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Abstract. Because of the high computational complexity of the respec-
tive procedures, the application of belief-function theory to problems of
practice is possible only when the considered belief functions are approx-
imated in an efficient way. Not all measures of similarity/dissimilarity
are felicitous to measure the quality of such approximations. The paper
presents results from a pilot study that tries to detect the divergences
suitable for this purpose.
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1 Introduction

Modeling practical problems usually requires a fair amount of random variables.
Even small and simple applications require tens of variables, which complicates
the application of belief-function models because the corresponding space of
discernment grows super-exponentially with the number of the considered vari-
ables. As we will see, to specify a general belief function just for six binary
variables, we need 2(2

6) = 264 parameters. To avoid problems arising from the
high computational complexity of the respective procedures, one should restrict
their attention to belief functions representable with a limited number of param-
eters. For this purpose, we propose models assembled from a sequence of several
low-dimensional belief functions – so-called compositional models. In connection
with this, the question arises, how to recognize whether a compositional model is
an acceptable approximation of the considered multidimensional belief function.

In [7] and [6], we studied some heuristics proposed to control the model
learning procedures. Inspired by the processes used in probabilistic modeling,
we investigated the employment of entropy of belief functions for this purpose.
Unfortunately, no belief functions entropy has the properties of probabilistic
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Shannon entropy that would enable us to detect the optimal approximation.
Even worse, in belief function theory, there is no generally accepted measure of
similarity (dissimilarity) that could help recognize which of two approximations
is better. And this is the goal of the current paper. We will study which of several
dissimilarity measures (divergences) are suitable for the purpose. In this paper,
we consider only those divergences meeting the following two conditions:

• the values of the divergence are non-negative and equal zero only for identical
belief functions (the divergence is non-degenerative);

• the complexity of the necessary computation is polynomial with the number
of focal elements of the considered basic assignments.

Let us note at the very beginning that the achieved results depend on the
fact that we consider only a specific class of approximations: the approximations
of belief functions by compositional models. We admit that if considering differ-
ent approximating functions, one could detect other measures of divergence as
suitable.

The approximations of complex models by compositional models were first
suggested for multidimensional probability distribution [15]. Similarly, the au-
thors of some of the considered divergences also took inspiration from probability
theory. And this is why we will at times turn our exposition to probability theory.

The paper is organized as follows. In the next section, we introduce basic
notation and recall the idea of Perez, from whom we took the inspiration. The
notation from belief function theory is briefly recollected in Section 3. Section 4
introduces the considered divergences, and Section 5 explains the class of approx-
imations considered, i.e., the class of compositional models. The computational
experiments and the achieved results are described in Section 6.

2 Basic Notation and Motivation

In this paper, we consider a finite set N of random variables, which are denoted
by lower-case characters from the end of the Latin alphabet (N = {u, v, w, . . .}).
All the considered variables are assumed to be finite-valued. Xu, Xv, . . . denote
the finite sets of values of variables u, v, . . .. Sets of variables are denoted by
upper-case characters K, L, V, . . .. Thus, K may be, say, {u, v, w}. By a state of
variables K we understand any combination of values of the respective variables,
i.e., in the considered case K = {u,w,w}, a state is an element of a Cartesian
product XK = Xu × Xv × Xw. For a state a ∈ XK and L ⊂ K, a↓L denote a
projection of a ∈ XK into XL, i.e., a↓L is the state from XL that is got from a
by dropping out all the values of variables from K \ L.

The original idea of Perez [15] was to approximate a multidimensional prob-
ability distribution µ(N) (i.e., µ : XN −→ [0, 1], for which

∑
a∈XN

µ(a) = 1)
by a simpler probability distribution κ(N). To measure the quality of such ap-
proximation he used their relative entropy, which is often called Kullback-Leibler
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divergence3

KL(µ ‖ κ) =


∑

c∈XN :κ(c)>0

µ(c) log2

(
µ(c)
κ(c)

)
if µ� κ,

+∞ otherwise,

where symbol µ � κ denotes that κ dominates µ, which means that for all
c ∈ XN , if κ(c) = 0 then also µ(c) = 0.

