam-
ination reaches at least one of the sensors. The affected
population can be estimated either based on the number of
people or on the consumption, that is, the water demand
associated with each of the consumption nodes affected,
since this is an information directly handled within the
EPSs deployed to hydraulically analyze the problem.

In this research the calculations have been based on the
water demand at the affected nodes. The following process
illustrates how the calculation of the affected population is
implemented in the objective function. Note that the num-
ber of people affected is not directly calculated. Instead,
it is calculated the averaged contaminated water that has
been supplied to the population.

(1) Initialize the sum of contaminated water consumption
as equal to zero.
(2) Loop from 1 to the number of nodes considered as
potential contamination points.
a. Contaminate node j.
b. Consider the time until one of the sensors of A
is reached by the contaminant. Observe that the
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calculation of this expression uses the detection
time for semsor layout A has been previously
calculated, as previously explained.

c. For all the nodes reached by the contaminant,
add their real demand to the sum of contami-
nated water consumption.

d. Eliminate the contamination at node j.

(3) Return the sum of contaminated water consumption
as a result.

A closed expression for this objective is the following:

N N
FA) =Y > (di,5) > 0) - (A, )); (3)
j=1 i=1

where d(i, j) is the demand associated to node ¢ during the
contaminant even corresponding to node j, and (d(i,j) >
0) is a logical condition which equals 1 if that demand is
positive and 0 otherwise.

Of course, the estimation of the affected population could
be formulated in a much more complex way. Insisting in
calculating the number of persons affected will open the
question of how much water should have consumed the
consumers in order to be affected by the concentration
of contaminants appearing in the water. Additionally,
it should be considered that the actions taken directly
by the utility after a contamination is detected do not
happen instantaneously. It takes some time to inform
the population, operate valves when necessary or do any
additional action as a response to the contamination event.
It means that the consequences of the contamination will
be probably bigger than the calculation here. However, the
way we are running the calculations makes this calculation
to be proportional to what will happen in case of a real
contamination event. This is why f3(A) can be used as an
indicator of consumers affected to optimize the location of
sensors, despite a different analysis is required to have an
accurate calculation of how many people will be exactly
affected.

Implementation costs. Costs are proportional to the
number of sensors to be installed. Even if it is unknown
how many sensors will be eventually installed, it can be ob-
viously assumed that more sensors will imply more costs,
and vice versa. The real total costs will be beyond the cost
per sensor and will have to include also the installation and
maintenance costs at least. A straightforward expression
for this objective is:

fa(A) = aNs; (4)

A detailed calculation of costs will not be necessary for
the optimization problem we are running because much
of the cost’s details have nothing to do directly with
the decision variables in the problem. It can only be
decided the number of sensors to be installed and it will
be only influencing the costs of sensors proportionally to
the number selected. In this research, as expressed by the
previous formula, the costs were estimated as the number
of sensors, Ng, in layout A, multiplied by an estimated
average cost, a, per sensor.

3. ALGORITHM AND SOFTWARE FOR
CALCULATIONS

The calculation of these objective functions is performed
by using two matrices, namely the contamination matrix
and the contamination consumption matrix, which are
built after performing all the necessary contamination
event simulations and suitably stored depending on the
hydraulic network size. Then, the calculations of the first
three objectives are performed through suitable look-ups
to these matrices.

In this section we shortly describe these matrices and then
the specificities about the used software are detailed.

The contamination matriz. This matrix stores, for
every single contamination event, that is, the contami-
nation of one susceptible node of the network, how long
it takes in the corresponding EPS to reach each of the
network nodes.

This matrix is used to calculate objective functions fi(A)
and fo(A) for an arbitrary layout of sensors, A. It is also
used, as a previous step to calculate f3(A), as seen next.

The contaminated consumption matrixz. In a sim-
ilar way as with the contamination matrix, the contami-
nated consumption matrix stores the amount of contami-
nated water consumed in each scenario by each consump-
tion node of the network.

This matrix is used to calculate objective function f3(A)
for the current layout of sensors A. Note that an element
(4, 7) of this matrix will represent how much contaminated
water has been consumed in node j from the moment a
contaminant is injected at node i till the moment a sensor
in A detects the contaminant, and this last calculation uses
the contamination matrix.

The used software. A number of approaches may be
used to find the Pareto front in a multi-objective optimiza-
tion problem (Ferreira et al. (2017); Kukkonen and Coello
(2017); Jiang and Yang (2016)). In this research, the algo-
rithm behind the solution search process is based on Agent
Swarm Optimization (ASO) (Montalvo et al. (2014)). ASO
is a distinctive combination of multi-objective evolutionary
algorithms, rule-based agents and data analytics. ASO
intelligently integrates problem-domain knowledge within
the optimization process and learns engineer’s preferences
to achieve more real results. The algorithm has been inte-
grated in Water-Ing (2020), a software package for anal-
ysis and decision support in water distribution systems.
Water-Ing connects with the EPANET (2017) toolkit to
perform the necessary hydraulic simulations that generate
the contamination matrix and the contaminated consump-
tion matrix. Using this information, ASO analyzes various
alternatives for locating sensors and selects those alterna-
tives representing non-dominated solutions.