It is known that the Kullback-Leibler divergence is non-negative and equals
0 if and only if µ = κ [13]. It is also evident that it is not symmetric4, and
therefore some authors measure the non-similarity of two distributions by the
arithmetic mean 1

2 (KL(µ ‖ κ) +KL(κ ‖ µ)). A more sophisticated symmetrized
version of this distance is so called Jensen–Shannon divergence (JS) defined

JS(µ ‖ κ) =
1

2

(
KL

(
µ ‖ µ+ κ

2

)
+KL

(
κ ‖ µ+ κ

2

))
,

which is, obviously, symmetric and always finite (namely, both µ and κ are
dominated by µ+κ

2 ). For more properties of this and other distances between
probability measures, the reader is referred to [14], where one can learn that there
is also an alternative way of expressing JS divergence using Shannon entropy

JS(µ ‖ κ) = H

(
µ+ κ

2

)
− 1

2
(H(µ) +H(κ)).

Recall that
H(µ) = −

∑
c∈XN

µ(c) log2(µ(c)),

which is known to be non-negative and less or equal to log2(|XN |) [17].

3 Belief Functions

A basic assignment m for variables N is a function5 m : 2XN −→ [0, 1], for which

•
∑

a⊆XN
m(a) = 1,

• m(∅) = 0.

We say that a ⊆ XN is a focal element of m if m(a) 6= 0. We use symbols
Belm, P lm, Qm to denote belief, plausibility and commonality functions, respec-
tively. These functions, which are known to carry the same information as the
corresponding basic assignment m, are defined by the following formulas [16]

Belm(a) =
∑
b⊆a

m(b); Plm(a) =
∑

b⊆XN :a∩b6=∅

m(b); Qm(a) =
∑

b⊆XN :b⊇a

m(b).

3 We take 0 log2(0) = 0.
4 To show asymmetry of the Kullback-Leibler divergence consider µ = ( 1

3
, 1
3
, 1
3
), and

κ = ( 1
2
, 1
2
, 0).

5 2XN denote the set of all subsets of XN .
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When constructing compositional models, we need marginals of the considered
basic assignments. Let m be defined for arbitrary set of variables L ⊇ K. Symbol
m↓K will denote the marginal of m, which is defined for variables K. Thus,

m↓K(b) =
∑

a⊆XL: a↓K=b

m(a).

for all b ⊆ XK .
When normalizing the plausibility function on singletons, one gets a proba-

bility distribution on XN called a plausibility transform of basic assignment m
[1]. There are several other probabilistic transforms described in literature [2, 3].
In this paper we use only the above-mentioned plausibility transform λm and
the so-called pignistic transform πm strongly advocated by Philippe Smets [18],
which are defined for all a ∈ XN

λm(a) =
Plm({a})∑

c∈XN
Plm({c})

, and πm(a) =
∑

b⊆XN :a∈b

m(b)

|b|
.

Up to now, we have recalled a standard notation used in belief function
theory. Rather unusual is that, to make the next exposition as simple as possible,
we will sometimes view the basic assignment m also as a probability distribution
on 2XN . This enables us to speak about Shannon entropy H(m) of m, to say
that m1 dominates m2, and to compute Kullback-Leibler divergence between
two basic assignments.

4 Divergences

Quite a few papers suggesting different tools to measure similarity/dissimilarity
of belief functions were published. The reader can find a good survey in [12].
As indicated in the Introduction, in this paper, we are interested only in those
measures, the computation of which is tractable even for multidimensional belief
functions if the number of focal elements of the considered basic assignments is
not too high. In other words, we are interested in the formulas, the computa-
tional complexity of which depends on the number of focal elements, regardless
of the number of variables, for which the respective basic assignments are de-
fined. Given the goal of this paper, we also restrict our attention only to non-
degenerative measures, i.e., the measures which can detect the equality of belief
functions because they equal zero only for identical basic assignments. In this
pilot study, we consider only the six divergences described below.

In this section, we assume that all the considered basic assignments are de-
fined for the set of variables N .

Jousselme et al. (2001). In [11], the authors define a distance between basic as-
signments meeting all the metric axioms: non-negativity, non-degeneracy, sym-
metry, and the triangle inequality. Recall that the Kullback-Leibler divergence
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introduced in Section 2 meets only the first two properties; it is not symmetric,
nor the triangle inequality holds for KL.

To be able use the notation of linear algebra, consider a fixed ordering of
elements of 2|XN |. Then, m can be interpreted as a vector m of 2|XN | non-negative
real numbers. Jousselme et al. define their distance

dBPA(m1,m2) =

√
1

2
(m1 −m2)TD(m1 −m2), (1)

where D is 2|XN | × 2|XN | matrix defined as follows: let ai be an element of 2XN

which corresponds the i-th coordinate of the vector m. Then, the elements of
matrix D = (dij) are defined

dij =
|ai ∩ aj |
|ai ∪ aj |

.

Note that we allow a situation of ai = ∅. In this case define dii = 1. Knowing
the matrix D, the argument of the square root of Eq. (1) can be rewritten into
the following form

(m1 −m2)TD(m1 −m2)

=
∑

a⊆XN

m1(a)
∑

b⊆XN

m1(b) |a ∩ b|
|a ∪ b|

+
∑

a⊆XN

m2(a)
∑

b⊆XN

m2(b) |a ∩ b|
|a ∪ b|

− 2
∑

a⊆XN

∑
b⊆XN

m1(a)m2(b) |a ∩ b|
|a ∪ b|

.

Xiao (2019). To define the divergence between two basic assignments m1 and
m2, Xiao [21] makes use of the fact that a basic assignment on XN is a probability
measure on 2XN . Thus, she defines a belief function divergence – she calls it Belief
Jensen-Shannon divergence (BJS) – which is the probabilistic Jensen-Shannon
divergence of the corresponding probability measures, i.e.,

BJS(m1,m2) =
1

2

[
KL

(
m1 ‖

m1 +m2

2

)
+KL

(
m2 ‖

m1 +m2

2

)]
, (2)

or, equivalently

BJS(m1,m2) = H

(
m1 +m2

2

)
− H(m1) +H(m2)

2
(3)

(recall, H denotes the Shannon entropy).

Song-Deng (2019a). As the authors say in [20], being inspired by Eq. (2), they
replaced the arithmetic mean in Eq. (2) by the geometric mean, suggesting a
new divergence BRE (perhaps from Belief Relative Entropy) defined by

BRE(m1,m2) =
√
KL (m1 ‖

√
m1 ·m2) ·KL (m2 ‖

√
m1 ·m2). (4)

In contrast to BJS, which is always finite, BRE equals +∞ whenever there
is at least one a ⊆ XN , which is a focal element of only one of the two basic
assignments m1,m2.
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Song-Deng (2019b). The same pair of authors suggested also another belief
function divergence related to the relative Deng entropy Dd, which is defined by
the following formula

Dd(m1 ‖ m2) =
∑

a⊆XN :m2(a)>0

1

2|a| − 1
m1(a) log

(
m1(a)

m2(a)

)
. (5)

Assume thatDd(m1 ‖ m2) = +∞ in case that there is a ⊆ XN for whichm1(a) >
0 = m2(a). In [19], the authors define the divergence DSDM symmetrizing the
relative Deng entropy

DSDM (m1,m2) =
1

2
(Dd(m1 ‖ m2) +Dd(m2 ‖ m1)) . (6)

Assuming that for m1 � m2, Eq. (5) defines the relative entropy, and that it
equals +∞ in opposite case. Then it is not difficult to show [19] that measure
DSDM is non-negative, non-degenerative, and symmetric.