Despite various evolutionary techniques can be used in
ASQ, for this research it was used a multi-objective version
of Particle Swarm Optimization (PSO). A population
of agents with a similar behavior to particles in PSO
was introduced for solving the problem. Additionally,
another population of rule-based agents were also included
in the solution search process. Rule-based agents use
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rules designed to reduce the problem decision search
space. In previous work, we have used various rules for
reducing the problem decision space in the problem of
water distribution system design (Montalvo et al. 2014;
Izquierdo et al. (2016a,b)). In this research we introduce
basic rules for reducing the search space for the water
quality sensor placement problem. A “normal” agent based
on the behavior of PSO can locate a sensor at virtually
any node of the network. Based on the experience of the
authors on solving several use cases it was found that:

e Locating sensors too much downstream of the net-
work will probably guarantee good coverage of the
network but unfortunately will result in unreason-
able long detection times. Basically, the probability
of detecting an event is relatively high. Nevertheless,
detection will be definitively too late because most
of the network will have already been contaminated
when the detection happens, and there will be not
much more to do in order to prevent people from using
contaminated water.

e Locating sensors too much upstream of the network
will detect events faster, but the coverage of the
network will be seriously compromised. Many con-
tamination events may happen downstream of the
location of the sensors and no detection will happen
in these cases.

Let us clarify several things regarding these two ideas.

First, even though the concepts of downstream and up-
stream are not clearly defined for a network, the averaged
contamination times previously calculated and stored in
the contamination matrix are a perfect guide to move
upstream and downstream through the network and can
be used as surrogates of the classical upstream and down-
stream concepts. Moreover, observe that, as the optimiza-
tion process is performed after having run a suitable num-
ber of simulations leading to obtaining the contamination
matrix, there is no need of extra hydraulic simulations
and, as a result, those surrogate concepts of upstream and
downstream are adequate.

Second, the above-mentioned two ideas suggest that
boundaries should be drawn in order to define areas of
higher interest where sensors should be placed. For obvious
reasons, the nodes in this area of interest should be neither
too close to the water sources nor at the very end of the
piping network.

Another consideration should be taken into account: after
a detection happens there is a reaction time from the water
company to take suitable actions.

A first boundary should be designed to exclude too up-
stream nodes from being eligible. Points belonging to this
boundary will be those located at a certain previously
established distance from the water sources. Technicians
must define that distance before running the algorithm,
and instructed rule-based agents will be in charge of not
selecting any node located closer to a water source than
that distance.

A second boundary of nodes should consider the company
reaction time to decide the operation actions to be exe-
cuted, and the time to run those operation actions in the

field. The reaction time is used by the rule-based agents
to exclude candidate locations for sensor placement. Any
node downstream of that boundary will not be eligible for
hosting a water quality sensor.

The idea of establishing upstream and downstream fron-
tiers for locating water quality sensors helps reduce the
search space of the problem. Nevertheless, this has no in-
fluence on the size of the contamination matrix associated
with the problem. Remember that this contamination ma-
trix is the result of how long it takes to contaminate each
node after contaminating each contamination-susceptible
point in the water network. For “large” water network
models it is not possible to keep the whole contamination
matrix in RAM at a time. That is the reason why the
software implementation associated with this research uses
an MS SQL database for saving the contamination and the
contamination consumption matrices. In other words, the
evaluation of the objective functions is executed directly in
the MS SQL server and these matrices are never required
to be loaded in their entirety. Without this important
implementation detail, the solution for “large” water net-
work models would not be affordable with the hardware
typically used in desktop computers.

We finally observe that Water-Ing is endowed with an ad-
vanced visualization environment to help insightful analy-
ses of the obtained optimization solutions. Specifically, as
many 2D Pareto charts as desired can be created in this
environment showing the various relationships between
pairs of objectives, namely cost, detection time, protection
coverage and bad water quality impact, which can be
simultaneously represented in a very friendly way. Selected
solutions in one chart will be automatically selected in the
rest of charts indicating how they behave with respect to
all the aspects involved in the problem. Moreover, if more
than one screen is used in the desktop, any chart can be
detached from the application and moved to a different
screen to expand the visualization capabilities.

4. USE CASE

In this research, for illustrating the solution process it has
been used a modified version of the water network of San
José de las Lajas. It is a small town in Cuba close to
Havana with more than 24 km of pipes and one single
entry point, as a consequence of the modifications in the
original model.

Figure 1 represents the network with a solution integrated
by 4 water quality sensors placed in the positions shown.
For better interpretation of the results, the results for
this 4-sensor layout solution is marked in red in the three
following figures, corresponding to the execution of the
sensor placement problem for the case of four sensors.