Simple divergences. With the goal to test also some computationally cheap di-
vergences, we, being inspired by the entropy defined in [9], consider also functions

Divλ(m1,m2) = KL(λm1
‖ λm2

) +
∑

a⊆XN

|m1(a)−m2(a)| · log(|a|), (7)

and

Divπ(m1,m2) = KL(πm1 ‖ πm2) +
∑

a⊆XN

|m1(a)−m2(a)| · log(|a|), (8)

where λ and π are plausibility and pignistic transforms introduced in Section 2.

Proposition 1. Both divergences Divλ and Divπ are non-negative and non-
degenerative.

Proof. The non-negativity of the considered divergences follows directly from the
non-negativity of Kullback-Leibler divergence.

To show their non-degenerativity, i.e., Divλ(m1,m2) = 0⇐⇒ m1 = m2, and
Divπ(m1,m2) = 0⇐⇒ m1 = m2, consider two basic assignments m1 and m2. If
m1 = m2, then, trivially, Divλ(m1,m2) = Divπ(m1,m2) = 0.

To show the other side of the equivalence, assume that m1 6= m2, and∑
a⊆XN

|m1(a)−m2(a)| · log(|a|) = 0. (9)

This equality holds if and only if m1(a) = m2(a) for all non-singletons a ⊆ XN .
Since,

∑
c∈XN

Plmi(c) =
∑
c∈XN

mi(c) +
∑
c∈XN

 ∑
a⊆XN : c∈a& |a|>1

mi(a)


=

1−
∑

a⊆XN :|a|>1

mi(a)

+
∑
c∈XN

 ∑
a⊆XN : c∈a& |a|>1

mi(a)

 ,
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we can see that
∑
c∈XN

Plm1
(c) =

∑
c∈XN

Plm2
(c).

Since we assume that for m1 6= m2 Eq. (9) holds, then there exists c ∈ XN ,
for which m1(c) 6= m2(c), and therefore also

Plm1
(c) =

∑
a⊆XN :c∈a

m1(a) 6=
∑

a⊆XN :c∈a

m2(a) = Plm2
(c).

Thus,

λm1
(c) =

Plm1(c)∑
x∈XN

Plm1
(x)
6= Plm2(c)∑

x∈XN
Plm2

(x)
= λm2

(c),

and therefore KL(λm1 ‖ λm2) > 0. This proves that Divλ is non-degenerative
because we have showed that either KL(πm1 ‖ πm2) is positive, or Eq. (9) does
not hold, whenever m1 6= m2.

Similarly, for the considered c ∈ XN , for which m1(c) 6= m2(c),

πm1(c) = m1(c) +
∑

a⊆XN : c∈a&|a|>1

m1(a)

|a|

6= m2(c) +
∑

a⊆XN : c∈a&|a|>1

m2(a)

|a|
= πm2

(c),

and therefore also KL(πm1
‖ πm2

) > 0, which proves that also Divπ is non-
degenerative. �

5 Compositional Models

The definition of compositional models for belief functions is analogous to that in
probability theory [4]. A basic assignment of a multidimensional compositional
model is assembled from a system of low-dimensional basic assignments. To do it,
one needs a tool to create a more-dimensional basic assignment from two or more
low-dimensional ones. In this paper, we use an operator of composition .. By this
term, we understand a binary operator meeting the following four axioms (ba-
sic assignments m1,m2,m3 are assumed to be defined for K,L,M , respectively):

A1 (Domain): m1 . m2 is a basic assignment for variables K ∪ L.
A2 (Composition preserves first marginal): (m1 . m2)↓K = m1.
A3 (Commutativity under consistency): If m1 and m2 are consistent, i.e.,

m↓K∩L1 = m↓K∩L2 , then m1 . m2 = m2 . m1.
A4 (Associativity under special condition): If K ⊃ (L ∩M), or, L ⊃ (K ∩M)

then (m1 . m2) . m3 = m1 . (m2 . m3).

Because of space limit we cannot discuss these axioms in details (for this
we refer the reader to [5]), but roughly speaking, axioms A1, A3, A4 guarantee
that the operator of composition uniquely reconstruct basic assignment m↓K∪L

from its marginals m↓K and m↓L, if there exists a lossless decomposition of
m↓K∪L into m↓K and m↓L. Surprisingly, it is axiom A4, which guarantees that
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no necessary information from m↓L is lost. Axiom A2 solves the problem aris-
ing when non-consistent basic assignments are composed. Generally, there are
two ways of coping with this problem. Either find a compromise (a mixture of
inconsistent pieces of knowledge) or give preference to one of the sources. The
solution expressed by axiom A2 is superior to the other two possibilities from
the computational point of view.

By a compositional model, we understand a multidimensional belief function,
the basic assignment of which is assembled from a sequence of low-dimensional
basic assignments with the help of the operator of composition: m1.m2.. . ..mn.
Since the operator of composition is not associative, this expression is ambiguous.
To avoid this ambiguity, we omit the parentheses only if the operators are to be
performed from left to right, i.e.,

m1 . m2 . . . . . mn = (. . . ((m1 . m2) . m3) . . . . . mn−1) . mn. (10)

Let m? = m1 . m2 . . . . . mn, and let each mi be defined for variables Ki.
Due to axiom A2, m1 is a marginal of m?. Similarly, m1 .m2 = m?↓K1∪K2 . This,
however, does not mean that m2 is also a marginal of m?. If all mi are marginals
of m?, then we say that m? is defined by a perfect compositional model. The
following assertion summarizes the relevant properties that were proved in [10,
8].

Proposition 2. Let m? = m1 .m2 . . . . .mn, and let each mi be defined for the
set of variables Ki.

• (Compositional models can be perfectized.) There exists a perfect model m? =
m̄1 . m̄2 . . . . . m̄n such that each m̄i is defined for Ki.

• (Uniqueness of compositional models.) Let m? = m1.m2.. . ..mn be perfect.
If there is a permutation j1, j2, . . . , jn such that mj1 .mj2 . . . . . mjn is also
perfect, then mj1 . mj2 . . . . . mjn = m?.

• (Consistent decomposable models are perfect.) If all mi are pairwise con-

sistent (i.e., for all 1 ≤ i, j ≤ n, m
↓Ki∩Kj

i = m
↓Ki∩Kj

j ), and the sequence

K1,K2, . . . ,Kn meets the running intersection property6, then m1 .m2 .. . ..
mn is perfect.

Now, let us express the original idea of Perez [15] in the language of compo-
sitional models: He proposed to approximate multidimensional probability dis-
tributions by compositional models and, as said above, to measure the quality
of such approximations using the Kullback-Leibler divergence. He proved that if
a perfect model exists, it minimizes the KL divergence (due to the uniqueness
of compositional models, all perfect models define the identical approximation).
This fact fully corresponds with our intuition. When knowing only a system of

6 K1,K2, . . . ,Kn meets the running intersection property if

∀ i = 2, 3, . . . , n ∃ j (1 ≤ j < i) Ki ∩ (K1 ∪ . . . ∪Ki−1) ⊆ Kj .
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marginals of an approximated distribution, the best approximation is a distri-
bution having all of them for its marginals.

How to employ this idea within the framework of belief functions? Not having
a generally accepted “Kulback-Leibler divergence” for belief functions at our
disposal, we try to solve a problem, which is, in a sense, inverse to that of Perez.
We accept the paradigm that the best approximation of a multidimensional
basic assignment is, if it exists, a perfect compositional model assembled from
the marginals of the approximated basic assignment. Based on this we test, which
belief function divergences detect the optimal approximation. The corresponding
computational experiments, as well as the achieved results, are described in
the next section. First, however, we owe the reader a specification of the used
operator of composition.