Figure 2 shows a 2D projection of the Pareto front repre-
senting average detection time versus contaminated water
consumption. One can observe a number of solutions with
zero detection time (note that the detection time is as-
sumed equal to zero for non-detected events). Obviously,
for most of these solutions the consumption of contam-
inated water is large. Observe the attractiveness of the
‘red’ solution.
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Fig. 1. Network model of San José with 4 water quality
Sensors

Figure 3 relates the amount of detection failures with the
average detection time. Solutions with very high detection
time represent layouts with sensors located at nodes very
downstream in the network. In these cases, it takes longer
to detect a contaminant (as an average, considering all
possible contamination events) but the detection failure is
much lower. In contrast, many solutions with too small
detection times, exhibit large detection failure, and corre-
spond to layouts with sensors too upstream or, as com-
mented in the previous paragraph, to cases with detection
time equal to zero, that is, undetected events. The ‘red’
solution presents a trade-off between both objectives.
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Fig. 2. Average detection time vs contaminated water
consumption
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Fig. 4. Average detection failure vs average contaminated
water consumed

Figure 4 shows that the average volume of contaminated
water consumed can be increased because of two main
reasons: either corresponds to solutions with high aver-
age detection failure (sensors located too close to the
sources that cannot detect contamination downstream) or
to solutions where sensors are located at nodes in very
downstream positions, and it requires longer in average
to receive the contamination effects. The relation between
detection time and detection failure has been previously
mentioned and can be seen in Figure 3. The ‘red’ solution
once more exhibits a clear optimal position.

Figures 2-4 help locate a certain number of sensors in
the network, four for the case of the mentioned figures.
Nevertheless, additional actions are required to assess how
many sensors should be installed in a network. Adding
sensor stations implies an investment and this has a clear
limitation. It will depend on the budget of the company
and the rewards for installing them.

One approach would be to decide an objective budget
and based on it, calculate the maximum number of sen-
sors that can be installed and, of course, then run the
approach to decide one optimal layout. Despite it is a
realistic approach, it is worth asking, however, what about
if, for example, for a 10% more of investment, the network
coverage to detect contaminant intrusion is increased in
25%? Would the utility add this 10% to the budget? Also,
what about if the network coverage was increased in a
30%, or if the detection time was reduced by a certain
percentage? Following this line of thinking, the next ques-
tion would be how much improvement/reward one would
get by increasing the budget to acquire one more sensor?
The same idea can bring the utility managers to ask how
much improvement/reward would be lost if getting rid
of one of the sensors to lower the budget? Answering
these kinds of questions requires a representation of the
improvement /rewards received as a function of the number
of sensors installed.

Deciding a budget a priori without considering the im-
provement /reward received as a function of the number of
sensors installed will not lead, in general, to a good de-
cision. Despite an initial tentative budget can be decided,
both aspects should be combined together before making a
final decision. The improvements/rewards received will be
expressed in terms of the objectives considered for placing
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sensors: reducing the detection time of contaminant intru-
sion or water quality problems; protecting the population
from the consumption of water under minimum quality
requirements; and maximizing the protection coverage in
the network.

Fig. 5. Contaminated water consumption (Y axis) vs
Detection Failure (X axis). Solutions for 3 (light
green), 4 (light blue) and 5(dark blue) sensors

These three objectives have to be combined with the addi-
tional objective of maintaining the cost within the frame-
work of a budget that can be afforded by the company. For
visualization purposes, it would be better to add new 2D
projections of the Pareto front where solutions for different
numbers of sensors can be compared, as in figure 5.

With all the projections of the Pareto front it can be
better decided not only where sensors should be located
but also how many of them should be placed. In the case
a budget can not be extended under any circumstances,
the analysis will still be valid for estimating how much is
needed for a realistic protection of the water network. It is
true that some experience will definitively help in making
these kinds of decisions. Nevertheless, even for experienced
engineers, the Pareto charts shown in figures 2-5 constitute
a great support for better evaluating alternatives.

5. CONCLUSIONS

To properly protect a water network against accidental or
intentional contamination events and water quality prob-
lems, two important questions have to be answered: how
many sensors are needed and where to place them. Answer-
ing these questions requires a decision about the criteria
and the requirements to be considered for achieving a
good solution, which inexorably has to obtained within a
multi-objective approach for solving the problem. In this
paper we have considered detection time, detection failure,
consumed contaminated water and cost.

The final solution should be based on a trade-off among the
objectives involved, with special emphasis on the tolerance
to “fail” that the utility could afford in its water supply
system. An improvement in all the objectives analyzed can
be done by adding new sensors but this, of course, has the
consequence of increasing the costs which can be a (hard)
constraint for the implementation of the solution.

Additional information about the utility can also influence
the final sensor layout adopted. This is the case, for
example, of the average reaction time of the company when
an event is detected. If the reaction time is relatively large

then it may be convenient to use solutions with the sensors
located a little more upstream if it is desired to avoid at
least part of the population to receive contaminated water.
Note that in this case there could be a higher number
of detection failures too. Getting some improvement on
both sides (reduced detection time and reduced detection
failure) implies adding more sensors to the solution.

This paper shows a simplified overview about how to
deal in practice with water quality sensor placement for
protecting such important infrastructures as water dis-
tribution systems. It is fully recommended not to base
decisions on just practical experience but to run hydraulic
model calculations. We strongly believe that both com-
puter models and experience should be jointly used for
achieving better results.
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