In the literature, two operators of composition meeting axioms A1 – A4 were
introduced. Historically, the first was defined in [10]. Its disadvantage is that
it does not comply with the Dempster-Shafer interpretation of belief function
theory. The other operator, derived from Dempster’s rule of combination, was
designed by Shenoy in [8]. Nevertheless, because of its high computational com-
plexity, we did not include it in the described pilot computational experiments.
In the experiments described below, we used only the first operator. To present
its definition, we need an additional notion.

Consider two arbitrary sets of variables K and L. By a join of a ⊆ XK and
b ⊆ XL we understand a set

a ./ b = {c ∈ XK∪L : c↓K ∈ a & c↓L ∈ b}.

Realize that if K and L are disjoint, then a ./ b = a × b, if K = L, then
a ./ b = a ∩ b, and, generally, for c ⊆ XK∪L, c is a subset of c↓K ./ c↓L, which
may be proper. Notice that the sets, for which c = c↓K ./ c↓L, were called
Z-layered rectangles in [22, 23].

Definition 1. Factorizing operator of composition
Consider two arbitrary basic assignments, m1 and m2 defined for sets of variables
K and L, respectively. A factorizing composition m1 . m2 is defined for each
nonempty c ⊆ XK∪L by one of the following expressions:

(i) if m↓K∩L2 (c↓K∩L) > 0 and c = c↓K ./ c↓L, then

(m1 . m2)(c) =
m1(c↓K) ·m2(c↓L)

m↓K∩L2 (c↓K∩L)
;

(ii) if m↓K∩L2 (c↓K∩L) = 0 and c = c↓K × XL\K , then

(m1 . m2)(c) = m1(c↓K);

(iii) in all other cases, (m1 . m2)(c) = 0.
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6 Computational Experiments

As indicated in the Introduction, the goal of the described experiments is to
examine which of the considered divergences can be used to (heuristically) detect
the best approximations of basic assignments. To do it, we take into account only
the approximations by compositional models and accept the intuitively rational
and theoretically well-grounded fact that the perfect model, if it exists, is the
best approximation.

In the experiments, we considered 14 binary variables (|N | = 14), for which
we randomly generated 900 basic assignments7 (denote them m) with 30 focal
elements. For each basic assignment we randomly generated a cover of N , i.e.,
sets K1,K2, . . . ,Kn, and N = K1 ∪K2 ∪ . . . ∪Kn (5 ≤ n ≤ 11, 2 ≤ |Ki| ≤ 4).
To assure that we can identify the best approximation, we guaranteed that this
sequence met the running intersection property (RIP). Due to Proposition 2,
we know that m↓K1 . m↓K2 . . . . . m↓Kn is perfect, and therefore it is the best
approximation of m that can be composed of these marginals. To avoid misun-
derstanding, recall that we study the behavior of the considered divergences, and
therefore, we do not mind that most of the considered approximations were much
more complex (in the sense of the number of parameters defining the respective
belief functions) than the approximated basic assignment.

For each perfect model, we set up also non-perfect models by randomly per-
muting the marginals in the sequence. Thus, for each of the 900 randomly gener-
ated 14-dimensional basic assignments, we had one RIP and several (on average
about 6) non-RIP compositional models8. The achieved results are summarized
in Table 1. From this, the reader can see that for the 900 basic assignments,
we considered 6 458 approximating compositional models, 900 of which were
perfect, and the remaining 5 558 were non-perfect. On the right-hand side of Ta-
ble 1, the behavior of the considered distances is described. As wrongly detected
we considered those perfect approximations m↓K1 . . . . . m↓Kn , for which there
was generated non-RIP model (defined by a permutation m↓Kj1 . . . . . m↓Kjn )
such that

Table 1. Numbers of wrongly detected approximations.

wrongly detected by
total

dBPA BJS Divλ Divπ
Number of perfect approximations 900 348 216 97 9
Number of non-perfect approximations 5 558 1 613 1 007 167 15

7 We generated basic assignments of three types: 300 of them were nested, 300 were
quasi-bayesian, and the remaining 300 basic assignments had 29 fully randomly se-
lected focal elements and the thirties one was XN .

8 Precisely speaking, we know that all RIP models are perfect, but, theoretically, it
may happen that also non-RIP model is perfect. However, this happens very rarely,
and when assessing the results, we took that all non-RIP models were non-perfect.
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Div(m, (m↓Kj1 . . . . . m↓Kjn )) < Div(m, (m↓K1 . . . . . m↓Kn)), (11)

where Div stands for the respective divergence from Tab. 1. Analogously, wrongly
detected non-perfect models are those non-perfect models m↓Kj1 . . . . . m↓Kjn ,
for which Eq. (11) holds true. It means that there is a correspondence between
wrongly detected perfect and non-perfect models, however, this correspondence
is not a bijection. Each wrongly detected perfect model corresponds with at least
one (but often more than one) wrongly detected non-perfect model. Notice that
if a perfect approximation m↓K1 . . . . . m↓Kn and its non-perfect permutation
m↓Kj1 . . . . .m↓Kjn were generated, such that the equality Div(m, (m↓Kj1 . . . . .
m↓Kjn )) = Div(m, (m↓K1 . . . . .m↓Kn)) hold, none of these two approximations
was recognized as wrongly detected.

Though we said in Section 4 that we would study six divergences, only four
of them appear in Table 1. It is because the remaining divergences BRE and
DSDM (defined by Eq. (4) and Eq. (6), respectively) equal +∞ whenever there is
a focal element of the approximation, which is not a focal element of the originally
randomly generated basic assignment. This, however, cannot be avoided for any
multidimensional basic assignment and its compositional-model approximation.
So, it is not surprising that all divergences computed for BRE and DSDM were
+∞, which means that they are useless for the purpose of this study.

7 Conclusions

From Table 1 one can deduce that the simple divergences Divλ and mainly Divπ
may be recommended to identify the best approximations of multidimensional
basic assignments. However, let us recall that we have achieved this conclusion
when considering only approximations by f-compositional models. We have not
yet, achieved any results in the case of experiments with the operator of compo-
sition derived from Dempster’s rule of combination (d-composition). The main
reason is the computational complexity of the operator of d-composition, the
calculation of which requires conversions of low-dimensional basic assignments,
from which the model is set up, from/to the respective commonality functions.
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14. Österreicher, F., Vajda, I.: A new class of metric divergences on probability spaces
and its applicability in statistics. Annals of the Institute of Statistical Mathematics
55(3), 639–653 (2003)

15. Perez, A.: ε-admissible simplifications of the dependence structure of a set of ran-
dom variables. Kybernetika 13(6), 439–449 (1977)

16. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press (1976)
17. Shannon, C.E.: A mathematical theory of communication. Bell System Technical

Journal 27, 379–423, 623–656 (1948)
18. Smets, P.: Constructing the pignistic probability function in a context of uncer-

tainty. In: Henrion, M., Shachter, R., Kanal, L.N., Lemmer, J.F. (eds.) Uncertainty
in Artificial Intelligence 5, pp. 29–40. Elsevier (1990)

19. Song, Y., Deng, Y.: Divergence measure of belief function and its application in
data fusion. IEEE Access 7, 107465–107472 (2019)

20. Song, Y., Deng, Y.: A new method to measure the divergence in evidential
sensor data fusion. International Journal of Distributed Sensor Networks 15(4),
1550147719841295 (2019)

21. Xiao, F.: Multi-sensor data fusion based on the belief divergence measure of evi-
dences and the belief entropy. Information Fusion 46, 23–32 (2019)

22. Yaghlane, B.B., Smets, P., Mellouli, K.: Belief function independence: I. the
marginal case. International Journal of Approximate Reasoning 29(1), 47–70
(2002)

23. Yaghlane, B.B., Smets, P., Mellouli, K.: Belief function independence: Ii. the condi-
tional case. International Journal of Approximate Reasoning 31(1-2), 31–75 (2002)


